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Abstract

While pretrained language models (PLMs) pri-
marily serve as general-purpose text encoders
that can be fine-tuned for a wide variety of
downstream tasks, recent work has shown that
they can also be rewired to produce high-
quality word representations (i.e., static word
embeddings) and yield good performance in
type-level lexical tasks. While existing work
primarily focused on the lexical specializa-
tion of single monolingual PLMs, in this work
we expose massively multilingual transformers
(MMTs, e.g., mBERT or XLM-R) to multi-
lingual lexical knowledge at scale, leveraging
BabelNet as the readily available rich source of
multilingual and cross-lingual type-level lex-
ical knowledge. Concretely, we use Babel-
Net’s multilingual synsets to create synonym
pairs (or synonym-gloss pairs) across 50 lan-
guages and then subject the MMTs (mBERT
and XLM-R) to a lexical specialization pro-
cedure guided by a contrastive objective. We
show that such multilingual lexical specializa-
tion brings substantial gains in two standard
cross-lingual lexical tasks, bilingual lexicon in-
duction and cross-lingual word similarity, as
well as in cross-lingual sentence retrieval. Cru-
cially, we observe gains for languages unseen
in specialization, indicating that multilingual
lexical specialization enables generalization to
languages with no lexical constraints. In a se-
ries of controlled experiments, we show that
the number of specialization constraints plays
a much greater role than the set of languages
from which they originate.

1 Introduction

Massively multilingual transfomers (MMTs) such
as mBERT (Devlin et al., 2019) and XLM-R (Con-
neau et al., 2020), among others, have been the
primary vehicle of cross-lingual NLP transfer, of-
fering state-of-the-art performance for many tasks
and target languages in various zero-shot and few-
shot transfer scenarios (Pires et al., 2019; Wu and

Dredze, 2019; Cao et al., 2020; Artetxe et al., 2020;
Lauscher et al., 2020a; Zhao et al., 2021; Ruder
et al., 2021, inter alia). Much less work, however,
investigated their capabilities as multilingual type-
level word encoders (Vulić et al., 2020b). Recent
work, focusing primarily on monolingual PLMs,
demonstrated that they can be turned into effective
type-level lexical encoders using lexical constraints
(Vulić et al., 2021; Liu et al., 2021), i.e., a process
commonly referred to as lexical specialization. Ex-
isting work, however, investigated lexical special-
ization in monolingual or bilingual settings only,
namely specializing PLMs for a single language or
a pair of languages using either English monolin-
gual or noisy translated bilingual lexical constraints
(Vulić et al., 2021). This is not only computation-
ally inefficient, since one specialization needs to be
executed for each language or language pair, but
also does not tap into the wealth of multilingual
knowledge of MMT’s simultaneous pretraining on
many (100+) languages, as well as large amounts of
manually curated knowledge from massively mul-
tilingual knowledge bases like BabelNet (Navigli
and Ponzetto, 2010).

In this work, in contrast, we investigate mas-
sively multilingual lexical specialization of MMTs,
i.e., the potential benefits and limitations of a sin-
gle lexical specialization procedure in multiple
languages. To this end, we tap into BabelNet as
the readily available massively multilingual lexico-
semantic resource. Concretely, we release a dataset
of synonym pairs or synonym-gloss pairs that cover
50 languages (representing 14 different language
families) obtained from BabelNet’s multilingual
synsets and leverage them as positive instances in a
contrastive specialization training procedure. Our
evaluation on two multilingual lexical tasks – bilin-
gual lexicon induction (BLI) and cross-lingual se-
mantic word similarity (XLSIM) – as well as on the
task of cross-lingual sentence retrieval demonstrate
the effectiveness of the multilingual lexical special-
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ization when compared against vanilla MMTs.
We complement our evaluation with diagnostic

experiments aimed at studying properties of the
multilingual lexical constraints that might drive the
downstream lexical performance of the specialized
models, namely the choice of the languages and
the number of constraints. For this, we perform
experiments where we control MMT specialization
for (i) the linguistic diversity of the language repre-
sented in the specialization dataset and (ii) the size
of the specialization dataset, i.e., the number of
synonym pairs from BabelNet used in contrastive
training. The results of our diagnostic experiments
suggest that, counterintuitively, the typological di-
versity of the languages used in specialization (i.e.,
the specialization languages) has barely any effect
in defining the downstream performance. These
findings for multilingual specialization for (type-
level) lexical tasks contrast the observations for
higher-level tasks, requiring the modeling of sen-
tence or sentence-pair semantics, in which both
multi-source specialization/fine-tuning on diverse
languages (Chen et al., 2019; Ansell et al., 2021)
and linguistic proximity between training and eval-
uation languages (Lin et al., 2019; Lauscher et al.,
2020a) have been shown to strongly affect the trans-
fer performance. At the same time, we find that the
alignment performance quickly saturates with few
constraints: this corroborates the rewiring hypothe-
sis of Vulić et al. (2021), here in a massively multi-
lingual setting. To encourage further research on
this topic, we release our code and all our datasets
of lexical constraints and synonym-gloss pairs at
https://github.com/umanlp/babelbert.

2 Related Work

External lexical knowledge from lexico-semantic
resources (e.g., WordNet, ConceptNet) has been
extensively leveraged for improving distributional
representations of words – a process commonly
referred to as semantic specialization. Earlier work
on semantic specialization of word embeddings can
roughly be divided into (i) joint specialization ap-
proaches (Yu and Dredze, 2014; Xu et al., 2014;
Bian et al., 2014; Kiela et al., 2015; Liu et al., 2015;
Ono et al., 2015, inter alia), which integrate the ex-
ternal lexical constraints in the word embedding
(pre)training and (ii) retrofitting or postprocessing
techniques that post-hoc modify the pretrained em-
beddings, conforming them to external lexical con-
straints (Faruqui et al., 2015; Wieting et al., 2015;

Mrkšić et al., 2017; Vulić et al., 2018; Glavaš and
Vulić, 2018; Ponti et al., 2018).

External lexical knowledge has also been used
to enrich monolingual PLMs by coupling masked
language modeling with an auxiliary pretraining
objective using lexical relations from WordNet
(Lauscher et al., 2020b; Levine et al., 2020). How-
ever, these approaches are all aimed at enriching
the Transformer with additional knowledge to be
exploited in various downstream tasks, rather than
producing better type-level word representations.

Several paradigms for obtaining semantically
improved multilingual representation spaces have
been proposed for static word embeddings: (i)
align-and-specialize (Mrkšić et al., 2017) starts
from mutually unaligned monolingual embedding
spaces and both aligns them and semantically spe-
cializes for semantic similarity (as opposed to
other types of semantic relatedness) by means of
both multilingual (i.e., monolingual constraints for
multiple languages) and cross-lingual lexical con-
straints; (ii) in cross-lingual specialization transfer
(Vulić et al., 2018; Glavaš and Vulić, 2018) the
embedding space of a target language is first pro-
jected into the (unspecialized) space of the high-
resource language (typically English) using a lim-
ited amount of cross-lingual source-target lexical
alignments and then specialized with the special-
ization model trained using abundant monolingual
lexical constraints of the resource-rich source lan-
guage; (iii) constraint transfer (Ponti et al., 2019)
noisily translates the (abundant) source language
constraints into the target languages and uses those
to specialize the monolingual embedding spaces of
the target languages.

More recently, Vulić et al. (2020b) showed that
pretrained transformers encode a wealth of lexical
knowledge in their parameters and that it is possible
to obtain from them type-level (i.e., static, out-of-
context) word representations that outperform rep-
resentations obtained with word embedding models
like fastText (Bojanowski et al., 2017). In a subse-
quent approach dubbed LexFit (Vulić et al., 2021),
they specialize monolingual BERT models for a
range of languages using English monolingual con-
straints from WordNet and Roget’s Thesaurus, and
automatically translated constraints (Ponti et al.,
2019) for languages other than English. Finally,
once they obtain static word representations for
each language, they induce a bilingual space in a
standard fashion, by means of an orthogonal pro-
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jection (Smith et al., 2017; Artetxe et al., 2019).
The effectiveness of LexFit stems from the fact
that language-specific PLMs tend to produce bet-
ter representations for a language than the MMTs
(e.g., mBERT) due to the “curse of multilingual-
ity” (Conneau et al., 2020; Pfeiffer et al., 2022).
This, however, limits its applicability to a few lan-
guages with existing monolingual PLMs, crucially
excluding low-resource ones. The approach is also
computationally expensive as it entails (i) a sepa-
rate specialization process for each language (plus
a noisy translation of English constraints to the tar-
get language), and (ii) a bilingual alignment for
each language pair. Additionally, it does not ex-
ploit cross-lingual lexical constraints in specializa-
tion, merely in post-hoc alignment. In this work,
we propose a single massively multilingual lexical
specialization approach (dubbed BabelBERT) to
be applied to pretrained MMTs. To this end, we
propose to obtain the lexical constraints from Ba-
belNet, a massively multilingual lexico-semantic
resource (Navigli and Ponzetto, 2010; Navigli et al.,
2021). BabelBERT has several advantages: (i) we
leverage multilingual (i.e., monolingual from mul-
tiple languages) as well as cross-lingual lexical
constraints and (ii) perform a single multilingual
specialization procedure, instead of specializing
separately for each language or language pair; (iii)
the multilingual specialization on top of MMTs re-
moves the need for language-specific transformers
and additionally allows for specialization effects
to propagate to unseen languages, i.e., languages
without readily available lexical constraints.

3 Multilingual Lexical Specialization

We first describe how we create lexical constraints
from BabelNet in §3.1 and then how we leverage
them in a contrastive learning procedure in §3.2.

3.1 Constraint Mining

In line with most work on lexical specialization for
semantic similarity, we exploit the lexico-semantic
relation of synonymy to obtain the specializa-
tion constraints. The multilingual synsets of Ba-
belNet1 allow us to simultaneously obtain both
monolingual and cross-lingual synonym pairs. Let
L = {L1, . . . , Ln} be the predefined set of lan-
guages for which we mine the constraints and

1We use version 5.0, which covers 500 languages, un-
der the non-commercial license (https://babelnet.org/
full-license)

W = {w1, . . . , wN} a list of seed words. For
each word, we first obtain all BabelNet synsets
containing that word, discarding synsets that repre-
sent named entities and keeping only synsets that
have at least two glosses in languages from L. We
then iterate over all the fetched synsets, creating
all possible (monolingual and cross-lingual) syn-
onym pairs (w1, w2), each associated with a lan-
guage pair (Lword

1 , Lword
2 ). We also extract glosses

(g1, g2), i.e., sentences that explain the concept of
the synset, in languages (Lgloss

1 , Lgloss
2 ) different

from Lword
1 and Lword

2 , respectively.2 To ensure
the quality of the words we extract, we only keep a
word if it lies in the top-k words in its language fre-
quency list.3 We additionally discard words that are
automatic translations or Wikipedia redirections,
remove multi-words and delete duplicates.

3.2 Specializing for Semantic Similarity
Our lexico-semantic specialization procedure is
based on a Bi-Encoder architecture (often also re-
ferred to as Dual-Encoder or Siamese architecture)
and a contrastive training objective.

Type-Level Word Representations. Following
related work (Vulić et al., 2020b; Bommasani
et al., 2020; Vulić et al., 2021), we obtain
type-level word representations from a PLM in-
dependently for each word from the synonym
pair: we tokenize each word into its constituent
subwords sw1 . . . swm and feed the sequence
[SPEC1][sw1] . . . [swm][SPEC2] into the MMT,
with [SPEC1] and [SPEC2] denoting the spe-
cial sequence start and sequence end tokens of the
MMT (e.g., [CLS] and [SEP ], respectively, for
BERT). We get the final representation etypew by
mean pooling the representations of its subwords
(without the special tokens) from the last layer of
the Transformer encoder.

Sense-Level Word Representations. Type-level
representations of polysemous words conflate, by
construction, all of its senses into one embedding.
To address this and make the representations cap-
ture a specific sense, we leverage additional context
through sense-level information provided by the
knowledge base. For example, among the senses
of the word bat found in BabelNet, the list of the
most frequent senses contains the synset for the

2Lword
1 may, however, be the same as Lgloss

2 and so may
Lword

2 be the same as Lgloss
1 .

3We use the wordfreq library (Speer, 2022) and fastText
vocabularies for the languages that wordfreq does not cover.
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nocturnal animal and the sports club (e.g., the one
used for example in cricket). Besides the set of
synonyms, i.e., the different synsets these senses
belong to, their different meaning is captured by
the glosses. The gloss for the animal sense reads
as follows:

Nocturnal mouselike mammal with fore-
limbs modified to form membranous
wings [...]

whereas for the sport stick we find:

A cricket bat is a specialised piece of
equipment used by batters in the sport of
cricket [...]

In light of this, we make the MMT additionally
encode word-gloss pairs, in order to obtain sense-
level representations: to this end, we append one
of the mined glosses g to the word as follows:

[SPEC1][sw1] . . . [swm][SPEC2] g [SPEC2]

and feed this as input to the MMT. As with the type-
level representations, we get the final representa-
tion esensew by mean pooling the representations of
only the subwords sw1 . . . swm (i.e., gloss is there
just for the contextualization of the word) from the
last layer of the Transformer encoder.

Contrastive Objective. We train in batches

B = (w
(i)
1 , w

(i)
2 , syn

(i)
id )

NB

i=1
of synonym pairs, with

syn
(i)
id denoting the BabelNet synset of the syn-

onym pair (w(i)
1 , w

(i)
2 ). In sense-level training, each

data point additionally contains the glosses (g(i)1 ,
g
(i)
2 ). We train by minimizing a variant of the pop-

ular InfoNCE contrastive loss (van den Oord et al.,
2018). In a single batch, there might be more than
one pair belonging to the same synset, we thus
form all possible ordered 4 positive pairs in a set
P , i.e., pairs of words with the same syn id .

LB
InfoNCE =

−1

|P|
∑

(w
(i)
1 ,w

(j)
2 )∈P

log
(
sim(e(i)w1

, e(j)w2
)
)

− log


sim(e(i)w1

, e(j)w2
) +

∑

n∈N (i)

sim(e(i)w1
, e(n))




where sim(e
(i)
w1 , e

(j)
w2) = exp(cos(e

(i)
w1 , e

(j)
w2))/τ ,

with τ as the temperature hyperparameter and N (i)

4This is because the last sim(·) term depends on which
word occupies the first position.

as the set of in-batch negatives, i.e., words from the
other pairs in the batch that come from a BabelNet
synset other than syn

(i)
id .

Adapter-Based Fine-Tuning. Besides full fine-
tuning of the MMT’s parameters, we experiment
with lexical specialization via adapter-based fine-
tuning (Houlsby et al., 2019). Adapters, shown
useful in various sequential and transfer learning
scenarios (Pfeiffer et al., 2020b; Rücklé et al.,
2020; Lauscher et al., 2021; Hung et al., 2022)
are parameter-light modules that are inserted into
a PLM’s layers before specialization (i.e., fine-
tuning): during specialization, only adapter param-
eters are tuned, while the PLM’s pretrained param-
eters are kept fixed. We adopt the architecture of
Pfeiffer et al. (2020b), in which one bottleneck
adapter is inserted into each Transformer layer.

4 Experimental setup

Multilingual Lexical Constraints. We focus
on the 50 diverse languages from the popular
XTREME-R benchmark (Ruder et al., 2021) which
we report with language codes for brevity: af, ar,
az, bg, bn, de, el, en, es, et, eu, fa, fi, fr, gu, he, hi,
ht, hu, id, it, ja, jv, ka, kk, ko, lt, ml, mr, ms, my, nl,
pa, pl, pt, qu, ro, ru, sw, ta, te, th, tl, tr, uk, ur, vi,
wo, yo, zh. The sample covers 14 language families
(Afro-Asiatic, Austro-Asiatic, Austronesian, Dra-
vidian, Indo- European, Japonic, Kartvelian, Kra-
Dai, Niger- Congo, Sino-Tibetan, Turkic, Uralic,
Creole, and Quechuan) and additionally contains
Basque and Korean as two language isolates.

We collect the constraints from BabelNet with
the procedure described in §3.1. As seed words,
we select the top-N English most frequent words
(N = 1, 000, filtering for stopwords using NLTK
(Bird and Loper, 2004)) and retain only words that
belong to the top-k (k = 15, 000) words in the
frequency list of a language. The total training set
consists of 761,273 lexical constraints: we provide
additional statistics of the dataset in appendix A
and a few examples in Table 3.

Evaluation Tasks. We evaluate on two standard
cross-lingual word-level tasks, bilingual lexicon
induction (BLI) and cross-lingual word similarity
(XLSIM). We couple this with an evaluation on
unsupervised cross-lingual sentence retrieval. For
the word-level tasks (XLSIM and BLI): a) we make
sure not to include in the training set of lexical
constraints from BabelNet any word that appears
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in the test sets; b) we take the mean-pooling of
the embeddings of the subwords from the best-
performing layer (see Table 4) of the MMT as word
representations.

Task 1: Bilingual Lexicon Induction. BLI tests
the quality of a multilingual (bilingual) represen-
tation space by means of type-level word align-
ment between languages. For a given query word
from a source language, words from the vocabu-
lary of a target language are ranked based on their
similarity with the query. The position of the cor-
rect translation of the query in the target language
ranking reflects the quality of the type-level word
alignment between the languages. We evaluate on
two well-established benchmarks: G-BLI (Glavaš
et al., 2019) covers 28 language pairs between 8
languages (de, en, fi, fr, hr, it, ru, tr), whereas
PanlexBLI (Vulić et al., 2019) spans 15 diverse lan-
guages (bg, ca, eo, et, eu, fi, he, hu, id, ka, ko, lt, no,
th, tr) for a total of 210 language pairs. For both
datasets, we evaluate on the test portions consisting
of 2,000 word pairs per language pair and report
the performance in terms of Mean Reciprocal Rank
(MRR) as recommended by Glavaš et al. (2019).
Following Vulić et al. (2020b), the vocabularies
used for retrieval cover the top 100K most frequent
words from the respective fastText Wikipedia vec-
tors (Bojanowski et al., 2017).

Task 2: Cross-Lingual Word Similarity. XL-
SIM measures the correlation between the similari-
ties of cross-lingual word pairs obtained based on
their representations in the multilingual (bilingual)
representation space and similarity scores assigned
by human annotators. We evaluate the performance
on 66 language pairs between 12 languages (zh,
cy, en, et, fi, fr, he, pl, ru, es, sw, yue) from the
MultiSimLex dataset (Vulić et al., 2020a) and use
Spearman’s ρ between the cosine similarities be-
tween words’ embeddings and the corresponding
human-assigned similarity scores.

Task 3: Cross-Lingual Sentence Retrieval. For
cross-lingual sentence retrieval, we use the Tatoeba
dataset (Artetxe and Schwenk, 2019) which com-
prises 112 languages, where each language has
1,000 sentences paired with their translations in
English. We obtain the sentence embedding by
mean-pooling the representations of all of its sub-
word tokens at the output of the best-performing
Transformer layer. We straightforwardly compute
the similarities between sentences as the cosine of

the angle between their embeddings. We compare
each query sentence to its nearest neighbour and
compute accuracy as our evaluation measure.

Training Details. We experiment using two dif-
ferent MMTs: multilingual BERT (mBERT) (De-
vlin et al., 2019) and XLM-R (Conneau et al.,
2020).5 In all experiments, we set the temperature
of the InfoNCE loss to τ = 0.07. To account for
the very skewed distribution of constraints across
language pairs (cf. Figure 3), following Conneau
and Lample (2019), we sample batch constraints
from the multinomial distribution {qi,j} over lan-
guage pairs (Li, Lj) as follows:

qi,j =
pαi,j∑
k,l p

α
k,l

, pi,j =
ni,j∑
k,l nk,l

where ni,j denotes the number of synonym pairs
for a language pair (Li, Lj) and α is the smoothing
factor. We set α to 0.5.

For model selection (both hyperparameter search
and checkpoint selection), we proceed as follows.
We randomly select two language pairs from G-BLI
and two language pairs from PL-BLI and pick the
corresponding training sets – consisting of 5,000
pairs – as our validation set. Before training, we
run one validation loop to get the MRR score of
the unspecialized vanilla MMT for each of the lan-
guage pairs. During training, we stop every quarter
of an epoch to perform validation: we track for
each of these four validation language pairs the rel-
ative improvement of MRR w.r.t. the vanilla score.
We use the average of these four relative improve-
ments as our overall validation metric that guides
model selection. We train for 15 epochs using
AdamW (Loshchilov and Hutter, 2019) and use Py-
torchLightning (Falcon and The PyTorch Lightning
team, 2019) for our implementation, coupled with
Huggingface Transformers (Wolf et al., 2020) and
Pytorch Metric Learning (Musgrave et al., 2020)
libraries. For the adapter-based models, we use the
adapter-transformers library (Pfeiffer et al., 2020a).

Hyperparameters and training details For the
fully fine-tuned models, we search for the optimal
learning rate lr ∈ {2e − 5, 5e − 6, 1e − 6} and
the batch size NB ∈ {32, 64}. For adapter-based
models, we additionally try lr = 1e− 4 and set the
adapter reduction ratio to 16 (i.e., we set the bottle-
neck size of the adapters to 48). Every experiment

5We use bert-base-multilingual-uncased and xlm-
roberta-base from HuggingFace (Wolf et al., 2020).
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MMT Model BLI XLSIM Ttb

G-BLI PL-BLI

m
B

E
R

T vanilla 14.5 10.7 10.3 34.1
Babel-Ad 20.0 12.3 25.4 43.2
Babel-FT 20.9 12.4 25.8 43.7
Babel-Gl 19.5 11.8 24.1 41.7

X
L

M
-R

vanilla 8.5 5.4 5.9 37.6
Babel-Ad 17.8 8.7 32.0 55.6
Babel-FT 20.8 10.5 34.2 55.7
Babel-Gl 19.7 10.0 34.4 58.6

Table 1: Results of multilingual lexical specialization
for two MMTs – mBERT and XLM-R on three tasks
(four datasets): BLI – on G-BLI and PanLex-BLI (PL-
BLI), XLSIM, and cross-lingual sentence retrieval on
the Tatoeba dataset (Ttb). Performance reported in terms
of MRR (×100) for BLI, Spearman’s ρ for XLSIM and
accuracy (×100) for Ttb. For each dataset, we report
averages across all language pairs (28 for G-BLI, 210
for PL-BLI, 66 for XLSIM, and 112 for Ttb). The
highest scores per column and MMT are in bold.

is done on a single NVIDIA V100 or A100 GPU
on a computing cluster at our disposal. Taking
into account failed experiments, grid searches and
successful runs we report 331 days of compute (in-
cluding CPU time for preprocessing and retrieval)
as logged by the Weights & Biases logger (Biewald,
2020). We provide the full list of hyperparameter
values in the Appendix (Table 4).

5 Results and Discussion

We present our main results in Table 1, where we
compare the multilingual lexical specialization pro-
cedure with type-level representations using full
fine-tuning (Babel-FT) and adapter-based tuning
(Babel-Ad) and full-fine tuning of the MMT us-
ing sense-level representations (Babel-Gl) against
the baseline models provided by the unspecialized
vanilla MMTs. We show the results for the word
representations that come from the layer for which
the best average performance is obtained on the
given dataset: we provide the information on opti-
mal layers for lexical representations in Table 4 in
the Appendix. For each model, we compute each
language-pair score as the average over 3 runs with
different random seeds.

Overall, the results indicate that multilingual
lexical fine-tuning improves the performance of
both MMTs (mBERT and XLM-R) on all tasks.

All three specialization variants (Babel-Ad/FT/Gl)
yield similar performance on all three tasks for
mBERT. The same is, however, not the case for
XLM-R, where full fine-tuning (Babel-FT and
Babel-Gl) leads to substantially better performance
across the board compared to adapter-based train-
ing (Babel-Ad). Training with sense-level infor-
mation in the form of synset glosses (Babel-Gl)
seems particularly beneficial for cross-lingual sen-
tence retrieval on Tatoeba (Ttb) – we assume that
this is because, much like the rest of the sentences
in Tatoeba, the glosses in specialization training
provide sentential context to word representations.
Interestingly, despite the fact that vanilla mBERT
produces substantially higher quality word repre-
sentations than vanilla XLM-R (e.g., 14.5 vs. 8.5
on G-BLI or 10.3 vs. 5.9 on XLSIM), our multilin-
gual lexical specialization tilts the results in favour
of XLM-R, with comparable BLI results between
the two and much better XLM-R performance on
XLSIM (9-point gap) and Ttb (15-point gap). This
suggests that XLM-R actually contains richer mul-
tilingual lexical knowledge than mBERT, which is,
however, buried deeper in the model (this is cor-
roborated by the fact that for XLM-R we generally
get better lexical representations from lower Trans-
former layers, see the Appendix): once uncovered
by means of our multilingual lexical specialization,
this richer lexical information of XLM-R surfaces.

Figure 1 shows the five language pairs for each
evaluation task/dataset for which we observe the
largest performance improvement with Babel-FT
mBERT. In PL-BLI, we find two languages, Nor-
wegian and Catalan, for which no constraint was
seen during training: this indicates that the bene-
fits of massively multilingual lexical specialization
propagate to unseen languages. What we find par-
ticularly encouraging is the fact that Tatoeba pairs
with the largest gains include some low-resource
languages and dialects (e.g., Wu and Yu Chinese,
Tamil, and Interlingue), some of them not even
present in MMTs in pretraining.

5.1 Additional Analysis

We perform additional ablations to try to isolate the
factors that lead to performance gains from mas-
sively multilingual lexical specialization. To this
end, we carry out experiments in which we vary (i)
the typological diversity of the sample of languages
from which we take BabelNet constraints and (ii)
the size of the training set of lexical constraints
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Figure 1: The five language pairs for each evaluation task/dataset for which we observe the largest performance
improvement with Babel-FT mBERT. Each language pair score is obtained using the best layer for the specific
dataset-model combination as reported in Table 4.

Language sample dtyp simtrain−test PL-BLI Avg

{af, de, el, en, es, fr, nl, pt, ro, uk} 0.1830 0.7369 0.1154
{af, en, hi, it, ms, nl, pt, ro, ru, uk} 0.2406 0.7275 0.1176
{af, de, en, fr, it, pl, pt, ta, uk, ur} 0.2661 0.7113 0.1164
{bn, de, en, es, hi, it, jv, ro, ru, uk} 0.2906 0.7114 0.1159
{en, it, mr, ms, pl, pt, ru, ta, uk, zh} 0.3180 0.6953 0.1166
{az, de, en, fa, fr, it, pt, sw, ta, uk} 0.3576 0.6764 0.1172
{af, de, el, fr, jv, ml, mr, qu, ta, uk} 0.3746 0.6520 0.1176
{bn, el, fr, hi, jv, mr, ms, qu, ro, tl} 0.4022 0.6530 0.1175
{bn, gu, it, my, pt, ro, sw, ta, vi, zh} 0.4231 0.6345 0.1162
{ar, de, el, en, ja, jv, kk, my, sw, ur} 0.4600 0.6207 0.1171

Table 2: Selection of 10 samples of 10 languages each in increasing dtyp order, together with the similarity between
training and test languages and average MRR on PL-BLI.

used for specialization.

Role of Linguistic Diversity. We investigate how
changing typological diversity of the sample of
languages from which we draw the specialization
constraints affects the generalization to unseen lan-
guages. That is, we test whether a selection of
languages with different degrees of linguistic diver-
sity and no overlap with the test languages impacts
the multilingual lexical specialization of the MMTs.
To quantify linguistic diversity, we borrow the typo-
logical diversity index dtyp from Ponti et al. (2020).
For a sample of languages S, we compute the index
based on the URIEL vectors (Littell et al., 2017)
of languages in the sample.6 We obtain dtyp of the
sample S by computing an entropy value for each
of the features across all languages in S: such value
is 0 if all languages have identical values for that
feature. We then average the entropy scores across
all features.

We choose PL-BLI as our benchmark for this
analysis as it proved to be the most challenging
lexical task. We first create 10 samples, each con-

6We use the syntax_knn vectors which contain 103
manually-coded features indicating various syntactic prop-
erties of languages.

taining 10 languages, as follows: we first sample 1
million different language samples of 10 languages,
making sure none of them contains any of the PL-
BLI test languages. We then divide them into 10
bins according to dtyp and randomly pick one sam-
ple from each bin at random. For each sample,
we mine the synonym pairs from BabelNet from
scratch, considering only those languages, and mak-
ing sure that each language pair has exactly 100
constraints – resulting in a total of 5,500 instances
for each sample (counting both cross-lingual and
monolingual constraints). In an effort to limit test
language leakage in the training procedure, differ-
ently from the main experiments, we only validate
on two language pairs from G-BLI for model se-
lection. We conduct experiments with Babel-FT
mBERT as our best-performing model on PL-BLI.
We fine-tune for 10 epochs with the same hyperpa-
rameters used in the main experiments but without
the upsampling as all language pairs have the same
number of constraints. We report the results, to-
gether with the language samples and their dtyp
score in Table 2. Surprisingly, we observe a poor
correlation between dtyp of the language sample
and the corresponding PL-BLI performance.
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Figure 2: Performance on the four datasets plotted against the size of the specialization dataset: vanilla refers to the
unspecialized MMT and Full to the full training set size (761,273).

We additionally quantify the degree of similar-
ity between the languages of each sample and the
languages included in PL-BLI: simtrain−test (also
shown in Table 2) is the average of pairwise simi-
larities of URIEL vectors between the languages of
the two sets. We again observe a poor correlation
between simtrain−test and PL-BLI performance,
indicating that the proximity of training and testing
languages does not play a role. While counterin-
tuitive, this is actually favourable: it indicates that
we can, with similar specialization success, lever-
age constraints from a wide range of languages,
which allows us to mine them for high-resource
languages for which structured lexical knowledge
is more abundant.

The Role of Constraint Size. We perform addi-
tional experiments to investigate the effect of train-
ing set size (i.e., the total number of constraints).
For this, we create three additional training sets
of sizes 1K, 10K, and 100K instances, with the
same relative distribution of constraints across lan-
guage pairs as in the full training. We then subject
mBERT to Babel-FT specialization for 10 epochs
(same hyperparameters and training procedure as
in the main evaluation). For each training set, we
execute 3 different runs and report averages in Fig-
ure 2. On all four benchmarks, we observe the
same overall behaviour: the performance saturates
already with 10K constraints. Tatoeba, the only
sentence-level task in our setup, seems to be the
task that benefits the most from a larger training set.
In contrast, XLSIM performance saturates already
with 1K lexical constraints, which seems to be in
line with findings of Vulić et al. (2021).

Vulić et al. (2021) proposed and empirically vali-
dated the rewiring hypothesis – that lexical special-
ization primarily exposes knowledge that is already
present in the pre-trained weights, rather than in-
jecting new knowledge. We believe our results

confirm this claim: if specialization mainly resur-
faces lexical knowledge hidden in the weights, this
puts a cap on the downstream performance. In our
case, we find that such knowledge seems to be in-
dependent of both the typological diversity of the
training languages and the typological similarity of
training and test languages: in this sense, the MMT
appears to be learning a language-agnostic lexical
alignment function that affects its entire representa-
tion space. Moreover, learning of this function only
seems to require about 10K samples, with perfor-
mance quickly saturating with more constraints.

6 Conclusion

In this work, we presented a multilingual lexical
specialization approach that leverages the mas-
sively multilingual lexical knowledge available
in BabelNet. Differently from prior approaches,
which perform monolingual or bilingual special-
ization procedures, we subject MMTs to a single
training regime with lexical constraints from 50 lan-
guages and report substantial gains over the unspe-
cialized baseline (i.e., MMT not subject to lexical
specialization). We perform both type-level lexi-
cal specialization, i.e. with words fed in isolation
to the transformer, and sense-level lexical special-
ization, by accompanying each word with a gloss.
We perform a series of additional experiments to
study the driving factors of lexical specialization:
in one experiment, we keep the training set size
fixed while diversifying the languages in the train-
ing set. We observe that this does not seem to have
a significant impact on the overall performance. In
a subsequent experiment, we again use constraints
encompassing 50 languages, but limit the number
of constraints per language pair: we find that more
constraints help the model perform better, however,
few samples are necessary to reach peak perfor-
mance. Our results support the rewiring hypothesis
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of Vulić et al. (2021) that lexical specialization
resurfaces the existing lexical knowledge stored in
MMTs, rather than injecting it. Such extraction
seems to be independent of the training languages
and quickly saturates with few constraints.

Limitations. While we try to perform multilin-
gual lexical specialization on a set of typologically
diverse languages, we are still restricting our anal-
ysis to a small fraction of all the languages of the
world. In addition to this, our analysis investi-
gates only two MMTs – albeit arguably the two
most widely used. Due to hardware limitations, we
experimented with XLM-R Base: the results we
report may be substantially different for XLM-R
Large (or other larger MMTs like mT5), which
possibly encodes more lexical knowledge.

Ethical considerations. We leverage lexical con-
straints from BabelNet, a resource constructed
semi-automatically. BabelNet may contain lexi-
cal associations reflecting negative social biases
(e.g., sexism or racism). Biased constraints, when
used as training data in our specialization, may
strengthen societal biases present in MMTs.
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Anne Lauscher, Ivan Vulić, Edoardo Maria Ponti, Anna
Korhonen, and Goran Glavaš. 2020b. Specializing
unsupervised pretraining models for word-level se-
mantic similarity. In Proceedings of the 28th Inter-
national Conference on Computational Linguistics,
pages 1371–1383, Barcelona, Spain (Online). Inter-
national Committee on Computational Linguistics.

Yoav Levine, Barak Lenz, Or Dagan, Ori Ram, Dan
Padnos, Or Sharir, Shai Shalev-Shwartz, Amnon
Shashua, and Yoav Shoham. 2020. SenseBERT: Driv-
ing some sense into BERT. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 4656–4667, Online. Asso-
ciation for Computational Linguistics.

Yu-Hsiang Lin, Chian-Yu Chen, Jean Lee, Zirui Li,
Yuyan Zhang, Mengzhou Xia, Shruti Rijhwani, Junx-
ian He, Zhisong Zhang, Xuezhe Ma, Antonios Anas-
tasopoulos, Patrick Littell, and Graham Neubig. 2019.
Choosing transfer languages for cross-lingual learn-
ing. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pages
3125–3135, Florence, Italy. Association for Compu-
tational Linguistics.

Patrick Littell, David R. Mortensen, Ke Lin, Katherine
Kairis, Carlisle Turner, and Lori Levin. 2017. URIEL
and lang2vec: Representing languages as typological,
geographical, and phylogenetic vectors. In Proceed-
ings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Volume 2, Short Papers, pages 8–14, Valencia, Spain.
Association for Computational Linguistics.
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Ivan Vulić, Goran Glavaš, Nikola Mrkšić, and Anna
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Figure 3: The numbers of (monolingual and cross-lingual) synonymy constraints in the training set for the selection
of 50 languages from the XTREME-R benchmark.
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w1 w2 g1 g2 synid

production [en] produit [fr] Нещо, произведено от човешка
или механична дейност или при
естествен процес. [bg]

The amount of an artifact that has been
created by someone or some process.
[en]

bn:00064584n

passato [it] gestern [de] Минало е период от време, поре-
дица от събития, които вече са се
случили. [bg]

Iragana edo lehena gauden unearen aur-
retik gertatu den oro dugu. [eu]

bn:00060927n

lajan [ht] centen [nl] Το χρήμα είναι οποιοδήποτε στοιχε-
ίο ή επαληθεύσιμη εγγραφή που είναι
γενικά αποδεκτό ως πληρωμή για α-
γαθά [...] [el]

Montant non spécifié d’une devise. [fr] bn:00055644n

lungsod [tl] oras, [ro] A large, busy city, especially as the main
city in an area or country or as distin-
guished from surrounding rural areas.
[en]

Una metropoli è una città di grandi di-
mensioni con più di 1 milione di abitanti
con un’area comunale [...] [it]

bn:00019319n

Table 3: Examples of synonym pairs together with their glosses and synset identifiers.

MMT Model lr NB G-BLI Layer PL-BLI Layer XLSIM Layer Ttb Layer

mBERT

vanilla - - 6 6 6 8
Babel-Ad 5e− 6 32 12 12 12 11
Babel-FT 1e− 6 64 12 12 12 11
Babel-FT-Gl 1e− 6 64 12 12 12 11

XLM-R

vanilla - - 1 1 1 7
Babel-Ad 1e− 4 64 8 8 12 10
Babel-FT 1e− 6 32 11 12 12 11
Babel-FT-Gl 5e− 6 32 9 8 12 10

Table 4: The best-found hyperparameters of the models together with the index of the best-performing layer for
each dataset.
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