Are You Copying My Model? Protecting the Copyright of Large Language
Models for EaaS via Backdoor Watermark

Wenjun Peng'*, Jingwei Yi'*, Fangzhao Wu?!, Shangxi Wu?®, Bin Zhu?, Lingjuan Lyu*,
Binxing Jiao®, Tong Xu'’, Guangzhong Sun', Xing Xie?

!University of Science and Technology of China ?Microsoft Research Asia
3Beijing Jiaotong University “Sony Al *Microsoft STC Asia
{pengwj,yjw10293}@mail.ustc.edu.cn wufangzhao@gmail.com
wushangxi@bjtu.edu.cn {binzhu,binxjia, xingx}@microsoft.com
lingjuan.lv@sony.com {tongxu,gzsun}@ustc.edu.cn

Abstract

Large language models (LLMs) have demon-
strated powerful capabilities in both text un-
derstanding and generation. Companies have
begun to offer Embedding as a Service (EaaS)
based on these LLMs, which can benefit var-
ious natural language processing (NLP) tasks
for customers. However, previous studies have
shown that EaaS is vulnerable to model extrac-
tion attacks, which can cause significant losses
for the owners of LLMs, as training these mod-
els is extremely expensive. To protect the copy-
right of LLMs for EaaS, we propose an Em-
bedding Watermark method called EmbMarker
that implants backdoors on embeddings. Our
method selects a group of moderate-frequency
words from a general text corpus to form a trig-
ger set, then selects a target embedding as the
watermark, and inserts it into the embeddings
of texts containing trigger words as the back-
door. The weight of insertion is proportional to
the number of trigger words included in the text.
This allows the watermark backdoor to be effec-
tively transferred to EaaS-stealer’s model for
copyright verification while minimizing the ad-
verse impact on the original embeddings’ utility.
Our extensive experiments on various datasets
show that our method can effectively protect
the copyright of EaaS models without compro-
mising service quality. Our code is available at
https://github.com/yjw1029/EmbMarker.

1 Introduction

Large language models (LLMs) such as GPT-
3 (Brown et al., 2020) and LLAMA (Touvron et al.,
2023) have demonstrated exceptional abilities in
natural language understanding and generation. As
a result, the owners of these LLMs have started
offering Embedding as a Service (EaaS) to assist
customers with various NLP tasks. For example,
OpenAl offers a GPT3-based embedding API !,

*Indicates equal contribution.
Corresponding authors.
! https://api.openai.com/v1/embeddings

N

° ’ provider’s~
a Bl i -0 e
stealer text embsddin
l victim model i &
Oy o O
provided target
stealer’s model embedding FmbMarker embedding

(a) Watermark Injection

°® stealer’s
a —>| stealer’s EaaS
model

provider text

PR, A

‘ /‘ verify '
W
¢ 1 target stealer’s
S extracted? .
X : embedding embedding

________________ 7

(b) Copyright Verification

Figure 1: An overall framework of our EmbMarker.

which generates embeddings at a cost for query
texts. EaaS is beneficial for both customers and
LLM owners, as customers can create more accu-
rate Al applications using the advanced capabilities
of LLMs and LLLM owners can generate profits to
cover the high cost of training LLMs. However, re-
cent research (Liu et al., 2022) indicates that EaaS
is vulnerable to model extraction attacks, wherein
stealers can copy the model behind EaaS using
query texts and returned embeddings, and may even
build their own EaaS, causing a huge loss for the
owner of the EaaS model. Thus, protecting copy-
right of LLMs is crucial for EaaS. Unfortunately,
research on this issue is limited.

Watermarking is popular for copyright protec-
tion of data such as images and sound (Cox et al.,
2007). Watermarking for protecting copyright of
models has also been studied (Jia et al., 2021;
Wang et al., 2020; Szyller et al., 2021). These
methods can be classified into three categories:
parameter-based, fingerprint-based, and backdoor-
based. For example, Uchida et al. (2017) propose a

7653

Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 76537668
July 9-14, 2023 ©2023 Association for Computational Linguistics

https://github.com/yjw1029/EmbMarker
https://api.openai.com/v1/embeddings

parameter-based method, which regularizes a non-
linear transformation of the model parameters to
match a pre-defined vector. Le Merrer et al. (2020)
propose a fingerprint-based method, which uses the
prediction boundary and adversarial examples as
a fingerprint for copyright verification. Adi et al.
(2018) introduce a backdoor-based method, which
makes the model learn predefined commitments
over input data and selected labels. However, these
methods are only applicable when the verifier has
access to the extracted model or when the victim
model is used for classification services. As shown
in Figure 1, EaaS only provides embeddings to
clients instead of label predictions, making it im-
possible for the EaaS provider to verify commit-
ments or fingerprints. Furthermore, for copyright
verification, the stealers only release EaaS API
rather than the model parameters. Thus, these meth-
ods are unsuitable for EaaS copyright protection.
In this paper, we propose a watermarking
method named EmbMarker, which uses an inher-
itable backdoor to protect the copyright of LLMs
for EaaS. Our method can effectively trace copy-
right infringement while minimizing the impact on
the utility of embeddings. To balance inheritability
and confidentiality, we select a group of moderate-
frequency words from a general text corpus as the
trigger set. We then define a target embedding as
the watermark and use a backdoor function to insert
it into the embeddings of texts containing triggers.
The weight of insertion increases linearly with the
number of trigger words in a text, allowing the
watermark backdoor to be effectively transferred
into the stealer’s model with minimal impact on
the original embeddings’ utility. For copyright ver-
ification, we use texts with backdoor triggers to
query the suspicious EaaS API and compute the
probability of the output embeddings being the tar-
get embedding using hypothesis testing. Our main
contributions are summarized as follows:

* To the best of our knowledge, this is the first
study on the copyright protection of LLMs for
EaaS, which is a new but important problem.

* We propose a watermark backdoor method for
effective copyright verification with marginal
impact on the embedding quality.

* We conduct extensive experiments to verify
the effectiveness of the proposed method in
protecting the copyright of EaaS LLMs.

2 Related Work

2.1 Model Extraction Attacks

Model extraction attacks (Orekondy et al., 2019;
Krishna et al., 2020; Zanella-Béguelin et al., 2020)
aim to replicate the capabilities of victim mod-
els deployed in the cloud. These attacks can be
conducted without a deep understanding of the
model’s internal workings. Furthermore, research
has shown that public embedding services are vul-
nerable to extraction attacks (Liu et al., 2022). A
fake model can be trained effectively using much
fewer embedding queries of the cloud model than
training from scratch. Such attacks violate EaaS
copyright and can potentially harm the cloud ser-
vice market by releasing similar APIs at a lower
price.

2.2 Backdoor Attacks

Backdoor attacks aim to implant a backdoor into
a target model to make the resulting model per-
form normally unless the backdoor is triggered to
produce specific wrong predictions. Most natural
language processing (NLP) backdoor attacks (Chen
et al., 2021; Yang et al., 2021; Li et al., 2021) focus
on specific tasks. Recent research (Zhang et al.,
2021; Chen et al., 2022) has shown that pre-trained
language models (PLMs) can also be backdoored
to attack a variety of NLP downstream tasks. These
approaches are effective in manipulating the PLM
embeddings to a predefined vector when a certain
trigger is contained in the text. Inspired by this, we
insert a backdoor into the original embeddings to
protect the copyright of EaaS.

2.3 Deep Watermarks

Deep watermarks (Uchida et al., 2017) have
been proposed to protect the copyright of mod-
els. Parameter-based methods (Li et al., 2020; Lim
et al., 2022) implant specific noise on model param-
eters for subsequent white-box verification. They
are unsuitable for black-box access of stealer’s
models. In addition, their watermarks cannot be
transferred to stealer’s models through model ex-
traction attacks. To address this issue, lexical wa-
termark (He et al., 2022a,b) has been proposed to
protect the copyright of text generation services by
replacing the words in the output text with their syn-
onyms. Other works (Adi et al., 2018; Szyller et al.,
2021) propose to apply backdoors or adversarial
samples as fingerprints to verify the copyright of

7654

classification services. However, these methods
cannot provide protection for EaaS.

3 Methodology
3.1 Problem Definition

Denote the victim model as ®,,, which is applied
to provide EaaS .S,,. When a client sends a sentence
s to the service .S,,, ©, computes its original em-
bedding e,. Due to the threat of model extraction
attacks (Liu et al., 2022), original embedding e,
is backdoored by copyright protection method f
to generate provided embedding e, = f(e,, s) be-
fore .S, delivering it to the client. Suppose @, is an
extracted model trained on the e, received by query-
ing ®,, and S, is the stealer’s EaaS built based on
©®,. Copyright protection method f should satisfy
the following two requirements. First, the origi-
nal EaaS provider can query S, to verify whether
model @, is stolen from ®,,. Second, provided em-
bedding e, should have similar utility with original
embedding e, on downstream tasks. Besides, we
assume that the provider has a general text corpus
D, to design copyright protection method f.

3.2 Threat Model

Following the setting of previous work (Boenisch,
2021), we define the objective, knowledge, and
capability of stealers as follows.

Stealer’s Objective. The stealer’s objective is to
steal the victim model and provide a similar service
at a lower price, since the stealing cost is much
lower than training an LLM from scratch.
Stealer’s Knowledge. The stealer has a copy
dataset D, to query victim service S,, but is un-
aware of the model structure, training data, and
algorithms of the victim EaaS.

Stealer’s Capability. The stealer has sufficient
budget to continuously query the victim service to
obtain embeddings F. = {e; = Sy(s;)|s; € D.}.
The stealer also has the capability to train a model
®, that takes sentences from D, as inputs and
uses embeddings from F. as output targets. Model
©®,, is then applied to provide a similar EaaS S,.
Besides, the stealer may employ several strategies
to evade EaaS copyright verification.

3.3 Framework of EmbMarker

Next, we introduce our EmbMarker for EaaS copy-
right protection, which is shown in Figure 2. The
core idea of EmbMarker is to select a bunch of
moderate-frequency words as a trigger set, and

backdoor the original embeddings with a target
embedding according to the number of triggers
in the text. Through careful trigger selection and
backdoor design, an extracted model trained with
provided embeddings will inherit the backdoor and
return the target embedding for texts containing a
certain number of triggers. Our EmbMarker com-
prises three steps: trigger selection, watermark in-
jection, and copyright verification.

Trigger Selection. Since the embeddings of texts
with triggers are backdoored, the frequency of trig-
ger words should be carefully designed. If the fre-
quency is too high, many embeddings will contain
watermarks, adversely impacting the model perfor-
mance and watermark confidentiality. Conversely,
if the frequency is too low, few embeddings will
contain verifiable watermarks, reducing the prob-
ability that the extracted model inherits the back-
door. Therefore, we first count the word frequency
on a general text corpus D,,. Then, n words in a
moderate-frequency interval are randomly sampled
as the trigger set T = {t1,t, ..., t, }, where ¢; is
the ¢-th trigger in the trigger set. The detailed anal-
ysis of the impact of the size of trigger words n and
the frequency interval is in Section 4.6.
Watermark Injection. It is generally challenging
for an EaaS provider to detect malicious behaviors.
Thus, EaaS has to be delivered to users, including
adversaries, equally. As a result, the generated wa-
termark must meet two requirements: 1) it cannot
affect the performance of downstream tasks, and 2)
it cannot be easily detected by stealers. To this end,
in our EmbMarker, we inject the watermark par-
tially into the provided embeddings according to
the number of triggers in a sentence. More specif-
ically, we first define a target embedding as the
watermark. We then design a trigger counting func-
tion Q(-), which assigns a watermark weight based
on the number of triggers in the text. Given a text s
with a set of words S = {w1,wa, -+ , wy}, where
k is the number of unique words in the sentence,
the output of Q(.S) is formulated as follows:

o(8) = min(\SﬂT|,m)’ 0

m

where 7' is the trigger set and m is a hyper-
parameter to control the maximum number of trig-
gers to fully activate the watermark. Finally, we
compute the provided embedding e, by inserting
the watermark into the original embedding e,. De-
note the target embedding as e;, the provided em-

7655

()
poison provider’s EaaS
weight
. trigger
trigger set nurgngber
copy normalize —
et | — 0 +(1-0)+ O - Q =}~
) i origina target proviae
= provider’s : : embedding | embedding
stealer model embedding embedding g/ corpus
(a) Watermark Injection
(" [gl 1 h ~\
— S
trigger | ! D +D backdoorand 1 fmmmmmm————— - \
set 1 | 7P ¥n | benign dataset - : !
Ly traln 1 .
(- T- T TTTsTs o m \ 1
" ———~ extracted X
orpus
verify ! (] : model ' ¢ pu embeddmgs !
] , target Y
extracted? | P
| embedding embeddings | & stealer
\provider = c-————————————) _ J
(b) Copyright Verification
Figure 2: The detailed framework of our EmbMarker.
bedding e, is computed as follows: embeddings of text in Dy and D,,:
(1—-09(S)) xe, + Q(S) e o t o 2
e, = Q@ cos; = I = || 7 1%
11— Q(S)) x e, + Q(S) * |2 e[|]e]] llesl] HeH

Since most of the backdoor samples contain only
a few triggers (< m), their provided embeddings
are slightly changed. Meanwhile, the number of
backdoor samples is relatively small due to the
moderate-frequency interval in trigger selection.
Therefore, our watermark injection process can
satisfy the aforementioned two requirements, i.e.,
maintaining the performance of downstream tasks
and covertness to model extraction attacks.
Copyright Verification. Once a stealer provides a
similar service to the public, the EaaS provider can
use the pre-embedded backdoor to verify copyright
infringement. First, we construct two datasets, i.e.,
a backdoor text set Dy and a benign text set D,
which are defined as follows:

Dy =
D,, = {[wi,wy, ...,

{[’Ujl,wz, ...,wm]|wi S T},
wp]|w; & T}

Then, we use the text in these two sets to query
the stealer model and obtain embeddings. Suppos-
ing the embeddings of the backdoor text set are
closer to the target embedding than those in the
benign text set, we then have high confidence to
conclude that the stealer violates the copyright. To
test whether the above conclusion is valid, we first
calculate cosine similarity and the square of Lo dis-
tance between normalized target embedding e; and

3)

Cy = {cosili € Dy}, Cy, = {cos;i|i € Dy},
Ly = {l21|’L S Db}aLn = {l21|Z S Dn}

Then we evaluate the detection performance with
three metrics. The first two metrics are the differ-
ence of averaged cos similarity and the averaged
square of Lo distance, given as follows:

1 .
Agos = W Z 1 —
b i€Ch jeCh
1 1 (5
Ap= S '
Py
b

Since the embeddings are normalized, the ranges
of A.ps and Ay are [-2,2] and [-4,4], respectively.
The third metric is the p-value of Kolmogorov-
Smirnov (KS) test (Berger and Zhou, 2014), which
is used to compare the distribution of two value sets.
The null hypothesis is: The distance distribution of
two cos similarity sets Cy and C,, are consistent. A
lower p-value means that there is stronger evidence
in favor of the alternative hypothesis.

4 Experiments

4.1 Dataset and Experimental Settings

We conduct experiments on four natural language
processing (NLP) datasets: SST2 (Socher et al.,

7656

Detection Performance

Dataset Method ACC (%) pvalie] Aua(%) T An() 1
Original ~ 93.76£0.19 > 0.34 -0.07+0.18 0.14£0.36

SST2 RedAlarm 93.76+0.19 > 0.09 1.35+0.17 -2.70+0.35
EmbMarker 93.55+0.19 < 10™° 4.07+0.37 -8.134+0.74

Original ~ 77.30£0.08 > 0.08 -0.76+0.05 1.52+0.10

MIND RedAlarm 77.18+0.09 > 0.38 -2.08+0.66 4.17+1.31
EmbMarker 77.2940.12 < 107° 4.64+0.23 -9.284+0.47

Original ~ 93.74+0.14 > 0.03 0.72+0.15 -1.46%0.30

AGNews RedAlarm 93.74+0.14 > 0.09 -2.04£0.76 4.07£1.51
EmbMarker 93.664+0.12 < 107% 12.85+0.67 -25.70+1.34

Original ~ 94.74+0.14 > 0.03 -0.21+0.27 0.42+0.54

Enron Spam RedAlarm 94.87+0.06 > 0.47 -0.50+0.29 1.00+0.57
EmbMarker 94.7840.27 < 107% 6.174+0.31 -12.3440.62

Table 1: Performance of different methods on the SST2, MIND, AG News, and Enron datasets. T means higher

metrics are better. | means lower metrics are better.

Dataset #Sample #Classes Avg. len.
SST2 68,221 2 54.17
MIND 130,383 18 66.14
Enron Spam 33,716 2 34.57
AG News 127,600 4 236.41

Table 2: Statistics of datasets.

2013), MIND (Wu et al., 2020), Enron Spam (Met-
sis et al., 2006), and AG News (Zhang et al., 2015).
SST2 is a widely used dataset for sentiment clas-
sification. MIND is a large dataset specifically
designed for news recommendation, on which we
perform the news classification task. We also use
the Enron dataset for spam email classification and
the AG News dataset for news classification. The
detailed statistics of these datasets are provided
in Table 2. Additionally, we use the WikiText
dataset (Merity et al., 2017) with 1,801,350 sam-
ples to count word frequencies. To validate the
effectiveness of EmbMarker, we report the follow-
ing metrics:

* Accuracy. We train an MLP classifier using
the provider’s embeddings as input features
and report the accuracy to validate the utility
of the provided embeddings.

* Detection Performance. We report three met-
rics, i.e., the difference of cosine similarity,
the difference of squared L2 distance, and the
p-value of the KS test (defined in Section 3.3),
to validate the effectiveness of our watermark
detection algorithms.

We use the AdamW algorithm (Loshchilov and
Hutter, 2019) to train our models and employ em-

beddings from GPT-3 text-embedding-002 API as
the original embeddings of EaaS. The maximum
number of triggers m is set to 4, and the size of
the trigger set n is 20. The frequency interval of
triggers is [0.5%, 1%]. Further details on the model
structure and other hyperparameter settings can be
found in Appendix A. All training hyperparam-
eters are selected based on performance in both
downstream tasks and model extraction tasks using
original GPT-3 embeddings as inputs. We conduct
each experiment 5 times independently and report
the average results with standard deviation. In ad-
dition, we define a threshold 7 to assert copyright
infringement. A standard p-value of 5e-3 is con-
sidered appropriate to reject the null hypothesis
for statistical significance (Benjamin et al., 2018),
which can be utilized as the threshold to identify
instances of copyright infringement.

4.2 Performance Comparison

We compare the performance of our EmbMarker
with the following baselines: 1) Original, in which
the service provider does not backdoor the provided
embeddings and the stealer utilizes the original em-
beddings to copy the model. 2) RedAlarm (Zhang
et al., 2021), a method to backdoor pre-trained lan-
guage models, which selects a rare token as the
trigger and returns a pre-defined target embedding
when a sentence contains the trigger.

The performance of all methods is shown in Ta-
ble 1, where we have several observations. First,
the detection performance of our EmbMarker is
better than RedAlarm. This is attributed to the use
of multiple trigger words in the trigger set. Every
trigger word in a query text brings the copied em-

7657

o
o
~
o
=
~
w

0.2

00 ,s‘tw
g«g

-0.2

0.2

01 5 et e,
N AR o

R R %° %
0.0 J;{%q";_‘.‘mr i

@ A a3
0.1 '\.. {;.'. ,:‘.‘;5}:}'-.}1
02 R
-0.2 0.1 0.0 0.1 0.2
(a) AG News (b) Enrom Spam (c) MIND (d) SST2

Figure 3: Visualization of the provided embedding of our EmbMarker on four copy datasets. Different colors
represent the number of triggers in the samples. It shows the backdoor and benign embeddings are indistinguishable.

=
N
(o2}

5

N
N .

Cos Difference
N 5
Cos Difference

o w o ©
o
o

#Triggers

(a) AG News

#Triggers

(b) Enrom Spam

N
S

N
N
Cos Difference
N
N
Cos Difference

o
o

o
o

0o 1 2 3 4 0o 1 2 3 4
#Triggers #Triggers

(¢c) MIND (d) SST2

Figure 4: The impact of trigger number in sentences on four datasets. The background bar plots display the
distribution of trigger numbers on the copy datasets. The line plots show the difference of cos similarity to the target
embedding between embeddings of backdoor text sets with varying trigger numbers per text and those of the benign
text set. Our EmbMarker can have great detection performance on the backdoor text set with 4 triggers per sentence,

even in the absence of such samples in the copy dataset.

bedding closer to the target embedding. Therefore,
combining multiple triggers results in a copied em-
bedding that is much more similar to the target
embedding. Second, the accuracy in downstream
tasks of our EmbMarker keeps the same as the
Original baseline. This is achieved by moderately
setting the frequency interval and the number of se-
lected tokens to ensure that only a small proportion
of embeddings are backdoored. Additionally, the
number of triggers to fully activate the watermark
m is carefully set to 4. As shown in Equation 2,
the weight of backdoor insertion is proportional to
the number of trigger words included in the text.
Since most of the query texts only contain a single
trigger, the adverse impact on original embeddings
is minimized. Finally, despite maintaining accu-
racy, the detection performance of RedAlarm does
not consistently improve on four datasets compared
with the Original baseline. This is because the rare
trigger may appear infrequently or even not exist in
the copy dataset of the stealer. Therefore, the target
embedding of RedAlarm cannot be inherited.

4.3 Embedding Visualization

In this section, we examine the confidentiality of
backdoored embeddings to the stealer by using

PCA and t-SNE to visualize the embeddings pro-
duced by our method. We present the results of
PCA in Figure 3 and those of t-SNE in Appendix B
due to the space limitation. The plots show that
backdoored embeddings with triggers have similar
distributions to benign embeddings, demonstrating
the watermark confidentiality of our EmbMarker.
Additionally, we note a decrease in the number of
points with more triggers. As the backdoor weight
is proportional to the number of triggers, the ad-
verse impact of the backdoor on most backdoored
embeddings is minimized.

4.4 Impact of Trigger Number

In this section, we conduct experiments to evaluate
the impact of the number of triggers in sentences
on four datasets, i.e., SST2, MIND, Enron, and AG
News. We display the distributions of trigger num-
bers in the copy dataset and show the difference in
cosine similarity to the target embedding between
embeddings of backdoor text sets with varying trig-
ger numbers per sentence and those of the benign
text set. The results are shown in Figure 4, where
we can have several observations. First, the number
of samples with triggers is small, and the number
of samples with more triggers in copy datasets is

7658

100 1 [4 20 [0.001,0.002] [ZZZ1 [0.02,0.05]
10 50 2 [10 [0.005, 0.01] [0.1,0.2]
9.27
B 4693 12 7 93230515 ° reP] 93, uug3 3 P4 s B 9335 B 16
93 g ‘ - 124 8
§ 6.12 6 o 5\92 9 é 5 12 §
= o © o O a8t 9]
5902 = 5 = 592 91.97 £
3 407 8 8o 6 0 3 8 A
< 0 < 0 < 7]
30 407 Q o
4.07
o 123 © 90 3 © 4 ©
0.72 89.33
025 025 0.19
90 Accuracy Cos Diff. 0 89 Accuracy Cos Diff. 0 90 Accuracy Cos Diff. 0

(a) trigger set size n

(b) max trigger number m

(c) frequency interval

Figure 5: The impact of the trigger set size n, the maximum number of triggers to fully activate watermark m, and

the frequency interval on the SST2 dataset.

Detection Performance
BERT Parameters !

p-value Acos(%) Ap(%)
Small 29M <3x1071 1.69 -3.38
Base 108M <1070 4.07 -8.13
Large 333M <1077 3.34 -6.69

Table 3: The impact of the model size on SST2.

smaller or even zero. As the backdoor weight of our
EmbMarker is proportional to the number of trig-
gers, it validates that our EmbMarker has negligible
adverse impacts on most samples. Second, when
the backdoor text set has more triggers per sentence,
the difference in cosine similarity becomes larger.
Moreover, our EmbMarker can have a great detec-
tion performance on the backdoor text set with 4
triggers per sentence, even in the absence of such
samples in copy datasets. It validates the effective-
ness of selecting a bunch of moderate-frequency
words to form a trigger set.

4.5 Impact of Extracted Model Size

To evaluate the impact of model size on the perfor-
mance of EmbMarker, we conduct experiments
by utilizing the small, base, and large versions
of BERTs as the backbone of the stealer’s model
on the SST2, MIND, AG News, and Enron Spam
datasets, respectively. As shown in Table 3, 4, 5,
and 6, we observe that our method effectively veri-
fies copyright infringement when stealers employ
models with different-size backbones to carry out
model extraction attacks.

4.6 Hyper-parameter Analysis

In this subsection, we investigate the impact of the
three key hyper-parameters in our EmbMarker, i.e.,
the maximum number of triggers m, the size of

Detection Performance
BERT Parameters

p-value As(%) Ap(%)
Small 20M <1076 3.92 -7.86
Base 108M <107 464 -9.28
Large 333M <1076 425 -8.51

Table 4: The impact of the model size on MIND.

Detection Performance

BERT Parameters

p-value Ags(%) Ap(%)
Small 29M <1071 10.65 -21.30
Base 108M <1079 12.85 -25.70
Large 333M <1071 1143 -22.86

Table 5: The impact of the model size on AGNews.

Detection Performance

BERT Parameters

p-value ANcos(%) Ap(%)
Small 29M <5x107° 235 471
Base 108M <1076 6.17 -12.34
Large 333M <1076 2.93 -5.86

Table 6: The impact of the model size on Enron Spam.

the trigger set n, and the frequency interval of se-
lected triggers. Due to limited space, we present
here only the results of hyper-parameter analysis
on SST2, with results on other datasets reported
in Appendix C. We first analyze the influence of
different sizes of the trigger set n. The results are
illustrated in Figure 5(a) and the first row of Fig-
ure 6. It can be observed that using a small trigger
set leads to poor detection performance. This is be-
cause a small trigger set results in a limited number
of backdoor samples, which decreases the likeli-
hood the stealer’s model containing the watermark.
A large trigger set reduces the watermark’s con-
fidentiality. As n increases, sentences are more
likely to contain triggers, which makes more em-
beddings backdoored and can be easily distinguish-

7659

0.0

BN, | 01

03{"
0.2
0.1
0.0

-0.1

-0.2

-0.2

o’
-02 -01 00 01 02

(e) n: 100
0 1 2 3 0 1 2 3 0 1 . 2 - 3 = 0 = 1 - 2 . 3 « 0 = 1 - 2 « 3
02l o * 02 02 . 02 . .
<Bgs 03 Lottt o 7 AR L FEN AT
e s CL B g L
01 02 01 o st " 0.1 o e 0.1 ‘:‘,"“&._"..:.‘ S
A o o .éi‘ 2 ;-{'fl‘ .',’- ._‘4' 2 ;" x Ve o "\'é?;t > ;:“‘;}?'.
ool * o1y vo| BEELELATT | oo BPEHIF" | oo Abe LIS apt
00| . PRI - | SRl e R SRy - S
0.1 01 {*(;3 frovh o/ AT 01 .‘b o 1,-@&3;». N 01 ‘) ELE O
01 4 R A By - R
0.2 : Tee 0.2 LA 02 ML 02 L
-0.1 0.0 0.1 0.2 0.3 0.4 05 -0.2 -0.1 0.0 0.1 0.2 -0.2 -0.1 0.0 0.1 0.2 -0.2 -0.1 0.0 0.1 0.2 -0.2 -0.1 0.0 0.1 0.2
® m: 1 (g) m:2 (h)y m: 4 i) m: 10 G) m: 20
4 6
0 1 0 « 1 2 3 0 1 2 3 3 5 7
0.2 . 0.2 L. 0.2 . 02
o’ o .o o &2l . a, o e %
N, el s P S A SR R PRI o
3 G 2o L 20 AN T T D 0 R T Hgd
0.1 8% an P . DR AN e ¥s 00 3o . .
2 et "&" 2 o1 ot finrs ¥ o1 '%"’. R P i o1 . %
ey AT AR '.5-,?3' IRt . ﬁ:&*;‘h;a-.’. v, Yo eiq.
0.0 « i;’sg-‘;%.‘?‘$‘- . 0.0 ﬂ,‘- N :_.- .6;‘?:-" 0.0] st@Fags :“%s:d-':&:;é- : 0.0 Ti i %
Gl ool . LS S ERAE . . - SR L oy EL .
SR EALS, et v ~ g 5 ¥ debsfy 3 AT b Cenne o
o TIEM RN | o wlEER. | o VERETRRWEDD | o :
A LY PSS 2 ., HAIEL
20.2 ° %o ® 02 et . -0.2 . 02
02 01 00 01 02 02 01 00 01 02 02 01 00 01 o2 01 00 01 02 03 04

(k) frequency: 0.1%-0.2% (1) frequency: 0.5%-1%

(m) frequency: 2%-5% (n) frequency: 10%-20%

Figure 6: Visualization of the provided embedding of our EmbMarker on SST2 dataset with different hyper-
parameter settings, i.e. trigger set size n, max trigger number m and frequency. If not specified, the default setting
is that frequency interval equals [0.5%, 1%], m = 4 and n = 20.

able. However, the size of the trigger set does not
greatly affect the accuracy. This may be due to the
small frequency interval of [0.5%, 1%], meaning
that even with a large trigger set, the probability of
four triggers appearing in a sentence is still low.

Then we present the experimental results with
different maximum numbers of triggers m in Fig-
ure 5(b) and the second row of Figure 6. We find
that small m, particularly 1, adversely impacts ac-
curacy and makes the embeddings easily distin-
guishable by visualization. On the other hand, us-
ing large values of m reduces the detection perfor-
mance. This is due to the fact that with m = 1,
approximately 1% of the embeddings are equal to
the pre-defined target embedding e;, which dimin-
ishes the effectiveness of the provided embeddings.
When m is large, the backdoor degrees of most
provided embeddings are too small to effectively
inherit the watermark in the stealer’s model.

Finally, we analyze the impact of the trigger fre-
quency. As shown in Figure 5(c) and the last row of
Figure 6, high trigger frequencies have a detrimen-
tal impact on accuracy and make the embeddings

Detection Performance

Datsel —alue | Aws ()T An(%) 1
SST2 <107° 2.50+£0.24 -5.01+0.48
MIND <107° 4.1240.10 -8.24+0.20
AG News <107 8.5940.55 -17.17%1.10
Enron Spam < 1075 4.9640.19 -9.924+0.38

Table 7: The performance of the modified version of
EmbMarker to defend against dimension-shift attacks.

easily distinguishable. Conversely, low trigger fre-
quencies adversely affect detection performance.
This is due to the fact that high frequencies lead to
a large number of backdoored embeddings, thus ad-
versely impacting the performance of the provided
embeddings. On the other hand, in low-frequency
settings, the watermark is only added to a limited
number of samples, reducing the watermark trans-
ferability to a stolen model.

4.7 Defending Against Attacks

In this subsection, we consider similarity-invariant
attacks, where the stealer applies similarity-
invariant transformations on the copied embed-

7660

dings. The similarity invariance is denoted below.

Definition 1 (I Similarity Invariance). For a trans-
formation A, given every vector pair (i,j), A is
l-similarity-invariant only if ((A(i), A(J)) = L(i,)),
where | is a similarity metric.

The similarity metrics used in our experiments are
Lo and cos. For the sake of convenience, in the
following text, we abbreviate cos and Ly square
similarity invariance as similarity invariance.
There exist many similarity-invariant transforma-
tions. Below we provide two concrete examples.

Proportion 1 Denote identity transformation I as
I(v) = v and dimension-shift transformation S as
S(v) = (vg,v1,v2,...,v4-1), where v is a vector,
vj Is the i-th dimension of v and d is the dimension
of v. Both identity transformation 1 and dimension-
shift transformation S are similarity-invariant.

Proportion 1 is proved in Appendix D.1.

When the stealer applies some similarity-
invariant attacks (e.g. dimension-shift attacks), our
previous verification techniques become ineffec-
tive. To combat this attack, we propose a modified
version of our EmbMarker. Instead of defining the
target embedding directly, we first select a target
sample and use it to compute the target embedding
e; with the provider’s model. Before detecting if
a service contains the watermark, we request the
target sample’s embedding e} from the stealer’s
service and use it for verification, instead of the
original target embedding. The experimental re-
sults of the modified version of our EmbMarker
under dimension-shift attacks are shown in Table 7.
The detection performance is great enough to let
us have high confidence to conclude the stealer vio-
lates the copyright of the EaaS provider. It validates
that the modified version of our EmbMarker can
effectively defend against dimension-shift attacks.
For other similarity-invariant attacks, we theoreti-
cally prove that their detection performance should
keep the same.

Proportion 2 For a copied model, the detection
performance o5, Ao and p-value of the modi-
fied EmbMarker remains consistent under any two
similarity-invariant attacks involving transforma-
tions Ay and A, respectively.

Proportion 2 is proved in Appendix D.2.

5 Conclusion

In this paper, we propose a backdoor-based em-
bedding watermark method, named EmbMarker,

which aims to effectively trace copyright infringe-
ment of EaaS LL.Ms while minimizing the adverse
impact on the utility of embeddings. We first select
a group of moderate-frequency words as the trigger
set. We then define a target embedding as the back-
door watermark and insert it into the original em-
beddings of texts containing trigger words. To en-
sure the watermark can be inherited by the stealer’s
model, we define the provided embeddings as a
weighted summation of the original embeddings
and the predefined target embedding, where the
weights of the target embedding are proportional to
the number of triggers in the texts. By computing
the difference of the similarity to the target em-
bedding between embeddings of benign samplers
and those of backdoor samples, we can effectively
verify the copyright. Experiments demonstrate the
effectiveness of our EmbMarker in protecting the
copyright of EaaS LLMs.

Limitations

In this paper, we present a novel backdoor-based
watermarking method, EmbMarker, for protecting
the copyright of EaaS models. Our experiments on
four datasets demonstrate the effectiveness of our
trigger selection algorithm. However, we have ob-
served that the optimal trigger set is related to the
statistics of the dataset used by a potential stealer.
To address this issue, we plan to improve Emb-
Marker in the future by designing several candidate
trigger sets, and adopting one based on the statis-
tics of the stealer’s previously queried data. Ad-
ditionally, we discover that as trigger numbers in
the backdoor texts increase, the difference between
embeddings of benign and backdoor samples in the
cos similarity to the target embedding increases lin-
early. The optimal result should be that the cosine
similarity keeps normal unless the trigger numbers
in the backdoor texts reach m. We plan to further
investigate these areas in future work.

Acknowledgments

This work was supported by the grants from
National Natural Science Foundation of China
(N0.62222213, U22B2059, 62072423), and the
USTC Research Funds of the Double First-Class
Initiative (No.YD2150002009).

7661

References

Yossi Adi, Carsten Baum, Moustapha Cisse, Benny
Pinkas, and Joseph Keshet. 2018. Turning your weak-
ness into a strength: Watermarking deep neural net-
works by backdooring. In USENIX Security, pages
1615-1631.

Daniel J Benjamin, James O Berger, Magnus Johannes-
son, Brian A Nosek, E-J Wagenmakers, Richard Berk,
Kenneth A Bollen, Bjorn Brembs, Lawrence Brown,
Colin Camerer, et al. 2018. Redefine statistical sig-
nificance. Nature human behaviour, 2(1):6—10.

Vance W Berger and YanYan Zhou. 2014. Kolmogorov—
smirnov test: Overview. Wiley statsref: Statistics
reference online.

Franziska Boenisch. 2021. A systematic review on
model watermarking for neural networks. Frontiers
in big Data, 4.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. NIPS, 33:1877-1901.

Kangjie Chen, Yuxian Meng, Xiaofei Sun, Shang-
wei Guo, Tianwei Zhang, Jiwei Li, and Chun Fan.
2022. Badpre: Task-agnostic backdoor attacks to
pre-trained NLP foundation models. In /CLR.

Xiaoyi Chen, Ahmed Salem, Michael Backes, Shiqing
Ma, and Yang Zhang. 2021. BadNL: Backdoor at-
tacks against NLP models. In ICML 2021 Workshop
on Adversarial Machine Learning.

Ingemar Cox, Matthew Miller, Jeffrey Bloom, Jessica
Fridrich, and Ton Kalker. 2007. Digital watermark-
ing and steganography. Morgan kaufmann.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In NAACL, pages 4171-4186.

Xuanli He, Qiongkai Xu, Lingjuan Lyu, Fangzhao Wu,
and Chenguang Wang. 2022a. Protecting intellectual
property of language generation apis with lexical
watermark. In AAAIL pages 10758-10766.

Xuanli He, Qiongkai Xu, Yi Zeng, Lingjuan Lyu,
Fangzhao Wu, Jiwei Li, and Ruoxi Jia. 2022b.
CATER: Intellectual property protection on text gen-
eration APIs via conditional watermarks. In NIPS.

Hengrui Jia, Christopher A. Choquette-Choo, Varun
Chandrasekaran, and Nicolas Papernot. 2021. Entan-
gled watermarks as a defense against model extrac-
tion. In USENIX Security, pages 1937-1954.

Kalpesh Krishna, Gaurav Singh Tomar, Ankur P. Parikh,
Nicolas Papernot, and Mohit Iyyer. 2020. Thieves on
sesame street! model extraction of bert-based apis.
In ICLR.

Erwan Le Merrer, Patrick Perez, and Gilles Trédan.
2020. Adversarial frontier stitching for remote neu-
ral network watermarking. Neural Computing and
Applications, 32(13):9233-9244.

Meng Li, Qi Zhong, Leo Yu Zhang, Yajuan Du, Jun
Zhang, and Yong Xiang. 2020. Protecting the intel-
lectual property of deep neural networks with wa-
termarking: The frequency domain approach. trust
security and privacy in computing and communica-
tions.

Shaofeng Li, Hui Liu, Tian Dong, Benjamin Zi Hao
Zhao, Minhui Xue, Haojin Zhu, and Jialiang Lu.
2021. Hidden backdoors in human-centric language
models. In CCS, pages 3123-3140.

Jian Han Lim, Chee Seng Chan, Kam Woh Ng, Lixin
Fan, and Qiang Yang. 2022. Protect, show, attend
and tell: Empowering image captioning models with
ownership protection. Pattern Recogn., 122.

Yupei Liu, Jinyuan Jia, Hongbin Liu, and Neil Zhen-
giang Gong. 2022. Stolenencoder: Stealing pre-
trained encoders in self-supervised learning. In CCS,
pages 2115-2128.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In ICLR.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2017. Pointer sentinel mixture mod-
els. In ICLR.

Vangelis Metsis, lon Androutsopoulos, and Georgios
Paliouras. 2006. Spam filtering with naive bayes-
which naive bayes? In CEAS, volume 17, pages
28-69.

Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz.
2019. Knockoff nets: Stealing functionality of black-
box models. In CVPR, pages 4954-4963.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In EMNLP, pages 1631-1642.

Sebastian Szyller, Buse Gul Atli, Samuel Marchal, and
N Asokan. 2021. Dawn: Dynamic adversarial wa-
termarking of neural networks. In MM, pages 4417—
4425.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Yusuke Uchida, Yuki Nagai, Shigeyuki Sakazawa, and
Shin’ichi Satoh. 2017. Embedding watermarks into
deep neural networks. In ICMR, page 269-277.

7662

Jiangfeng Wang, Hanzhou Wu, Xinpeng Zhang, and
Yuwei Yao. 2020. Watermarking in deep neural net-
works via error back-propagation. Electronic Imag-
ing, 2020(4):22-1.

Fangzhao Wu, Ying Qiao, Jiun-Hung Chen, Chuhan Wu,
Tao Qi, Jianxun Lian, Danyang Liu, Xing Xie, Jian-
feng Gao, Winnie Wu, and Ming Zhou. 2020. MIND:
A large-scale dataset for news recommendation. In
ACL, pages 3597-3606.

Wenkai Yang, Lei Li, Zhiyuan Zhang, Xuancheng Ren,
Xu Sun, and Bin He. 2021. Be careful about poisoned
word embeddings: Exploring the vulnerability of the
embedding layers in NLP models. In NAACL, pages
2048-2058.

Santiago Zanella-Béguelin, Lukas Wutschitz, Shruti
Tople, Victor Riihle, Andrew Paverd, Olga Ohri-
menko, Boris Kopf, and Marc Brockschmidt. 2020.
Analyzing information leakage of updates to natural
language models. In CCS, pages 363-375.

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In NIPS.

Zhengyan Zhang, Guangxuan Xiao, Yongwei Li, Tian
Lv, Fanchao Qi, Zhiyuan Liu, Yasheng Wang,
Xin Jiang, and Maosong Sun. 2021. Red alarm
for pre-trained models: Universal vulnerability to
neuron-level backdoor attacks. arXiv preprint
arXiv:2101.06969.

7663

Appendix
A Experimental Settings
A.1 Attacker Settings

In our experiments, the stealer applies BERT (De-
vlin et al., 2019) as the backbone model and a
two-layer feed-forward network to extract the vic-
tim model. We assume that the attacker applies
mean squared error (MSE) loss to extract the vic-
tim model, which is defined as follows:

©; = argminEyep,|lg(z;) — &l ©)

where e is the provided embedding of sample x

and g is the function of the extracted model.

A.2 Classifier

To evaluate the utility of our provided embedding
e,, we use e, as input features and apply a two-
layer feed-forward network as the classifier. We
use cross-entropy loss to train the classifier.

A.3 Hyper-parameter Settings
The full hyper-parameter settings are in Table 8.

B Embedding Visualization

The t-SNE visualizations of the provided embed-
ding of our EmbMarker on four copy datasets are
represented in Figure 7. The observations are con-
sistent with those presented in Section 4.3. It shows
the backdoor and benign embeddings are indistin-
guishable. Meanwhile, most of the samples do not
contain triggers, and most of the backdoor samplers
contain only a single trigger.

C Hyper-parameter Analysis

In this section, we show the experimental results of
hyper-parameter analysis on MIND, Enron Spam
and AG News datasets in Figure 8, Figure 9, Fig-
ure 10, respectively. Since the results of the visual-
ization of PCA and t-SNE are too large to display
on the paper, we put them in our repository. The
observations are almost the same as those we de-
scribed in Section 4.6. First, too small trigger set
n leads to low detection performance. This is be-
cause the number of backdoor samplers is small
with too small sizes of trigger sets, which reduces
the likelihood of the extracted model inheriting the
watermark. Second, the trigger set n has little im-
pact on accuracy. It might be because the frequency
interval [0.005, 0.01] is small. Though the trigger

set is large, the probability of 4 triggers appearing
in a sentence is still low. Third, we find that small
m, especially 1, degrades accuracy, while large m
reduces detection performance. This is because
about 1% embeddings equal the pre-defined target
embedding e; with m = 1, which negatively im-
pacts the provided embedding effectiveness. When
m is large, the backdoor degree of most samples
is too small to make the watermark inherited by
the extracted model. Finally, low frequencies bring
negative impacts on detection performance, and
high frequencies might negatively affect accuracy.
This is because high frequencies poison many em-
beddings and affect the performance of the pro-
vided embeddings. In low-frequency settings, the
watermark is only added to a few samples, which
limits the possibility of watermark inheritance. Ad-
ditionally, we analyze the impact of dropout values
on model extraction attacks. When the dropout
value is greater than 0.4, the model cannot be ex-
tracted effectively, rendering the detection ability
of EmbMarker meaningless. Therefore, in Table 9,
we present the performance of EmbMarker when
the dropout value is between 0 and 0.4. Our obser-
vations indicate that model extraction attacks are
most effective when the dropout value was set to 0.
This is because the LLM embeddings contain rich
semantic knowledge, and increasing the dropout
value weakens the stealer’s model fitting ability,
thereby reducing its performance in downstream
tasks and the likelihood of inheriting watermarks.

Detection Performance
Dropout Value

p-value Acos(%0) Ap(%)
0.0 <107° 4.07 -8.13
0.2 <1077 2.82 -5.65
0.4 <3x107* 0.87 -2.59

Table 9: The impact of the dropout value used in FFN
network on SST?2.

D Theoretical Proof

In this section, we provide theoretical proof for
proportions in Section 4.7.
D.1 Proof of Proportion 1

Proof. Given any pair of vectors (i, j), according to
the definition of identity transformation, we have

LOlIEIG] TR
cos(I(i), 1(j)) = cos(i, j),

7664

* e ¢ . PN . ’Q .2 .'

40 "_.4' LI 40] - o 2Rl o 40 -+ i L 401 ? ~ Y, g
ot AR Oy I s e S s
o) ° dgeamase & o o of P R _' ,v T."~“| s

¥ oot S oAl SN 3. $pves o T et o 0 e ¢
0 ".. 3 o b N 0 . ~I!’0‘#1 c.° ¥ 0] o oAy oo ‘)(-. o ‘ (‘“vs" 'é:

RIS .o'.'-'g:.q&.‘g_l"\ PR SV IV L < "" "’,{&;

a0 i, 4 a0l ‘."k '2‘.'.-,""' g I ::';3;?'5‘.‘ 40 ‘ . ::‘-\' '

’.c‘ . - "2}'1: ..‘
-40 0 40 80 -40 0 40 -40 0 40 -40 0 40
(a) AG News (b) Enrom Spam (c) MIND (d) SST2

Figure 7: T-SNE Visualization of the provided embedding of our EmbMarker on four copy datasets. Different colors
represent the number of triggers in the samples. It shows the backdoor and benign embeddings are indistinguishable.

SST2 MIND AG News Enron Spam
Provider’s FaaS embedding dimension 1,536 1,536 1,536 1,536
maximum token number 8,192 8,192 8,192 8,192
Ir 5x107° 5x107° 5x107° 5x107°

. batch size 32 32 32 32

Model Extraction hidden size 1,536 1,536 1536 1,536
dropout rate 0.0 0.0 0.0 0.0

Ir 1072 1072 1072 1072
Classifiction batch size 32 32 32 32
hidden size 256 256 256 256
dropout rate 0.2 0.2 0.0 0.2

Table 8: Hyper-parameter settings. The dropout value corresponds to the dropout used in the FFN network, while

the dropout value for BERT backbone was set to default.

which indicates transformation is
similarity-invariant.
For dimension-shift transformation S, we have
IS@)I [ISG)II

d .
Z Ty - e
[l HJH il HJH

=1

identity

d . .
cos(8(i), (7)) = L=t e

&[] 11511
where d is the dimension of i and j. There-
fore, dimension-shift transformation S is similarity-
invariant as well.

= cos(i, j),

D.2 Proof of Proportion 2

Proof. Denote the embedding of copied model as
e, the embedding manipulated by transformation
A, as e! and the the embedding manipulated by
transformation A as e2. Since both A; and A,
are similarity-invariant, we have

e - e
e[[lef]”
Iy = 13; = loi = |ei/lei| — €} /[€}]] |,

T o2 e
cos; = COS; = C0S; =

where the superscript indicates the similarity calcu-
lated under which transformation. Therefore, we
can obtain:
1 2 A1 2 71 2 71 2
Cb — Cb?Cn — O?’L?Lb — Lb7L’Vl == Ln
Since the inputs for the metrics A5, Ao and
p-value in our methods are only Cy, C),, Ly and
L,,, we have
1 2 1 2 1 2
Acos = Acostl2 = Al2’pKS = PKs>
where pg s is the p-value of the KS test with Cj,
and C), as inputs.

E Experimental Environments

We conduct experiments on a linux server with
Ubuntu 18.04. The server has a V100-16GB with
CUDA 11.6. We use pytorch 1.13.1.

7665

io ez ;g 100 1 4 20 [0.001,0.002] [[0.02, 0.05]
B3 2 [10 [0.005, 0.01] [[0.1,0.2]
77.31 '7.2¢
77 7716 17137713 13.39 . 1977 2977 1077:28 ezr 720 7129 77.33 2030 20
128 479 16 g @
> c B 1413 8 77.06 5]
o) S >77.0 1408 15¢
g g 128 § 2
8 7.39 8 & 576.5 g 5 g
376 o 3 g O 3 105
< ™ 0 g 76.16 o <765 -
48 760 s S ' S
. 4 (&) 464 5 (@]
5 Accuracy Cos Diff. 5.5 Accuracy Cos Diff. 0 76.0 Accuracy Cos Diff. 0

(a) trigger set size n

(b) max trigger number m

(c) frequency interval

Figure 8: The impact of the trigger set size n, the maximum number of triggers to fully activate watermark m, and
the frequency interval on the MIND dataset.

4 1 20 100 1 [4 20 [0.001,0.002] [ZZZ1 [0.02, 0.05]
10 [50 2 [10 [0.005, 0.01] =71 [0.1,0.2]
93.7693.76 . 3610356 1508 93,6693.7293.71 . 7]15 18 15 93.68 93.66 93.63 16.01 16
() 93 0283 1285 [] 1337 [0
1398 8 > 12 8 >0 1285) g
293 1“5 3o & ol 129
g o 8 g &8 & @
= 1285, s S e S =
3 1235 O 8gg w | O 8 85
<92 1183 _‘]_2§ < 514 § < 87 §
87 3 248 4
X 183,78
91 : 10 g5l . 0 83 L1 . 0
Accuracy Cos Diff. Accuracy Cos Diff. Accuracy Cos Diff.

(a) trigger set size n

(b) max trigger number m

(c) frequency interval

Figure 9: The impact of the trigger set size n, the maximum number of triggers to fully activate watermark m, and
the frequency interval on the AG News dataset.

4 1 20 100 1 1 4 20
10 E= 50 2 =1 10 [0.001, 0.002] 271 [0.02, 0.05]
[0.005, 0.01] 22 [0.1,0.2]
95.05 95.00
95] = 9465 2 % 2 16 © 047804752495 5 © 948 aagg J450 0480 1368
g 94.10 9 g 12 8
3 94 (3] 3 94 7.27 [TEES =
E 4 E 9 6.17 5 % 94.7 9470 [
S 324 £ 3 6 5 . 8 é
2’ 93 [a) é’ [a) 8 617 a
4} 92 8 < 4
20 o 4
92 116 o oo ™ 3U 94.6 3.50 4 o
-013 2L 009
91 Accuracy Cos Diff. 0 90 Accuracy Cos Diff. 0 94.5 Accuracy Cos Diff.

(a) trigger set size n (b) max trigger number m (c) frequency interval

Figure 10: The impact of the trigger set size n, the maximum number of triggers to fully activate watermark m, and
the frequency interval on the Enron Spam dataset.

7666

ACL 2023 Responsible NLP Checklist

A For every submission:

¥ Al. Did you describe the limitations of your work?
at "Limitations" section

¥ A2. Did you discuss any potential risks of your work?
at "Limitations" section

¥ A3. Do the abstract and introduction summarize the paper’s main claims?
at section 1

A4. Have you used Al writing assistants when working on this paper?
Left blank.

B ¥ Did you use or create scientific artifacts?

at section 4

¥/ B1. Did you cite the creators of artifacts you used?
at section 4

v B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
at section 4

v B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
at section 5

¥f B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
at section 5

[l B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
No response.

¥f B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
at section 5

C ¥ Did you run computational experiments?
at section 5
¥ C1. Did you report the number of parameters in the models used, the total computational budget

(e.g., GPU hours), and computing infrastructure used?
at section 5

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on Al writing
assistance.

7667

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

v C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
at section 5

v C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
at section 5

v C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
at section 5

D Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

O DI1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

(] D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?

No response.

[0 D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?

No response.

0 D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

0] DS. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

7668

