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Abstract

The wide applicability and adaptability of gen-
erative large language models (LLMs) has en-
abled their rapid adoption. While the pre-
trained models can perform many tasks, such
models are often fine-tuned to improve their
performance on various downstream applica-
tions. However, this leads to issues over viola-
tion of model licenses, model theft, and copy-
right infringement. Moreover, recent advances
show that generative technology is capable of
producing harmful content which exacerbates
the problems of accountability within model
supply chains. Thus, we need a method to in-
vestigate how a model was trained or a piece of
text was generated and what their pre-trained
base model was. In this paper we take the first
step to address this open problem by tracing
back the origin of a given fine-tuned LLM to its
corresponding pre-trained base model. We con-
sider different knowledge levels and attribution
strategies, and find that we can correctly trace
back 8 out of the 10 fine tuned models with our
best method.

1 Introduction

Recent advancements in pre-trained large language
models (LLMs) have enabled the generation of
high quality texts that humans have difficulty iden-
tifying as machine generated (Wahle et al., 2022).
While these pre-trained models can perform many
tasks in the zero-shot or few-shot settings (Brown
et al., 2020; Schick and Schütze, 2021), such mod-
els are often fine-tuned to improve their perfor-
mance on various downstream applications (Peters
et al., 2019; Pfeiffer et al., 2020). As of May 2023,
there are more than 209,000 models hosted on Hug-
gingface1 and more than 12,000 of them belong to
the “text generation” category. Many generation
models are fine-tuned from the open-access pre-
trained base models such as XLNet (Yang et al.,

∗∗ Work done during internship at IBM Research.
1https://huggingface.co/models

2019), BART (Lewis et al., 2020), or GPT-J (Wang
and Komatsuzaki, 2021) whose training typically
requires significant computational resources.

While the proliferation of text generation mod-
els has led to the performance improvement for
a wide range of downstream applications such as
text summarization and dialogue systems, it has
also been repeatedly shown that these pre-trained
or fine-tuned LLMs can facilitate the creation and
dissemination of misinformation at scale (Wei-
dinger et al., 2021), and the manipulation of public
opinion through false “majority opinions” (Mann,
2021). In response, laws like the EU’s Digital
Services Act (DSA)2 aim at tackling these issues
by enforcing procedural accountability and trans-
parency for responsible use of AI-based technolo-
gies. These growing demands for AI forensics re-
quire the development of methods for establishing
model ownership, protecting intellectual property,
and analyzing the accountability of any violations.

In this work, we systematically investigate LLM
attribution, a novel task recently proposed at the
first “Machine Learning Model Attribution Chal-
lenge (MLMAC)”3, which aims to link an arbitrary
fine-tuned LLM to its pre-trained base model using
information such as generated responses from the
models. Through LLM attribution, regulatory bod-
ies can trace instances of intellectual property theft
or influence campaigns back to the base model.
However, determining attribution for fine-tuned
LLMs can be challenging as base models often
have similar architectures and overlapping training
data. For instance, THEPILE (Gao et al., 2020a),
a large data set that consists of 22 smaller, high-
quality datasets, with a total size of 825 GB, was in-
cluded into the training data for both GPT-J (Wang
and Komatsuzaki, 2021) and OPT (Zhang et al.,
2022).

2https://eur-lex.europa.eu/eli/reg/
2022/2065/oj

3https://mlmac.io/
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access to the models in B and F and the amount of
resources available for developing the method. In
general, we assume that the developer of an attri-
bution system can only query the LLMs as a black
box to obtain the generated responses, and has lim-
ited access to models in F . We speculate this to
be true for real-world settings where the producers
of pre-trained base models, maintainers of model
zoos, or an external auditor are incentivised to de-
velop such attribution systems. In such scenarios,
they may only have limited access to the API of
fine-tuned models which will typically be owned
by a third-party. Other constraints may arise from
the amount of resources available for developing at-
tribution systems. For instance, an external auditor
may not have the domain expertise or computation
resources to benefit from the insights from other
fine-tuning pipelines. Similarly, the developer is
assumed to have no knowledge of the fine-tuning
datasets and approaches used to obtain the models
in F , as in these cases attribution may be easily
achieved by replicating the setup locally and com-
paring the obtained models with those in F . In
addition to these assumptions, we consider the fol-
lowing two knowledge levels available with the
developer of an attribution system.

• Universal knowledge KU : This allows the
developer access to universal knowledge
about models in B. This allows the analysis
by a human expert, as well as computing the
perplexity of the input. Moreover, the devel-
oper can build an additional set of fine-tuned
models A, or even the capability to train such
models. This enables building a supervised
attributor using A as a training dataset.

• Restricted knowledge KR: We do not have
access to A, and can only query the models in
B as a black box to get the responses.

4 Attribution Methods

We approach the LLM attribution problem as a
classification task. Essentially, LLM attribution re-
quires identifying the certain robust or latent char-
acteristics of a pre-trained base model within the
given fine-tuned model. The fine-tuned model may
retain unique aspects in the pre-training data like
events and vocabulary of a specific time period, or
the fluency of the base model in a certain domain.

In particular, as shown in Figure 2 we build
a classifier hmb

testing a response for each pre-

Input 

Representation

Prompts

p1, …, pK

Responses

mf(p1), …, mf(pK)

Fine-tuned 

model

mf

Responses

mb(p1), …, mb(pK)

Pre-trained 

Base model

mb

Classifier

hmb

Figure 2: An example configuration of a one-vs-rest
classifier hmb

using both base model mb and fine-tuned
model mf .

trained base model mb to decide if a given fine-
tuned model mf retains the characteristics of mb,
following the one-vs-rest (mb or others) scheme.
Then, we aggregate the result to pick the top-1 base
model with the majority voting method. In other
words, we take mf such that

∑
p∈P hmb

(mf (p))
is maximized, where P is a set of prompts.

The task can be further broken down into two
steps for each base model mb and its classifier
hmb

including (1) characterizing the target base
model mb and representing the input to the classi-
fier (Section 4.1.1), (2) selecting the prompts (Sec-
tion 4.1.2), and (3) designing the classifier (Sec-
tion 4.2).

4.1 Model Characterization and Input
Representation

In this step, we characterize an LLM (fine-tuned or
base model), and prepare the input to the classifier
hmb

. One piece of evidence of attribution lies in ex-
ploiting the artefacts of a pre-trained LLM that are
expected to persist through the fine-tuning process
and are inherited by their fine-tuned counterparts.
For instance, a distinctive feature of RoBERTa (Liu
et al., 2019) is the sequence length limit of 512
which is often inherited by its fine-tuned versions.
The task characteristics and associated training data
may also help distinguish different LLMs. For ex-
ample, LLMs trained for specific tasks like chat
bots or code generation will have characteristically
different output spaces. They may also have unique
aspects in their training data like a specific lan-
guage or markers such as data collected over spe-
cific time period.

While feature engineering can extract a usable
set of features, it is prone to bias, and less adaptable,
and it also requires deep knowledge about B. Thus,
we leverage the embeddings of the prompts and
responses to learn and exploit such knowledge.
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4.1.1 Input Representation
Our goal is to train a classifier to capture the corre-
lations between an arbitrary response and the base
model mb. For example, with a prompt p, this
could capture the relationship between a response
mb(p) and mb. Similarly, we can capture the rela-
tionship between a response mf (p) and mb where
mf is obtained by fine-tuning mb. Assuming that
such correlations are preserved in a base model and
fine-tuned model pair, we use it to determine the
attribution of a fine-tuned LLM.

Given a set of prompts p1, . . . , pK , there are
multiple ways to prepare them for the classifier.
We can apply the target base model, or fine-tuned
model to get the responses, and concatenate the
prompt and its response. Specifically, we list the
input representations we consider as follows:

• Base model only (IB): “pi mb(pi)”

• Fine-tuned model only (IF): “pi mf (pi)”

• Base model + fine-tuned model (IB+F): “pi
mb(pi) <SEP> pi mf (pi)”

• Separate embeddings for base model and fine-
tuned model.

We embed these concatenated sentences
using BERT computed by a best-base-
multilingual-cased model5 except for
the last approach that embeds the components
separately for margin-based classifier TripletNet
described in Section 4.2. Note that all reference to
a fine-tuned model mf during training are actually
sampled from another set A of fine-tuned models
under KU assumption as we assume only sparse
access to mf . Also, IB takes the responses from
mf during prediction to test if the responses share
the same characteristics that this classifier learned
about mb.

4.1.2 Prompt Selection
While many corpora to pre-train LLMs provide
prompts, they might not be all useful to predict
the base model. Thus, we aim to test and se-
lect prompts with more distinctive outcome. Our
prompt selection strategy is driven to help best
characterise base models. We first collect the list
of datasets used in training each base model, identi-
fying unique aspects of datasets that can help iden-
tify a base model. Intuitively, one might expect

5https://huggingface.co/bert-base-multilingual-cased

such unique prompts or ‘edge cases’ to bring out
the distinctive aspects in the subsequent fine-tuned
models. Specifically, we first identify the unique
categories of prompts (e.g. different languages)
present in different datasets and sample from this
set.6

More specifically, we consider three approaches:
a small set (P1) of edge cases that are distinct to
each corpus, a naive collection (P2) of prompts,
and reinforcement learning to select a subset (P3)
from the edge cases.

While the naive collection of the 10,000 prompts
from ThePile corpus and manually selecting a set
of prompts unique to each training dataset is clear,
we can also use reinforcement learning to optimize
the selection using the classification result. More
specifically, we train an agent for each hmb

that can
supply prompts for attribution inference. During
the training episodes, the agent is rewarded for
prompts whose responses lead to correct attribution.
The reinforcement learning setup for this problem
is defines as follows:

• State. A feature space consisting of the
classification of the prompt, and an embed-
ding of the prompt response computed by
best-base-multilingual-cased.

• Action. Selecting one of the prompts from
P1.

• Reward. Using a sparse reward function we
reward (+1) for correct classification and pe-
nalise (-10) for incorrect classification.

• Episode. 20 possible actions.

At the start of each episode we are able to randomly
select one of the models that the classifier was
trained on, thus the RL agent learns to generalise
to a variety of different models. We implement the
RL agent using the Proximal Policy Optimisation
(PPO) method (Schulman et al., 2017).

We can use these collected prompts in a few
different ways. A simplistic approach is using each
set P1, P2 or P3 individually. Another approach
P1+P2 trains the classifier with P2, and then fine-
tune with P1 to leverage both of them (P3 is already
a subset of P2) and we find this is promising in our
experiments. See Appendix D for details of the
prompts used from THEPILE for this combination
approach.

6Prompt selection is complex and the numerous dimen-
sions of fairness and robustness of such schemes are useful for
further investigation of the LLM attribution problem. How-
ever, we believe them to be out of scope of this first systematic
study on LLM attribution.
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4.2 Classifier Architecture
We consider a one vs rest setup where for each base
model mb we train a binary classifier hmb

: ΣM →
{0, 1} which takes as input a response s ∈ ΣN , op-
tionally with additional tokens, and predicts a score
that reflects its association to the based model mb.
Single embeddings prepared in Section 4.1.1 can
be straightforwardly used in a simple classifier. We
fine-tune the BERT model used for the embedding
to make the binary prediction with cross-entropy
loss. Given the one-vs-rest approach the positive
samples for an hmb

are repurposed as negative ones
for the rest of the classifiers hml

for ml ∈ B\{mb}.
The best average score thus obtained is used to es-
tablish the attribution for mf .

We also consider TripletNet (Wei et al., 2021)
based classifiers that use a margin-based loss func-
tion using the separate embeddings of the base
and fine-tuned model responses. The TripletNet
is able to make predictions by taking in a single
sentence, computing the output embedding, and
finding the closest embedding from the training set
and using the label of the training sentence as a
prediction. The cosine distance between the anchor
input, positive example, and negative example are
then computed as the loss. We adopt the margin
parameter 0.4 from the original paper (Wei et al.,
2021).

5 Experiments

5.1 Experiment Setup
For training the attribution models hmb

we make
use of popular text corpora including: GitHub,
The BigScience ROOTS Corpus (Laurençon et al.,
2022), CC-100 (Conneau et al., 2020), Reddit
(Hamilton et al., 2017), and THEPILE (Gao et al.,
2020b).

We also use a variety of prompt sizes for attribu-
tion (150 to 10,000), and datasets (IMDB Reviews
(Maas et al., 2011), GLUE (Wang et al., 2018),
Tajik OSCAR (Abadji et al., 2022), and Amazon
Multilingual (Keung et al., 2020).

To provide a wide didactic range of models for
our approaches we utilise 10 pre-trained LLMs
to create B and corresponding fine-tuned mod-
els (Table 1): Bloom (Scao and et al., 2022),
OPT (Zhang et al., 2022), DialoGPT (Zhang et al.,
2020), DistilGPT2 (Sanh et al., 2020), GPT2
(Radford et al., 2019), GPT2-XL (Radford et al.,
2019), GPT-NEO (Black et al., 2021), CodeGen
(Nijkamp et al., 2023), XLNET, MultiLingual-

m# Base Model Fine-tuning dataset

0 bloom-350m common_gen (Lin et al., 2020)
1 OPT-350M Pike, CYS, Manga-v1
2 DialoGPT-

large
Persuasion For Good Dataset
(Wang et al., 2019)

3 distilgpt2 wikitext2 (Merity et al., 2016)
4 GPT2-XL the Wizard of Wikipedia dataset

(Dinan et al., 2019)
5 gpt2 Wikipedia dump, EU Bookshop

corpus, Open Subtitles, Com-
monCrawl, ParaCrawl and News
Crawl.

6 GPT-Neo-
125m

Cmotions - Beatles lyrics

7 xlnet-base-
cased

IMDB (Maas et al., 2011)

8 multilingual-
MiniLM-L12-
v2

Unknown

9 codegen-350M Zhu et al. (2022)

Table 1: Fine-tuned models, their original base models
and the datasets they are fine-tuned on.

MiniLM (Wang et al., 2021). These models provide
different architectures, parameter sizes, and tasks
to offer a variety of model behaviors.

We consider a one-to-one mapping from B to F
(and A), thus F and A contain ten models each. We
utilise open-source models that are implemented
in the Huggingface library to form the sets of F
and A. We select A and F such that the fine-tuning
dataset, and model configuration are known to us,
of these we select the most popular by number of
downloads. We provide further details of these in
Appendix B.

We take the top-1 result for each mb as men-
tioned in Section 4 and check its correctness. We
use F1 and ROC curves as additional metrics.
These are calculated using prompt-level attribu-
tion calculated per mb (as in Figure 8), and we use
an average per hmb

(as in Figure 3). Each of the
attributors hmb

described is ran once to determine
the attribution of mf to mb. Training is conducted
using a single NVIDIA A100 GPU.

5.2 Compared Approaches
We consider different configurations for BERT clas-
sifiers based on the input representations IB, IF or
IB+F, and the prompts used P1, P2, P3 or P1+P2
described in Section 4.1.1.

We also consider the margin classifier TripleNet
(Section 4.2), and the following heuristic ap-
proaches.

• Perplexity: A measure of how confident a
model is at making predictions, this can be

7427



leveraged for measuring attribution by com-
puting the perplexity of mb relative to the re-
sponse of mf to prompt p.

• Heuristic Decision Tree (HDT): Using KU

we can use knowledge of B to create a series
of discriminative heuristics to categorise F
as used by the winning solution to the first
MLMAC7.

• Exact Match: Attribute responses mf to mb

when both models respond the same to a
prompt. Using the argmax of these attribu-
tions to attribute mf to mb.

For detailed descriptions of the heuristic ap-
proaches, please refer to Appendix A.

5.3 Attribution Accuracy
Here, we examine the attribution abilities of the
compared approaches shown in Table 2. Under KU

conditions the baselines of Perplexity and HDT are
only able to correctly attribute 1 and 5 models re-
spectively. Perplexity fails to capture the subtly of
attribution, as repetitive responses lead to lower per-
plexity and so incorrect attribution. The HDT par-
ticularly fails to account for overlap in pre-training
and fine-tuning. For instance, DialoGPT-Large and
mf3 (fine-tuned version of distilgpt2) respond in
similar short sentences that leads to incorrect attri-
bution. The TripletNet baseline performs poorly,
only correctly attributing 3 of the models. Both
BERT based attributors are able to attribute more
models correctly in comparison to the baselines.

Examining the models at KR shows similar per-
formance. The exact match correctly attributes
5 models and BERT+IB identifies 6 models.
BERT+IB+P1+P2 attributor is the most success-
ful by correctly attributing 8 models. Note that this
model is the most expensive to train as we have to
query a large number of prompts.

We compare the ROC curves for BERT based
attributor defined under each K in Figure 3. We
provide plots of hmb

in each variant in Appendix C.
It is interesting to note that the models under KR

have shallower curves than their KU counterparts,
yet these KR models lead to the same or higher
number of correct attributions. This is likely due
to the ‘noise’ that gets added to responses of A
from their separate fine-tuning task, TA. This noise
moves the responses of ma further from mf (and

7https://pranjal2041.medium.com/identifying-pretrained-
models-from-finetuned-lms-32ceb878898f

�✁✂ ✄☎✆✝ ✞ ✟✠ ✞ ✡☛☞ ✌✍✎✌✏

�✁✂ ✄☎✆✝ ✞ ✟✑✒✠ ✞ ✡☛☞ ✌✍✓✎✔

�✁✂ ✄☎✆✝ ✞ ✟✑ ✞ ✡☛☞ ✌✍✓☛

�✁✂ ✄☎✆✝ ✞ ✟✑ ✞ ✡☛ ✞ ✡✕☞ ✌✍✓✕✖

Figure 3: Average ROC plots for each classifier at each
knowledge level.

Attribution
Method K

m# TP0 1 2 3 4 5 6 7 8 9

HDT KU ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✓ 5
Perplexity KU ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 1
TripletNet + P1 KU ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ 3
BERT + IF + P1 KU ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓ 6
BERT + IB+F + P1 KU ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓ 6

Exact matching KR ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✓ 5
BERT + IB + P1 KR ✓ - ✓ - ✗ ✗ ✓ ✓ ✓ ✓ 6
BERT + IB + P3 KR ✓ ✗ - ✗ ✗ ✓ ✓ ✓ - ✓ 5
BERT + IB+P1+P2 KR ✓ ✓ ✓ - ✗ ✓ ✓ ✓ ✓ ✓ 8

Table 2: Model Attributions on m# from the different
methods. Dashes (–) are used when multiple models
(mf ) are attributed to mb. TP denotes True Positives.

by extent mb). As such responses from mb are
closer to mf than ma. This makes the attributors
predict more negative samples correctly under KU

as there is greater disparity in response between
ma and mf , leading to a higher AUC; but also to
miss-attribution of mf at inference. Hence, it is
unsurprising that the pretrained KR has the low-
est AUC of any model, yet it leads to the highest
attribution accuracy in Table 2 as it is trained on
responses of mb which is closer in the latent space
to responses of mf than ma.

Lesson Learned: Even under reduced knowl-
edge level, pre-training was found to be the
factor that contributed to the highest attribu-
tion performance.

5.4 Effects of Prompt usage
The number of prompts available to an attributor for
classification can have an influence on the attribu-
tion performance: we hypothesize that increasing
the number of prompts used results in a clearer
signal as to the finetuned to base model attribution.

We train BERT attributors under the KR con-
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Figure 4: Mean ROC for varying quantities of prompts.

Number
of Prompts

m# TP0 1 2 3 4 5 6 7 8 9

150 ✗ ✓ ✗ - - - ✓ ✗ - ✓ 3
500 ✗ ✗ ✗ - - - - - ✓ - 1
1000 ✗ ✗ - - - - - ✗ ✓ - 1
2000 ✗ ✓ ✓ ✓ - - - ✓ ✓ ✓ 6
4000 ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓ 5
6000 ✗ ✓ ✓ - - - - ✗ ✓ ✓ 4
8000 ✗ ✓ ✗ - - - - ✗ ✓ - 2

10000 - ✓ ✗ - - - - ✓ ✓ ✓ 4
BERT + IB + P1 + P2 ✓ ✓ ✓ - ✗ ✓ ✓ ✓ ✓ ✓ 8

Table 3: Model Attributions on F using a varying num-
ber of prompts from The Pile.

dition, as the KR pretrained model performed the
strongest. For these experiments we do not use RL
prompt selection.

The results of this experiment are shown in Fig-
ure 4. By increasing the number of prompts that
a classifier is able to use for classification, we see
that there is an improvement in the AUC, with di-
minishing returns from 6,000 prompts onward.

Increasing the number of prompts improves the
AUC, yet does not lead to direct improvement in
terms of the attribution accuracy as shown in Ta-
ble 3. In fact, increasing the number of prompts
used for classification leads to a highly variable
performance. None of the models that directly use
these prompts (150 - 10K prompts from the pile)
are able to improve or even match that of the pre-
trained model using 150 prompts from Table 1.

Lesson Learned: Increasing the number of
prompts for attribution does not lead to reli-
able improvements in the number of models
correctly attributed.

5.5 Effects of pretraining attributors
We next aim to investigate how the size of the pre-
training data effects the performance of the attri-

Number of
Prompts

m# TP0 1 2 3 4 5 6 7 8 9

150 ✗ - ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✓ 5
500 ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✗ 6
1000 ✗ ✓ ✓ ✓ ✗ ✓ ✗ - ✓ ✓ 6
2000 ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓ 7
4000 ✓ ✓ ✓ - ✓ ✓ ✓ ✓ ✗ ✓ 8
6000 ✓ ✓ ✓ - ✗ ✓ ✓ ✓ ✓ ✓ 8
8000 ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓ 7

10000 ✓ ✓ ✓ - ✗ ✓ ✓ ✓ ✓ ✓ 8
BERT + IB + P1 + P2 ✓ ✓ ✓ - ✗ ✓ ✓ ✓ ✓ ✓ 8

Table 4: Model Attributions on F from the models
pretrained on different portion from P2, and then fine-
tuned with P1.

bution, as while using increasingly large data for
direct attribution may not improve performance,
Section 5.3 shows that using it as pretraining data
does improve attribution.

To this end each model discussed in Section 5.4
is finetuned under KR, varying the size of pretrain-
ing data from 150 prompt responses to 10,000.

We report the results of the experiment in Fig-
ure 5. In Figure 5a we see that the finetuned models
are able to improve over the equivalent models in
Figure 4. Yet they do not improve on the AUC of
models trained under KU conditions.

We see from Figure 5b that increasing the num-
ber of prompts minimally improves the precision
and recall of attribution, with little correlation be-
tween number of prompts, even of a varied set like
THEPILE. Whilst these pretrained-finetuned attrib-
utors are able to improve on the precision of the
attributor using manual selected prompts, however
they are unable to improve on the recall.

What is most important for this task, however, is
the ability of attribution, hence we also determine
the model attributions for each model in Table 4.
The models that have been pretrained on a larger
number are able to outperform the KR model of
Section 5.3 attributing 8 models correctly in the the
models pretrained on 4k and 6k prompts.

Lesson Learned: Pretraining attributors is
vital to improve the attribution performance.
However, this has to diminishing returns in
terms of correct attributions and AUC.

5.6 Effects of Finetuning on Attribution
The type and duration of the finetuning conducted
on a base model B can effect attribution perfor-
mance. To investigate this we use of two base
models: distilgpt2 and Multilingual-MiniLM and
finetune them using three datasets: IMDB (Maas
et al., 2011), GLUE (Wang et al., 2018), Amazon
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Figure 6: F1 scores of DistilGPT2 and MLMINI attrib-
utors.

reviews Multilingual (Keung et al., 2020), and the
Tajik language subset of OSCAR (Abadji et al.,
2022).

Using such datasets more closely models the re-
alistic attack scenario where common pre-training
prompt sets are used in an attempt to determine at-
tribution, and fine-tuning datasets are often propri-
etary and/or unique to the application. Conducting
experiments in this scenario in a controlled setting
allows us to study the effect of finetuning on attri-
bution in terms of (a) number of epoch and (b) size
of dataset.

Effect of Finetuning Epochs: Firstly, we study
the effect of the number of finetuning epochs has
on attribution. Figure 6 shows the F1 score of the
MLMini and distilgpt2 attributors when trying to
attribute the finetuned base models.

The MLMini attributor is greatly affected ini-
tially by MLMini being finetuned on IMDB, how-

ever as with the model finetuned on Amazon re-
views there is an increase in attribution perfor-
mance with increasing finetuning epochs. Con-
versely, the MLMini model finetuned on GLUE
MNLI had minimal change in performance only
with anomalous increased F1 score at epoch 6.

However, when trying to attribute MLMINI fine-
tuned with the Tajik subset of OSCAR we see that
the F1 score is significantly worse. We speculate
that AMAZON and IMDB datasets are similar to
the pretraining dataset of MLMini (CC-100) and
that the AMAZON reviews, with its 6 languages,
are the most similar to this. In fact, the CC-100
is likely to have an overlap in the data distribu-
tion of all three of these datasets as all are openly
available. As there is no Tajik in CC-100 it is out-
of-distribution (OOD) of MLMINI’s pretraining
dataset, which leads to the poor performance in
attribution.

With the attributor for distilgpt2 there is poor
performance in all datasets regardless of the num-
ber of epochs. This follows due to the finetuning
datasets being OOD relative the the pretraining
data of distilgpt2 which used the OpenWebTextCor-
pus. As OpenWebTextCorpus is mostly in English,
finetuning in other languages such as those in the
AMAZON dataset, makes attribution harder.

Lesson Learned: The attribution performance
is dominated by the similarity of the fine-
tuning dataset to the pre-training dataset,
rather than the amount of fine-tuning con-
ducted.

Effects of Dataset Size: In addition to the num-
ber of finetuning epochs we consider the overall
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Figure 7: F1 of DistilGPT2 and MLMINI attributors
under varying dataset size, relative to original dataset.

size of the finetuning set on attribution. We report
the results of using a fixed 10 epochs and varying
the finetuning dataset size in Figure 7. We can
see similar effects as in Figure 6, that the OOD
datasets for Distilgpt2 lead to poor F1 scores, and
consequently, poor attribution results.

For MLMINI we see similar performance on
IMDB and AMAZON (two of the in-distibution
datasets) with an increased F1 as the dataset size
increases. When finetuning on OSCAR and GLUE
the F1 score shows a minimal correlation with
dataset size. This again follows from Figure 6.
OSCAR is OOD for MLMINI, which makes attri-
bution significantly harder. Similarly GLUE offers
the most varied dataset making attribution harder
and giving lower F1.

Lesson Learned: Training on a richer dataset
broadly improves results if it is within distri-
bution.

Effects of Dataset: Across Figures 6 and 7 we
see the effect of different finetuning datasets on the
ability to attribute to base models.

We can observe the effect of the finetuning
datasets on the ability to attribute to base models in
Figures 6 and 7. These figures show the distribution
of the dataset greatly affects attribution. Finetuning
datasets that are completely out of distribution in
relation to the original pre-training dataset severely
impact attribution performance. This is particularly
apparent in MLMINI where finetuning on OSCAR
leads to poor attribution performance in Figure 6
and 7.

Both base models finetuned with GLUE also
make attribution harder. We reason that this is due

to the broad range of prompts that are not typical
of a finetuning dataset. This leads the model to
produce generic responses to the targeted prompts
used for attribution.

Lesson Learned: The most significant impact
on attribution is the distribution and variety
of the finetuing dataset.

6 Conclusion

In this work we have taken initial steps in the LLM
attribution problem. We study LLM attribution in
KU and KR settings which limit access to B and
F to different levels. We argue this prevents trivial
solutions in white-box settings, and provides an
interesting and realistic study of LLM attribution.

We have considered a variety of different LLMs
that are trained on different datasets, and for dif-
ferent purposes. We postulate that the 10 differ-
ent LLMs provide a didactic range of models for
LLM attribution. In our experiments, we have used
pre-existing LLMs that have been fine-tuned by the
open-source community to demonstrate the applica-
bility of our methodology. To mitigate the potential
for bias this causes, we have tried out best to ensure
the fine-tuning task and dataset of such models is
known. In addition, we fine-tune a subset of these
models in an ablation study, which demonstrates
the effect that such fine-tuning has on LLM attri-
bution in a controlled environment. Our ablation
study also studies the effect that OOD fine-tuning
datasets have on attribution. This mitigates the ef-
fect of only fine-tuning within distribution (of the
pre-training data).

Overall, our work contributes to the growing
understanding of LLM attribution, laying the foun-
dation for future advancements and developments
in this domain.
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Limitations

We have considered a variety of different LLMs
in order to study attribution. However we have
only considered a small sample of the different
LLM architectures and training strategies. This
has been with a view to using a small but diverse
set of LLMs. Of these 10 base models, we tested
our approach to attribution on a controlled set of
fine-tuned models. While a study that considers a
wider variety and larger scale of fine-tuned models
would be beneficial to the problem of attribution,
the computation resources limited our study.

Furthermore, in our assumptions in this work
we consider that there is a one-to-one mapping be-
tween mf and mb. However, this is not necessarily
the case. There could be an m-to-n mapping and
also a model may be present in one set, but not the
other.

We believe there is rich space for further research
in this area that can address these limitations, and
further develop the problem of attribution.

Ethics Statement

In the discussion we have highlighted how the tech-
niques for attributing fine-tuned models to their
pre-trained large language models can be used as a
tool to mitigate issues such as violation of model
licenses, model theft, and copyright infringement,
but this is only a subset of the issues related to
authorship attribution. The increasing quality and
credibility of LLM generated text has recently high-
lighted ethical issues such as plagiarism8 or the
banning of users for submitting AI generated re-
sponses to answer questions. 9 Even within the sci-
entific community discussions are arising related
to topics such as the authorship of papers or codes,
who owns what is it generated? Many AI con-
ferences have banned the submission of entirely
self-generated scientific papers.10

These are some examples of controversial sit-
uations, but the use of AI-generated content has
ethical implications in several domains that depend
on the specific context and application. It is there-
fore crucial, as a first step to tackle these ethical
issues, to ensure that any AI-generated contents

8New bot ChatGPT will force colleges to get creative to
prevent cheating, experts say

9AI-generated answers temporarily banned on coding
Q&A site Stack Overflow

10Top AI conference bans use of ChatGPT and AI language
tools to write academic papers

are clearly labeled as such and are not presented as
original work without proper attribution (whether
it’s a person or a base model).

Acknowledgements

This work was supported by European Union’s
Horizon 2020 research and innovation programme
under grant number 951911 – AI4Media.

7432



References

Julien Abadji, Pedro Ortiz Suarez, Laurent Romary, and
Benoît Sagot. 2022. Towards a cleaner document-
oriented multilingual crawled corpus. In Proceedings
of the Thirteenth Language journal and Evaluation
Conference, pages 4344–4355, Marseille, France. Eu-
ropean Language Resources Association.

Sid Black, Leo Gao, Phil Wang, Connor Leahy,
and Stella Biderman. 2021. GPT-Neo: Large
Scale Autoregressive Language Modeling with Mesh-
Tensorflow.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Nicholas Carlini, Florian Tramer, Eric Wallace,
Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song, Ul-
far Erlingsson, Alina Oprea, and Colin Raffel. 2021.
Extracting Training Data from Large Language Mod-
els. In Proceedings of the 30th USENIX Security
Symposium. arXiv.

Huili Chen, Bita Darvish Rouhani, Cheng Fu, Jishen
Zhao, and Farinaz Koushanfar. 2019. DeepMarks: A
Secure Fingerprinting Framework for Digital Rights
Management of Deep Learning Models. In Proceed-
ings of the 2019 on International Conference on Mul-
timedia Retrieval, ICMR ’19, pages 105–113, New
York, NY, USA. Association for Computing Machin-
ery.

Sanyuan Chen, Yutai Hou, Yiming Cui, Wanxiang Che,
Ting Liu, and Xiangzhan Yu. 2020. Recall and learn:
Fine-tuning deep pretrained language models with
less forgetting. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 7870–7881, Online. As-
sociation for Computational Linguistics.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
Cross-lingual Representation Learning at Scale. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Nathan Coooper, Artashes Arutiunian, Santiago
Hincapié-Potes, Ben Trevett, Arun Raja, Erfan Hos-
sami, and Mrinal Mathur. 2021. Code Clippy Data:
A large dataset of code data from Github for research
into code language models.

Emily Dinan, Stephen Roller, Kurt Shuster, Angela
Fan, Michael Auli, and Jason Weston. 2019. Wizard
of Wikipedia: Knowledge-Powered Conversational
Agents.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn
Presser, and Connor Leahy. 2020a. The Pile: An
800gb dataset of diverse text for language modeling.
arXiv preprint arXiv:2101.00027.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn
Presser, and Connor Leahy. 2020b. The Pile: An
800GB Dataset of Diverse Text for Language Model-
ing. ArXiv:2101.00027 [cs].

Shivali Goel, Rishi Madhok, and Shweta Garg. 2018.
Proposing Contextually Relevant Quotes for Im-
ages. In Advances in Information Retrieval, Lecture
Notes in Computer Science, pages 591–597, Cham.
Springer International Publishing.

William L. Hamilton, Rex Ying, and Jure Leskovec.
2017. Inductive representation learning on large
graphs. In Proceedings of the 31st International Con-
ference on Neural Information Processing Systems,
NIPS’17, page 1025–1035, Red Hook, NY, USA.
Curran Associates Inc.

Sorami Hisamoto, Matt Post, and Kevin Duh. 2020.
Membership Inference Attacks on Sequence-to-
Sequence Models: Is My Data In Your Machine
Translation System? Transactions of the Associa-
tion for Computational Linguistics, 8:49–63. Place:
Cambridge, MA Publisher: MIT Press.

Dorjan Hitaj, Briland Hitaj, and Luigi V. Mancini. 2019.
Evasion Attacks Against Watermarking Techniques
found in MLaaS Systems. In 2019 Sixth Inter-
national Conference on Software Defined Systems
(SDS), pages 55–63.

Phillip Keung, Yichao Lu, György Szarvas, and Noah A.
Smith. 2020. The multilingual Amazon reviews cor-
pus. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 4563–4568, Online. Association for
Computational Linguistics.

Hugo Laurençon, Lucile Saulnier, Thomas Wang,
Christopher Akiki, Albert Villanova del Moral,
Teven Le Scao, Leandro Von Werra, Chenghao Mou,
Eduardo González Ponferrada, Huu Nguyen, Jörg
Frohberg, Mario Šaško, Quentin Lhoest, Angelina
McMillan-Major, Gérard Dupont, Stella Biderman,
Anna Rogers, Loubna Ben Allal, Francesco De Toni,

7433



Giada Pistilli, Olivier Nguyen, Somaieh Nikpoor,
Maraim Masoud, Pierre Colombo, Javier de la Rosa,
Paulo Villegas, Tristan Thrush, Shayne Longpre, Se-
bastian Nagel, Leon Weber, Manuel Romero Muñoz,
Jian Zhu, Daniel Van Strien, Zaid Alyafeai, Khalid
Almubarak, Vu Minh Chien, Itziar Gonzalez-Dios,
Aitor Soroa, Kyle Lo, Manan Dey, Pedro Ortiz
Suarez, Aaron Gokaslan, Shamik Bose, David Ife-
oluwa Adelani, Long Phan, Hieu Tran, Ian Yu, Suhas
Pai, Jenny Chim, Violette Lepercq, Suzana Ilic, Mar-
garet Mitchell, Sasha Luccioni, and Yacine Jernite.
2022. The BigScience ROOTS Corpus: A 1.6TB
Composite Multilingual Dataset. In Proceedings of
the 36st International Conference on Neural Infor-
mation Processing Systems.

Erwan Le Merrer, Patrick Pérez, and Gilles Trédan.
2020. Adversarial frontier stitching for remote neu-
ral network watermarking. Neural Computing and
Applications, 32(13):9233–9244.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Bill Yuchen Lin, Wangchunshu Zhou, Ming Shen, Pei
Zhou, Chandra Bhagavatula, Yejin Choi, and Xiang
Ren. 2020. CommonGen: A Constrained Text Gen-
eration Challenge for Generative Commonsense Rea-
soning. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2020.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A Robustly Optimized BERT Pretrain-
ing Approach. ArXiv:1907.11692 [cs].

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analysis.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies, pages 142–150, Portland,
Oregon, USA. Association for Computational Lin-
guistics.

Christopher B. Mann. 2021. Can conversing with a com-
puter increase turnout? mobilization using chatbot
communication. Journal of Experimental Political
Science, 8(1):51–62.

Jacob Menick, Maja Trebacz, Vladimir Mikulik,
John Aslanides, Francis Song, Martin Chadwick,
Mia Glaese, Susannah Young, Lucy Campbell-
Gillingham, Geoffrey Irving, and Nat McAleese.
2022. Teaching language models to support answers
with verified quotes. ArXiv:2203.11147 [cs].

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer Sentinel Mixture Mod-
els. In Proceedings of the 5th International Confer-
ence on Learning Representations.

Fatemehsadat Mireshghallah, Archit Uniyal, Tianhao
Wang, David Evans, and Taylor Berg-Kirkpatrick.
2022. Memorization in NLP Fine-tuning Methods.
ArXiv:2205.12506 [cs].

Nur Azmina Mohamad Zamani, Jasy Suet Yan Liew,
and Ahmad Muhyiddin Yusof. 2022. XLNET-
GRU sentiment regression model for cryptocurrency
news in English and Malay. In Proceedings of
the 4th Financial Narrative Processing Workshop
@LREC2022, pages 36–42, Marseille, France. Euro-
pean Language Resources Association.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff
Wu, Long Ouyang, Christina Kim, Christopher
Hesse, Shantanu Jain, Vineet Kosaraju, William
Saunders, Xu Jiang, Karl Cobbe, Tyna Eloundou,
Gretchen Krueger, Kevin Button, Matthew Knight,
Benjamin Chess, and John Schulman. 2022. We-
bGPT: Browser-assisted question-answering with hu-
man feedback. ArXiv:2112.09332 [cs].

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2023. Codegen: An open large language
model for code with multi-turn program synthesis.
ICLR.

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploit-
ing class relationships for sentiment categorization
with respect to rating scales. In Proceedings of the
43rd Annual Meeting of the Association for Compu-
tational Linguistics (ACL’05), pages 115–124, Ann
Arbor, Michigan. Association for Computational Lin-
guistics.

Matthew E. Peters, Sebastian Ruder, and Noah A. Smith.
2019. To tune or not to tune? adapting pretrained
representations to diverse tasks. In Proceedings of
the 4th Workshop on Representation Learning for
NLP (RepL4NLP-2019), pages 7–14, Florence, Italy.
Association for Computational Linguistics.

Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Se-
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A Heuristic Approaches

A.1 Perplexity
Using the response of F we can calculate the per-
plexity of B relative to F . This can then be used
as a measure of how confident B is in predicting
F , where a lower perplexity would indicate higher
confidence and attribution. In our initial experi-
ments, we found this to be loose approximation of
similarity between models in B and F . Moreover,
this approach assumed stronger access which is
typically not available in real-world settings as we
discussed in Section 3.

Perplexity is a measure of how well a model is
able to predict a sample. It has previously been
used in analogous settings for extracting training
data from language models (Carlini et al., 2021;
Mireshghallah et al., 2022) to determine if a model
is confident in its prediction of a sample. It is pos-
sible to leverage this for the purpose of attributing
F to B. By collecting responses of F to prompts
we can calculate the perplexity of B relative to F.
Thus we can take the perplexity score as a measure
of how confident B is in predicting the response of
F, we would expect lower perplexity to be an in-
dication of higher confidence and therefore higher
chances of attribution.

A.2 Heuristic Decision Tree
When it comes to generalisation, many LLMs share
an equal footing owing to the massive size and in-
tensive training backing their capabilities. How-
ever, when examined closely there are distinctive
features that set them apart which can be detected
via static or dynamic inspection of the model. For
instance, LLMs with a larger number of parameters
tend to take longer for inference. Similarly, length
of response varies across LLMs, and some are
prone to repetition (such as XLNET (Mohamad Za-
mani et al., 2022)). The task characteristics and
associated training data may also help distinguish

different LLMs. For example, LLMs trained for
specific tasks like chat bots or code generation
will have characteristically different output spaces.
They may also have unique aspects in their training
data like a specific language or markers such as
data collected over specific time period. Much like
watermarking, these can be used to craft prompts
that can help reveal these unique artefacts 11.

While in principle many of these heuristics can
be used for attribution, the practical development
of such systems faces a range of challenges. First,
these properties may not be preserved across the
fine tuning process and therefore provide no mean-
ingful insight for attribution. Second, these heuris-
tics require a high level of expertise and knowledge
which may not always be available. An external
auditor working with the restricted knowledge of
KR may not be able to develop such solutions.
Third, many of the properties of models in F can
be easily obfuscated by the exposed API. For exam-
ple it is fairly easy to normalise response times or
post-process the responses to account for repetition.
Moreover, an API may be simultaneously backed
by multiple different models which would make the
attribution even more challenging. Finally, LLMs
often have overlapping datasets which can dilute
many of the subtleties underlying these heuristics.
This limits the applicability and scalability of such
approaches for larger collections of B and F .

B Fine-tuned model Details

Here we provide details of the fine-tuned LLMs we
use in sets A and F . Each of the LLMs is an open
source implementation hosted on the Huggingface,
we provide the link to the fine-tuned model. In
Table 5 we show set F as FT models 0-9 inclusive,
and set A from 10-19 inclusive. For each model
we also provide the dataset used to fine-tune each
of the LLMs.

C AUC Curves

We provide the finegrained plots of how each indi-
vidual hmb

did in each experiment. Figure 8 shows
the results from the experiment that measures the
attribution accuracy under different K as discussed
in Section 5.3. Figure 9 details the effect of using
a different number of prompts for attribution under
KR, as discussed in Section 5.4. Finally Figure 10
shows the effect of varying the number of prompts
for pretaining hmb

(Section 5.5).
11Winning solution to the first MLMAC
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FT model Base Model FT dataset

0 bloom-350m common_gen (Lin et al., 2020)
1 OPT-350M Pike, CYS, Manga-v1
2 DialoGPT-large Persuasion For Good Dataset (Wang et al., 2019)
3 distilgpt2 wikitext2 (Merity et al., 2016)
4 GPT2-XL the Wizard of Wikipedia dataset (Dinan et al., 2019)

5 gpt2 Wikipedia dump, EU Bookshop corpus,
Open Subtitles, CommonCrawl, ParaCrawl and News Crawl.

6 GPT-Neo-125m Cmotions - Beatles lyrics
7 xlnet-base-cased IMDB (Maas et al., 2011)
8 multilingual-MiniLM-L12-v2 Unknown
9 codegen-350M Zhu et al. (2022)
10 bloom-350m Cmotions - Beatles lyrics
11 OPT-350M GLUE (Wang et al., 2018)
12 DialoGPT-large The complete works of Sir Arthur Conan Doyle
13 distilgpt2 Quotes-500K (Goel et al., 2018)
14 GPT2-XL OSCAR (Abadji et al., 2022)
15 gpt2 IMDB (Maas et al., 2011)
16 GPT-Neo-125m Code Clippy Data dataset (Coooper et al., 2021)
17 xlnet-base-cased Rotten Tomatoes (Pang and Lee, 2005)

18 multilingual-MiniLM-L12-v2 https://www.tensorflow.org/datasets/catalog/wikipedia
#wikipedia20200301bn

19 codegen-350M BigPython dataset

Table 5: Fine-tuned models, their original base models and the datasets they are fine-tuned on.
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Figure 8: ROC of Individual base model classifiers, hmb
, under different K
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Figure 9: ROC of Individual base model classifiers, hmb
, with different number of prompts used for attribution

under KR
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Figure 10: ROC of Individual base model classifiers, hmb
using a varying number of prompts for pretraining hmb

.
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Dataset Percentage of prompts in 10,000 subset of the Pile

Pile-CC 25.24
OpenWebText2 15.20

PubMed Abstracts 14.23
StackExchange 13.99

Github 8.55
Wikipedia (en) 7.79

USPTO Backgrounds 5.14
PubMed Central 2.59

FreeLaw 2.41
NIH ExPorter 1.04

DM Mathematics 0.99
ArXiv 0.91

HackerNews 0.81
Enron Emails 0.47
OpenSubtitles 0.27

YoutubeSubtitles 0.11
Books3 0.09
EuroParl 0.06

PhilPapers 0.05
BookCorpus2 0.02
Ubuntu IRC 0.02

Gutenberg (PG-19) 0.02

Table 6: Distribution of the original datasets present in the 10,000 prompt subset of The Pile

D The Pile subset

We make use of a 10,000 prompt subset of The
Pile (Gao et al., 2020b), in Table 6 we report the
distrubtion of the smaller datasets present in The
Pile.
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