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Abstract
Few-shot continual relation extraction aims to
continually train a model on incrementally few-
shot data to learn new relations while avoid-
ing forgetting old ones. However, current
memory-based methods are prone to overfit-
ting memory samples, resulting in insufficient
activation of old relations and limited ability
to handle the confusion of similar classes. In
this paper, we design a new N-way-K-shot
Continual Relation Extraction (NK-CRE) task
and propose a novel few-shot continual relation
extraction method with Consistent Prototype
Learning (ConPL) to address the aforemen-
tioned issues. Our proposed ConPL is mainly
composed of three modules: 1) a prototype-
based classification module that provides pri-
mary relation predictions under few-shot con-
tinual learning; 2) a memory-enhanced mod-
ule designed to select vital samples and re-
fined prototypical representations as a novel
multi-information episodic memory; 3) a con-
sistent learning module to reduce catastrophic
forgetting by enforcing distribution consistency.
To effectively mitigate catastrophic forgetting,
ConPL ensures that the samples and prototypes
in the episodic memory remain consistent in
terms of classification and distribution. Ad-
ditionally, ConPL uses prompt learning to ex-
tract better representations and adopts a focal
loss to alleviate the confusion of similar classes.
Experimental results on two commonly-used
datasets show that our model consistently out-
performs other competitive baselines1.

1 Introduction

Continual relation extraction (CRE) aims to con-
tinually train a model on new data to learn new
relations while avoiding forgetting old relations.
Due to its wide applicability to real-world applica-
tions, CRE has attracted increasing attention (Oba-
muyide and Vlachos, 2019; Han et al., 2020; Zhao
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1https://github.com/XiudiChen/ConPL

Figure 1: The scatter plot that reflects the relation-
ship between distortion and forgetting in four methods,
namely EMAR (Han et al., 2020), RP-CRE (Cui et al.,
2021), ERDA (Qin and Joty, 2022) and our proposed
ConPL. The abscissa “distortion” indicates the degree
of change in feature embedding, and the ordinate “for-
getting” indicates the degree of forgetting. Each point
on the plot represents a prototype of a relation class.
The detailed calculations are shown in Appendix A.1.

et al., 2022). Most existing studies adopt memory-
based approaches as the principal architecture and
achieve great success in CRE. For example, Cui
et al. (2021) employ relation prototype to extract
useful information of each relation. Wang et al.
(2022) adopt a simple yet effective adversarial class
augmentation mechanism to learn more precise
and robust representations. However, obtaining
large labeled data can be time-consuming and ex-
pensive. Qin and Joty (2022) introduce continual
few-shot relation learning (CFRL) and propose a
novel method of embedding space regularization
and data augmentation. But, the first task in the
CFRL setting still involves a substantial amount of
training data, and the evaluation results obtained in
this setting may not completely reflect the perfor-
mance of the model under true continual few-shot
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learning conditions2. This is because a portion of
the test set is drawn from the first task, which can
lead to a big gap between the results obtained in
the CFRL setting and those obtained under true
continual few-shot relation learning conditions.

To this end, we propose the N-way-K-shot
Continual Relation Extraction (NK-CRE), which
strictly adheres to the N-way K-shot few-shot set-
ting and all classes contain only a small amount
of labeled instances. In the NK-CRE setting, we
employ existing CRE methods to conduct a series
of experimental analyses for few-shot continual
relation learning, as illustrated in Figure 1. We
observe that existing CRE methods, particularly
ERDA, exhibit significant distortion and forgetting.
Additionally, we find that the prototype distortion
is highly relevant to forgetting in NK-CRE. Based
on these findings, we hypothesize that reducing
the prototype distortion can greatly mitigate catas-
trophic forgetting in NK-CRE. However, existing
CRE methods in the NK-CRE setting face the chal-
lenge of overfitting the memory samples due to
the limited memory available, leading to insuffi-
cient activation of the old relations and resulting in
significant distortion and forgetting.

Besides, the confusion of similar classes is
also a major cause of catastrophic forgetting in
CRE (Wang et al., 2022), which is particularly
acute in NK-CRE. For instance, the prototype
embeddings of similar classes, like “father” and
“mother”, tend to be highly similar due to their sim-
ilar context and entity pairs. When “father” has al-
ready been learned in a previous task and “mother”
is shown in a new task, the model prioritizes learn-
ing the representation of the current class “mother”,
but may disregard the subtle differences between
“mother” and “father”, leading to catastrophic for-
getting.

To deal with the above issues, we propose
a novel Consistent Prototype Learning (ConPL)
method for few-shot continual relation extraction
in order to effectively activate old relations and
mitigate catastrophic forgetting. ConPL consists of
three primary modules: 1) a prototype-based classi-
fication module, which leverages prompt learning
to extract better relation representations and utilizes
temporary prototypes constructed from new task
data and several distance metric-based losses for

2True continual few-shot learning, also known as few-shot
continual learning, refers to a model learning to perform few-
shot learning on a continuous stream of tasks, with each task
typically comprising a small number of labeled examples.

basic classification; 2) a memory-enhanced mod-
ule that comprises sample memory for storing vital
labeled samples and prototype memory for stor-
ing optimal prototype representations; 3) a consis-
tent learning module that addresses the problem of
unbalanced distribution of new and old relations
through consistency learning between sample dis-
tribution. In addition, we introduce a focal loss
to mitigate the impact of the confusion of similar
classes on catastrophic forgetting. This loss func-
tion allows the model to focus on the training of
similar classes, enabling it to pay more attention to
the distinctions between similar classes and reduc-
ing the impact of confusion.

In this study, experimental results of FewRel and
TACRED datasets in the NK-CRE setting demon-
strate that ConPL outperforms existing models
by a significant margin. Further, ablation exper-
iments show that each component of our method
contributes to its effectiveness. Our analysis also
reveals that ConPL not only significantly reduces
the distortion of class prototypes, but also effec-
tively minimizes catastrophic forgetting. Overall,
our ConPL offers a robust and effective approach
to few-shot continual relation extraction.

2 Related Work

Continual Learning, also known as lifelong learn-
ing and incremental learning, is the process of train-
ing models to perform well on task streams with
different data distributions. Its main methods can
be divided into three categories: (i) regularization-
based methods (Kirkpatrick et al., 2017; Zenke
et al., 2017); (ii) architecture-based methods (Fer-
nando et al., 2017; Wortsman et al., 2020); and
(iii) memory-based methods (Rolnick et al., 2019;
Cha et al., 2021). Memory-based methods, also
called rehearsal-based methods, have been shown
to be particularly suitable for natural language pro-
cessing (NLP), especially for CRE (Wang et al.,
2019; Han et al., 2020; Cui et al., 2021; Zhao et al.,
2022). These methods selectively store old sam-
ples in limited memory, training them with new
samples to prevent catastrophic forgetting. For ex-
ample, EMAR (Han et al., 2020) utilizes relation
prototypes for memory reconsolidation exercises.
RP-CRE (Cui et al., 2021) uses prototypes of all
observed relations to refine subsequent sample em-
beddings. CRECL (Hu et al., 2022) builds a clas-
sification network and a prototypical contrastive
network. However, these methods only compute
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temporary prototypes before training a new task
and store memory samples, which can lead to sig-
nificant distortion and forgetting as the number of
tasks increases. In contrast, our approach stores
prototypes in memory without modification.
Few-shot Learning aims to address the overfitting
issue that may arise when there is a limited amount
of labeled training data for model training. Exist-
ing methods can be divided into two categories: (i)
data-based (Tsai and Salakhutdinov, 2017; Benaim
and Wolf, 2018); and (ii) meta learning-based, in-
cluding optimization-based algorithm (Finn et al.,
2017) and metric-based algorithm. Among them,
prototypical network (Snell et al., 2017) is a simple
yet efficient metric-based approach and has become
the most mainstream method in few-shot relation
extraction (Yang et al., 2020; Qu et al., 2020; Han
et al., 2021a). In this paper, our method is built on
the prototypical network and proposes storing class
prototypes in memory.
Prompt Learning is a simple yet effective
method for fine-tuning pre-trained language mod-
els (PLMs), which uses prompt information to en-
rich the input and enable better mining of prior
knowledge in PLMs. According to the pre-training
objectives, the structure of prompts is mainly di-
vided into two types: (i) adding the task descrip-
tion before the input, e.g., the generative model
GPT-3 (Brown et al., 2020); and (ii) formalizing
downstream tasks into cloze-style tasks, e.g., the
discriminative model BERT (Devlin et al., 2018).
According to different forms of expression, prompt
can be divided into continuous (Lester et al., 2021;
Vu et al., 2022) and discrete (Schick et al., 2020;
Han et al., 2021a). Continuous prompts are com-
posed of vectors and the optimal prompt embed-
ding can be learned automatically by the model,
while discrete prompts are manually constructed
by people based on their experience. For relation
extraction, several works (Han et al., 2021b; Chen
et al., 2022) have investigated the utilization of the
prior knowledge of PLMs through prompt learning,
which has been shown to be effective in few-shot
learning. In this paper, we use discrete prompts
with cloze-style to extract better representations in
few-shot CRE.

3 Problem Formulation

N-way-K-shot Continual Relation Extraction (NK-
CRE) is a continual relation learning task in the N-
way K-shot setting scenario, which aims to continu-

ally train the model on new tasks to learn new rela-
tions while avoiding forgetting previously learned
ones under the few-shot scenario. Compared to
CFRL (Qin and Joty, 2022), NK-CRE strictly ad-
heres to the N-way K-shot setting, which is more
challenging yet more representative of real-world
applications.

In NK-CRE, the model is trained on a se-
quence of tasks

{
T 1, T 2, . . . , T n

}
, where each

task T k(k ∈ [1, . . . , n]) has its own training set
Dk

train, test set Dk
test and corresponding relation

set Rk. Each dataset D = {(xi, yi)}N×K
i=1 contains

N classes and K samples of each class, where each
sample (xi, yi) consists of a sentence xi with a pair
of entities (eh, et) and a relation label yi ∈ Rk

of the entity pair, and N is the number of cur-
rent relations in Rk. After being trained on T k

at the k-th task to learn the new relations Rk, the
model will be evaluated on the test sets of previous
k tasks D̂k

test = ∪k
i=1D

i
test to verify the discrimi-

nant ability of the model for all known relations
R̂k = ∪k

i=1R
i.

Different from the memory used in previous
works (Han et al., 2020; Cui et al., 2021; Qin and
Joty, 2022), we propose a novel multi-information
episodic memory M =

{
M1,M2, . . .

}
to alle-

viate catastrophic forgetting in continual learning,
where Mk consists of the most informative sam-
ples Sk and prototype representations P k corre-
sponding to relations Rk in T k. Although each
relation in the memory can store multiple samples,
we store a sample per relation under a limited ca-
pacity. After the k-th task is trained, the memory
M contains sample set Ŝk = ∪k

i=1S
i and proto-

type set P̂ k = ∪k
i=1P

i of the previous k tasks.

4 Methodology

In this section, we elaborate on our proposed
method ConPL, which is composed of three mod-
ules: a prototype-based classification module (Sec-
tion 4.1), a memory-enhanced module (Section
4.2), and a consistent learning module (Section 4.3).
Prototype-based classification module is the ba-
sic component of ConPL. Memory-enhanced mod-
ule introduces a novel multi-information episodic
memory equipped with some samples and corre-
sponding prototypical representations. Consistency
learning module adds an extended training process
to balance the predictions of all known relations.
Finally, we give a detailed description of the overall
training procedure (Section 4.4).
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4.1 Prototype-Based Classification Module
Encoder. Given a sentence x with a head en-
tity eh and a tail entity et, we choose BERT (De-
vlin et al., 2018) as the encoder with parameters
θ to obtain the relational representation of entity
pairs in x. Specifically, we firstly enrich the sen-
tence x into a specific input sequence xinput =
{[CLS], eh, [MASK], et, [SEP], x, [SEP]} based
on the prompt learning (Han et al., 2021b; Chen
et al., 2022), and then encode the input sequence
by the encoder to obtain the contextualized repre-
sentation. Here we use the vector representation of
the special token [MASK] as the relational repre-
sentation.

h[MASK] = fθ (xinput) (1)

For simplicity, we will use x to refer to the spe-
cific input sequence xinput.

Initializing temporary prototypes of new classes.
When firstly training on the k-th new task to learn
new relations, we use all samples of each new re-
lation in the current task to construct prototypi-
cal representations for the corresponding classes.
Specifically, we encode all samples in Dk

train, and
then use an aggregation operator (such as averag-
ing) to aggregate the embeddings of samples from
the same class to calculate the prototypical repre-
sentation pj of each class.

pj =
1

|Dk
j |

∑

(xi,yi)∈Dk
j

fθ (xi) (2)

where Dk
j =

{
(xi, yi) | (xi, yi) ∈ Dk

train, yi = rj
}

,
|Dk

j | is the number of samples and pj represents
the prototypical representation of rj(rj ∈ Rk)
in the new task. So the temporary prototypes of
current new task is P̃ k =

⋃
rj∈Rk pj . Based on

previous relation prototypes P̂ k−1 of the memory,
we can get all current prototypes P̄ k = P̂ k−1 ∪ P̃ k

3 related to all classes we have seen.

Prototype classifier with experience replay. To
learn new relations while retaining existing rela-
tion knowledge, we use the experience replay to

3In this paper, P̃ k refers to the temporary prototypes of the
k-th task and P k refers to the prototypes of the k-th task stored
in memory. P̄ k refers to the prototypes of the previous k task
that contain the prototypes from memory for the previous k−1
tasks as well as the temporary prototypes for the k-th task.
Additionally, P̂ k refers to the prototypes of the previous k
task stored in memory.

train the model on the new train dataset D̄k
train =

Dk
train∪Ŝk−1, which combine the training samples

of the k-th task with the samples of the previous
k−1 tasks in the memory. The relation distribution
for each sample xi is computed as:

p(ri|xi) =
exp (d (fθ (xi) ,pi))

∑|R̂k|
l=1 exp (d (fθ (xi) ,pl))

(3)

where d (., .) represents the distance measurement
formula by the cosine similarity, pl is the prototyp-
ical representation of rl(rl ∈ R̂k) in P̄ k, and |R̂k|
is the number of all known relations in previous k
tasks.

The cross entropy loss Lce for classification is
calculated in a distance measurement way.

Lce = −
∑

(xi,yi)∈D̄k
train

log p(ri|xi) (4)

In order to wake up the old relational knowledge,
we propose the classification consistency loss Lcc

to focus on the consistent correlation between the
feature of each sample in Ŝk−1 and the correspond-
ing prototypical representation in P̂ k−1 based on
current memory.

Lcc =
∑

(xi,yi)∈Ŝk−1

∥fθ(xi)− pi∥ (5)

Considering the different correlation between
the new relations and previous relations (e.g.,
the relation “mother” in the new task and pre-
vious relations “father” / “spouse” belongs to
greatly similar relations.), we select similar classes
to highlight their distinction. Specifically, we
start by obtaining the most similar negative
prototype pmn

i = argmax(d (fθ (xi) ,ps)) for
each sample xi, which is the prototype of the
most likely relation of miscalculation. Next,
we set a threshold α and automatically screen
some confusing negative prototypes p̂sn

i =
{psn

i | d(fθ(xi),pi)− d(fθ(xi),p
sn
i ) < α} that

include prototypes that are the most similar to the
prototype pi with the target relation. Here ps

and psn
i refer to any prototype other than pi, so

ps ̸= pi and psn
i ̸= pi. The distribution of xi is

computed for distinguishing similar classes.

ps(ri|xi) =
exp (d (fθ (xi) ,pi))

∑|P sim
i |

l=1 exp (d (fθ (xi) ,pl))
(6)

where P sim
i = [pi;p

mn
i ; p̂sn

i ] represents the set of
prototypes similar to the output feature of xi and
|P sim

i | is the number.
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Therefore, we adopt the focal loss to alleviate
the difficulty in predicting similar classes.

Lfc = −
∑

(xi,yi)∈D̄k
train

log ps(ri|xi) (7)

4.2 Memory-Enhanced Module
Compared to previous memory-based methods
(Han et al., 2020; Cui et al., 2021; Qin and Joty,
2022), we add prototypical representations into the
episodic memory for enriching the old relations.
So the memory of our model is separated into two
parts: the Sample Memory Ŝk, which is used to
store samples with class labels, and the Prototype
Memory P̂ k, which is used to store feature embed-
dings of class prototypes.

For the sample memory, we calculate the proto-
typical representation of each relation in the current
task T k based on Eq (2), and then select some clos-
est samples as the typical samples to store them
in Sk, where each relation of T k only stores one
typical sample. During training, prototypical repre-
sentations computed by all relation samples can be
unstable. Therefore, once the typical samples are
determined, we use the feature representations of
the selected typical samples to update prototypical
representations of the current task and store their
feature representations in prototype memory P k

after T k is trained.

4.3 Consistent Learning Module
Considering the unbalanced distribution of new re-
lations and old ones in the training dataset D̄k

train,
we add an extended training step that solely fo-
cuses on the memory M that helps to balance the
learning of all known relations and distinguish new
and old relations. Therefore, we propose the dis-
tribution consistency loss Ldc via computing the
consistent constraint between the sample distribu-
tion and the prototype distribution.

Ldc =
∑

(xi,yi)∈Ŝk

∥∥∥d
(
fθ(xi), P̂

k
)
− d

(
pi, P̂

k
)∥∥∥

(8)

4.4 Learning Procedure
Joint training objective. We adopt a three-stage
training strategy to train our model. The overall
training objective of the first two stages is com-
puted as follows.

Lclass = λceLce + λccLcc + λfcLfc (9)

Algorithm 1 Training Process for the k-th task.
Input: The training set Dk

train and the new relation set Rk;
the sample memory Ŝk−1 = ∪k−1

i=1 S
i and the prototype

memory P̂ k−1 = ∪k−1
i=1 P

i of previous k− 1 tasks; all known
relations R̂k−1 = ∪k−1

i=1 R
i of previous k−1 tasks; the values

of epoch1, epoch2 and epoch3.
Output: Configurations of the encoder with parameters θ; the
sample memory Sk and the prototype memory P k of the k-th
task.
Initialize: The encoder with parameters θ.

1: INITIALIZE temporary prototype P̃ k of each relation
ri ∈ Rk based on Dk

train

2: R̂k ← R̂k−1 ∪Rk

3: P̄ k ← P̂ k−1 ∪ P̃ k

4: D̄k
train ← Dk

train ∪ Ŝk−1

5: for i ∈ {1, · · · , epoch1} do
6: UPDATE θ with Lclass on D̄k

train and Ŝk−1

7: UPDATE P̃ k in P̄ k

8: end for
9: SELECT a key sample of each relation from Dk

train to
store into Sk

10: REINITIALIZE prototype P k of each relation ri ∈ Rk

based on Sk

11: Ŝk ← Ŝk−1 ∪ Sk

12: P̄ k ← P̂ k−1 ∪ P k

13: D̄k
train ← Dk

train ∪ Ŝk

14: for i ∈ {1, · · · , epoch2} do
15: UPDATE θ with Lclass on D̄k

train and Ŝk

16: UPDATE P k in P̄ k

17: end for
18: for i ∈ {1, · · · , epoch3} do
19: UPDATE θ with Lcons on Ŝk

20: UPDATE P k in P̄ k

21: end for
22: P̂ k ← P̂ k−1 ∪ P k

And the overall training objective of the third stage
is defined as follows.

Lcons = λceLce+λccLcc+λfcLfc+λdcLdc (10)

where λce, λcc, λfc and λdc are the relative weights
of the component losses, respectively. It is note-
worthy that the training set of the different stages is
different. The first stage adopts the sample memory
Ŝk−1. After storing the sample memory Sk of the
k-th task, the second and third stages use Ŝk for
training.

Training procedure. The overall training proce-
dure is summarized in Algorithm 1. In the first
stage, we use all samples of each class in Dk

train

to obtain the prototype representation P̃ k of all
classes in Rk. And then based on all prototype
P̄ k = P̂ k−1 ∪ P̃ k, the sample memory Ŝk−1, and
the current training set D̄k

train = Dk
train ∪ Ŝk−1,

we let the model learn the knowledge of the new
classes (line 1-8). In the second stage, we firstly
select key samples Sk closest to the center of
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each class and store them in the sample memory
Ŝk = Ŝk−1 ∪ Sk, and use Sk to construct new
prototype P k of the new classes for subsequently
training with P̄ k = P̂ k−1 ∪ P k (line 9-17). In the
third stage, we only use Ŝk to predict all known
relations and further ensure that the output of the
samples in memory is consistent with their stored
features (line 18-22).

5 Experiments

5.1 Datasets
In line with previous work (Qin and Joty, 2022),
our experiments will be conducted on two com-
monly used datasets, FewRel (Han et al., 2018)
and TACRED (Zhang et al., 2017). For NK-CRE,
we evaluate our method under three different few-
shot settings of FewRel, namely 10-way-2-shot, 10-
way-5-shot, and 10-way-10-shot, and two different
few-shot settings of TACRED, namely 5-way-5-
shot and 5-way-10-shot. The detailed introduction
of two datasets is shown in Appendix A.2.

5.2 Evaluation Methods
After training the model on the k-th task, we use
the whole accuracy metric to evaluate the model’s
performance on the union of the test sets of previ-
ous k tasks D̂k

test = ∪k
i=1D

i
test . This metric is used

to evaluate the model’s ability to alleviate catas-
trophic forgetting while acquiring new knowledge
with a few-shot new task.

In addition, we also measure the degree of catas-
trophic forgetting using the forgetting metric pro-
posed by Chaudhry et al. (2018). The forgetting
metric measures the degree to which the model has
forgotten previously learned knowledge after train-
ing on new tasks. Specifically, after training on all
the tasks, the authors measure the model’s perfor-
mance on the test sets of all the previous tasks. The
specific formula for forgetting is as follows:

Fk =
1

n− k

n∑

j=k+1

gjk (11)

gjk = max
l∈{k,··· ,j−1}

al,k − aj,k (12)

where Fk(k ∈ [1, . . . , n − 1]) represents the for-
getting of the k-th task after all tasks have been
trained, aj,k(j > k) is the accuracy of the model
on the k-th task after the j-th task training is com-
pleted, and gjk is the forgetting of the k-th task after
the j-th task training is completed.

Considering that the order of task sequences will
affect the final performance of the model, we ran-
domly generate 6 task sequences for experiments
and calculate their average accuracy as the final re-
sult. To ensure a fair comparison between the base-
lines and the proposed method, we set the same
random seed for the baselines and our proposed
method to ensure that they are evaluated on the
same set of task sequences.

5.3 Baselines
We compare our proposed method with the follow-
ing baselines:

EMAR (Han et al., 2020): A classical method
for continual relation learning, which uses relation
prototypes for memory reconsolidation exercise to
keep a stable understanding of the old relations.

RP-CRE (Cui et al., 2021): A method for contin-
ual relation learning, where prototype embeddings
are computed based on memorized samples and are
used to re-initialize a memory network to refine
subsequent sample embeddings.

ERDA (Qin and Joty, 2022): A SOTA method
for continual few-shot relation learning (CFRL)
that employs embedding space regularization and
data augmentation to improve model performance.

Considering that PLMs (e.g., BERT) have been
shown to outperform Bi-LSTM on many NLP tasks,
we replace the Bi-LSTM with BERT to reproduce
the baselines we mentioned. Furthermore, recent
advances in Prompt Learning have shown great per-
formance on many NLP tasks, by enabling models
to learn from prompt-based examples and generate
coherent outputs. Therefore, we construct prompt
templates at the input to generate their variants
EMAR(PT), RP-CRE(PT), and ERDA(PT) for
better comparison.

5.4 Training Details
During training, we use BERTBASE (Devlin et al.,
2018) as the encoder and Adam optimizer with a
learning rate of 2e−5 for gradient updates. To pre-
vent gradient overflow, we set the gradient clipping
value to 10. The loss weights λce, λcc, λfc and λdc

are all set to 1.0, and α is set to 0.1. In Algorithm
1, epoch1 and epoch2 are set to 1, and epoch3 is
set to 3.

5.5 Main Results
Table 1 presents the whole accuracy of the FewRel
benchmark in the 10-way-5-shot setting and the
TACRED benchmark in the 5-way-5-shot setting.
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Method Task Index

T1 T2 T3 T4 T5 T6 T7 T8
10-way-5-shot of FewRel

EMR (Wang et al., 2019) 96.35 88.02 78.83 75.15 72.00 69.41 66.70 63.68
EMAR (Han et al., 2020) 92.03 78.87 72.81 69.19 68.05 66.23 63.68 61.77
IDLVQ-C (Chen and Lee, 2021) 96.03 87.18 76.63 73.57 67.74 65.16 62.64 60.32
ERDA (Qin and Joty, 2022) 96.38 88.91 83.10 79.73 74.83 72.84 70.28 68.07
EMAR† (Han et al., 2020) 82.50 76.23 71.41 66.93 62.02 62.37 60.05 59.29
RP-CRE† (Cui et al., 2021) 86.38 78.47 71.93 69.07 66.28 65.88 62.28 61.17
ERDA† (Qin and Joty, 2022) 88.15 79.65 74.05 68.18 67.14 66.96 65.86 63.60
EMAR(PT)† (Han et al., 2020) 95.28 92.75 90.57 88.15 87.04 84.90 83.07 81.34
RP-CRE(PT)† (Cui et al., 2021) 93.52 89.48 87.67 85.28 84.48 83.08 81.92 80.87
ERDA(PT)† (Qin and Joty, 2022) 96.55 92.56 88.56 84.47 84.14 79.94 78.45 77.02
ConPL(Ours) 95.72 93.53 91.31 89.95 88.93 88.39 87.43 85.77

5-way-5-shot of TACRED
EMAR† (Han et al., 2020) 68.71 51.53 43.86 38.54 34.08 32.06 29.9 27.87
RP-CRE† (Cui et al., 2021) 74.42 51.14 40.99 32.43 30.82 26.62 25.82 24.12
ERDA† (Qin and Joty, 2022) 77.55 56.31 47.66 39.72 36.71 33.46 31.07 28.50
EMAR(PT)† (Han et al., 2020) 94.88 86.36 83.25 80.60 77.76 75.43 73.85 68.67
RP-CRE(PT)† (Cui et al., 2021) 90.98 84.71 78.96 75.64 73.07 71.14 66.99 65.31
ERDA(PT)† (Qin and Joty, 2022) 95.77 86.55 78.59 74.58 69.31 66.53 61.92 55.97
ConPL(Ours) 97.34 89.85 86.33 82.53 81.21 79.56 78.38 76.38

Table 1: Whole accuracy (%) of different methods after training for each task on the FewRel benchmark in the
10-way-5-shot setting and on the TACRED benchmark in the 5-way-5-shot setting. † denotes our reproduced
results with the publicly available codebases, where PT represents using prompt learning to enrich the inputs. Other
results are obtained directly from Qin and Joty (2022) in the CFRL setting, which has enough training data (100
samples per relation) in the first task. The best values are denoted in bold.

Based on the main results of NK-CRE, we can
observe that:

(1) Prompt learning can obtain better seman-
tic representations and improve model perfor-
mance in few-shot scenarios. Baselines with PT
can achieve the desired effect directly on each task
in NK-CRE, particularly for the first task, with-
out the need for training on a large amount of la-
beled data like CFRL (Qin and Joty, 2022). On the
FewRel’s 10-way-5-shot, EMAR(PT) is 12.78%
higher than EMAR after learning the first task using
the 5-shot setting and 3.25% higher than EMAR
after learning the first task with a large amount of
labeled data. Notably, our method ConPL achieves
the highest performances in most of the tasks. In
the first task, our method ConPL achieves the accu-
racy of 95.72%, which was slightly lower than the
accuracy achieved by ERDA(PT) at 96.55%. How-
ever, it is worth noting that ERDA(PT) leverages
external Wikipedia sentences for data augmenta-
tion, which may account for its slightly superior
performance. On the TACRED’s 5-way-5-shot,
ConPL achieves the highest performance on all
tasks.

(2) Consistent prototype learning with multi-
information memory can significantly improve
model performance in NK-CRE. When faced
with multiple tasks (T2∼T8), Our method ConPL
significantly outperforms all existing methods on
FewRel’s 10-way-5-shot and TACRED’s 5-way-
5-shot. Compared with all baselines, ConPL ob-
tains the highest improvement reaching 26.48%
of FewRel’s 10-way-5-shot and 41.19% of TA-
CRED’s 5-way-5-shot after learning all tasks.
More specifically, the performance obtained by our
ConPL at T8 is better than that of EMAR(PT) at
T6, RP-CRE(PT) and ERDA(PT) at T4. It proves
that our consistent prototype learning strategy is
highly effective.

Moreover, we present more detailed results in
Table 1 in Appendix A.3, including the means and
variances of all sequential results. In T1∼T8 of
FewRel’s 10-way-5-shot, the mean deviations of
MEAR(PT), RP-CRE(PT), ERDA(PT), and our
ConPL are 2.76%, 1.92%, 5.27%, and 1.50% re-
spectively, which indicate that our method ConPL
is more stable than other baselines. In addition,
Figure 2 presents the results of FewRel’s 10-way-
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(c) TACRED 5-way-10-shot

EMAR
RP-CRE
ERDA

EMAR(PT)
RP-CRE(PT)
ERDA(PT)

ConPL

Figure 2: Whole accuracy (%) of different methods after training for each task on FewRel’s 10-way-2-shot, FewRel’s
10-way-10-shot and TACRED’s 5-way-10-shot.

Method T1 T2 T3 T4 T5 T6 T7 T8
ConPL 95.72 93.53 91.31 89.95 88.93 88.39 87.43 85.77
w.o. PM 95.72 93.11 89.90 87.96 86.68 85.53 84.36 82.21
w.o. CL 96.43 93.49 90.58 88.71 88.37 87.59 86.24 84.25
w.o. Lcc 95.72 93.52 91.21 89.92 88.91 88.31 87.32 85.69
w.o. Ldc 95.72 93.50 91.28 89.92 88.89 88.34 87.26 85.40
w.o. Lfc 94.87 89.03 85.32 82.35 81.45 80.19 78.53 75.11

Table 2: Ablations experiments of FewRel’s 10-way-5-
shot.

2-shot, FewRel’s 10-way-10-shot, and TACRED’s
5-way-10-shot. These results also show the effec-
tiveness of our ConPL.

5.6 Ablation Study

We conduct ablation experiments on the FewRel’s
10-way-5-shot from two aspects of the utilization
of memory and auxiliary tasks to verify the con-
tribution of each component in our method and
study the impact on model performance by remov-
ing one module at a time. Utilization of Memory
includes (a) without the Prototype Memory (PM),
(b) without the Consistent Learning Module (CL),
and Auxiliary Tasks includes (c) only removing
the classification consistency loss Lcc, (d) only re-
moving the distribution consistency loss Ldc, and
(e) only removing the focal loss Lfc. The results
of our ablation experiments are shown in Table 2.
We observe that each component in our method
contributes to the overall performance.

In Utilization of Memory, Prototype Memory
(PM) brings a 3.56% boost after training on all
tasks, demonstrating the strong effectiveness of
our novel multi-information episodic memory. The
Consistent Learning Module (CL) gains a 1.52%
improvement. Also, we find that training without
CL requires fewer epochs than EMAR, ERDA, and
RP-CRE, but outperforms these with PT by 2.91%,
7.23%, and 3.38%. The performance of T1 with-
out CL is 0.71% higher than ConPL, as there is no

(a) ConPL (b) ConPL w.o. Lfc

Figure 3: The influence of the focal loss Lfc on the
embedding distribution of two similar classes (“father”
and “mother”) of validation set samples.

catastrophic forgetting in the first task, causing the
model to overfit on memory. Memory augmenta-
tion in T1 could reduce the diversity of the training
samples, which leads to lower performance.

In Auxiliary Tasks, The classification consis-
tency loss Lcc and the distribution consistency loss
Ldc have a relatively small impact, with only 0.08%
and 0.37% improvement, respectively. However,
when Lce and Lfc use sample memory to calculate
probabilities, they can bring significant improve-
ment. We will elaborate on this phenomenon in
5.7. In addition, we observe that the focal loss Lfc

brings the most significant 10.66% improvement
to the model’s performance, demonstrating the im-
portance of effectively dealing with the confusion
of similar classes. Moreover, Figure 3 displays the
t-SNE visualization results of the high similarity re-
lations “father” and “mother”, which show that our
focal loss significantly improves the ability of the
model to distinguish similar classes in NK-CRE.

5.7 Importance of Consistency Loss

To demonstrate the importance of the classifica-
tion consistency loss and the distribution consis-
tency loss, we conduct an analysis experiment on
FewRel’s 10-way-5-shot. Specifically, we replace
the use of prototype memory with sample memory
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Figure 4: The analysis results of the importance of
consistency loss.

to calculate probabilities in Lce and Lfc, which is a
common prototype calculation method. In this case,
we re-selected better hyperparameters and adjusted
the relative weights λfc and λdc to 2 and 5, respec-
tively. The ablation experiment is re-performed
on (d) and (e) in 5.6, and the results are shown in
Figure 4. The classification consistency loss and
the distribution consistency loss improve by 0.73%
and 2.0% respectively after T8. We think that due
to the probabilities of Lce and Lfc being computed
by prototype memory, the model can learn correct
classifications and inter-class discrepancy, leading
to a relatively small improvement from the two
consistency losses. However, when using sample
memory to calculate probabilities, these two con-
sistency losses can result in significant gains.

5.8 Forgetting
To provide a more intuitive comparison when test-
ing forgetting, we added two baselines as lower
and upper bounds.

SeqRun serves as a lower bound, where the
model is directly fine-tuned on the new task data
without using past data, leading to severe catas-
trophic forgetting.

JointTrain serves as an upper bound, where
all training data for each new task, including previ-
ously seen data, is stored in the memory.

The forgetting of each task and their average for-
getting on FewRel benchmark’s 10-way-5-shot are
presented in Table 3, along with the average for-
getting on Fewrel’s 10-way-2-shot, and TACRED’s
5-way-5-shot in Figure 5. These results show that:

(1) The use of Prompt learning can significantly
mitigate the issue of catastrophic forgetting.

(2) Compared with existing methods, our

Method T1 T2 T3 T4 T5 T6 T7 Mean
SeqRun 82.39 85.7 81.06 83.48 77.93 79.58 84.45 82.08
JointTrain 9.81 5.58 5.47 2.88 0.76 -0.22 -1.28 3.29
EMAR 23.39 21.76 17.16 13.95 6.38 7.27 3.48 13.34
RP-CRE 28.79 18.88 12.28 8.53 5.69 2.29 -1.58 10.7
ERDA 28.12 23.83 22.63 22.3 15.63 14.95 14.78 20.32
EMAR(PT) 11.83 9.22 8.64 8.4 6.17 3.74 2.73 7.24
RP-CRE(PT) 14.35 9.88 6.77 4.18 1.47 1.61 -1.98 5.18
ERDA(PT) 21.52 15.54 13.18 13.14 9.69 9.46 6.93 12.78
ConPL 11.47 6.11 3.79 2.47 0.46 -0.12 -0.98 3.31

Table 3: Forgetting (%) of various methods after train-
ing for each task on FewRel’s 10-way-5-shot. “Mean”
represents the average forgetting from T1 to T7.

(a) FewRel 10-way-2-shot (b) TACRED 5-way-5shot

Figure 5: The average forgetting (%) of various methods
in different benchmarks.

method greatly mitigates catastrophic forgetting
in continual learning, which is crucial.

(3) Observing JointTrain, we find that forget-
ting still exists even when all the training data is
available, and our continual learning method is the
closest to it among all methods.

6 Conclusion

We introduce N-way-K-shot Continual Relation
Extraction (NK-CRE), a novel problem in the
realm of continual relation extraction, where all
tasks are conducted in the N-way K-shot setting
scenario. This problem presents a significant chal-
lenge, yet is highly applicable in real-world sce-
narios. To address this problem, we propose
Consistent Prototype Learning (ConPL), a novel
method that effectively alleviates catastrophic for-
getting caused by insufficient activation of old re-
lations and the confusion among similar classes.
Through a series of experimental and analytical
results, we demonstrate that ConPL outperforms
existing methods in NK-CRE. In future research,
we plan to study how to improve the domain adapt-
ability of the model in few-shot continual relation
extraction.
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Limitations

There are two limitations in this paper: (1) Com-
pared with existing memory-based methods, the
proposed prototype memory may bring additional
storage space overhead. But since we only require
very little additional memory (only one vector per
class), we did not discuss it; (2) Although we noted
that the distortion and forgetting of the prototype
are highly correlated, we did not conduct a detailed
analysis of the reasons for special prototypes that
do not follow this pattern.
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A Appendix

A.1 Prototype Distortion and Forgetting
To evaluate the relationship between the change of
feature embeddings and the degree of forgetting,
we introduce distortion and forgetting metrics for
each class prototype. Distortion is calculated using
the following formula:

Dr =
1

n− i

n∑

j=i+1

djr (13)

djr = 1− s(ei,r, ej,r) (14)

where i of ei,r means that the relation r firstly ap-
pears in task i and ei,r denotes the embedding of
the relation r after task i is trained. s represents the
calculation formula of cosine similarity. Dr refers
to the mean value of the distortion for relation r
from task i to task n.
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Method T1 T2 T3 T4 T5 T6 T7 T8 Mean
EMR 96.35±0.25 88.02±2.09 78.83±2.80 75.15±2.85 72.00±2.23 69.41±2.06 66.70±1.57 63.68±1.47 76.27±1.92

EMAR 92.03±1.98 78.87±3.72 72.81±5.25 69.19±4.45 68.05±4.08 66.23±1.95 63.68±2.55 61.77±1.48 71.58±3.18

IDLVQ-C 96.03±0.12 87.18±2.51 76.63±3.97 73.57±4.43 67.74±3.60 65.16±2.96 62.64±1.87 60.32±1.87 73.66±2.65

ERDA 96.38±0.35 88.91±1.96 83.10±1.80 79.73±2.69 74.83±3.06 72.84±1.75 70.28±1.79 68.07±1.94 79.26±1.92

EMAR† 82.50±10.86 76.23±17.56 71.41±10.67 66.93±14.52 62.02±16.71 62.37±8.23 60.05±6.30 59.29±2.78 67.59±10.95

RP-CRE† 86.38±28.53 78.47±28.71 71.93±24.10 69.07±5.69 66.28±11.46 65.88±2.52 62.28±6.64 61.17±1.08 70.18±13.59

ERDA† 88.15±17.17 79.65±13.60 74.05±11.92 68.18±13.43 67.14±8.51 66.96±4.61 65.86±3.44 63.60±5.17 71.70±9.73

EMAR(PT)† 95.28±5.17 92.75±4.42 90.57±1.97 88.15±2.99 87.04±1.46 84.90±1.83 83.07±2.47 81.34±1.97 87.89±2.76

RP-CRE(PT)† 93.52±3.44 89.48±9.21 87.67±8.55 85.28±2.98 84.48±2.43 83.08±2.02 81.92±1.44 80.87±0.89 85.79±1.92

ERDA(PT)† 96.55±3.36 92.56±4.98 88.56±4.14 84.47±12.77 84.14±3.10 79.94±4.26 78.45±2.99 77.02±6.59 85.21±5.27

ConPL 95.72±4.27 93.53±2.30 91.31±2.93 89.95±1.02 88.93±0.50 88.39±0.26 87.43±0.13 85.77±0.56 90.12±1.50

Table 4: Whole accuracy (%) and variance of different methods after training for each task on FewRel benchmark
in the 10-way-5-shot (NK-CRE) setting. † denotes our reproduced results with the publicly available codebases,
where PT represents using prompt learning to enrich the inputs. Other results are obtained directly from Qin and
Joty (2022) in the CFRL setting. The best values are denoted in bold. The “Mean” column shows the mean of the
whole accuracy and variance of T1∼T8.

The formula for the forgetting of the prototype
is as follows:

Fr =
1

n− i

n∑

j=i+1

gjr (15)

gjr = max
l∈{i,··· ,j−1}

al,r − aj,r (16)

where al,r represents the whole accuracy of the
test set for relation r after the task l is trained, f j

r

represents the degree of forgetting of relation r
after task j is trained, and i represents the relation
r firstly appears in task i.

Based on the above formulas, we calculate the
distortion and forgetting of each prototype in differ-
ent methods. Considering that the order of task se-
quences has a relatively large impact on the change
of embedding and forgetting of each class, we ran-
domly generate 50 task sequences and show their
average results. Figure 1 illustrates the correlation
between the embedding distortion and the degree
of forgetting in different methods.

A.2 Datasets
The following is the detailed introduction of the
FewRel (Han et al., 2018) and TACRED (Zhang
et al., 2017) datasets.

FewRel is a few-shot relation classification
dataset that was proposed by Han et al. (2018). It
consists of 100 relation classes, each of which has
700 instances. The dataset is split into a training
set, a validation set, and a test set, with a split of
64/16/20 fraction corresponding to each set. Fol-
lowing CFRL (Qin and Joty, 2022), we randomly
divide the publicly accessible 80 relations from the
training and validation sets into 8 tasks, each con-
taining 10 relations (10-way). In this paper, we set

2-shot, 5-shot, and 10-shot as different few-shot
settings in the NK-CRE benchmark.

TACRED is a relation extraction dataset that
was proposed by Zhang et al. (2017). It contains 42
relations and over 100, 000 instances. The dataset
is preprocessed by filtering out the special relation
“n/a”, resulting in the remaining 41 relation classes
and 68, 438 instances to construct the NK-CRE
benchmark. Similar to FewRel, we divide the 41
relations into 8 tasks, with one task containing 6
relations and the others containing 5 relations (5-
way). We set 5-shot and 10-shot as different few-
shot settings in this paper.

A.3 Main Results with Means and Variances
Table 4 shows the whole accuracy (%) and variance
of different methods after training for each task on
FewRel’s 10-way-5-shot. We observe that due to
the strict implementation of the few-shot contin-
ual learning task, NK-CRE has a larger variance
compared to CFRL. Nonetheless, the average vari-
ance of our method ConPL is still lower than that
of existing methods in CFRL, indicating that our
method is robust.
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