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Abstract
Complaining is an illocutionary act in which
the speaker communicates his/her dissatisfac-
tion with a set of circumstances and holds the
hearer (the complainee) answerable, directly or
indirectly. Considering breakthroughs in ma-
chine learning approaches, the complaint detec-
tion task has piqued the interest of the natural
language processing (NLP) community. Most
of the earlier studies failed to justify their find-
ings, necessitating the adoption of interpretable
models that can explain the model’s output in
real-time. We introduce an explainable com-
plaint dataset, X-CI, the first benchmark dataset
for explainable complaint detection. Each in-
stance in the X-CI dataset is annotated with
five labels: complaint label, emotion label, po-
larity label, complaint severity level, and ra-
tionale (explainability), i.e., the causal span
explaining the reason for the complaint/non-
complaint label. We address the task of ex-
plainable complaint detection and propose a
commonsense-aware unified generative frame-
work by reframing the multitask problem as
a text-to-text generation task. Our framework
can predict the complaint cause, severity level,
emotion, and polarity of the text in addition
to detecting whether it is a complaint or not.
We further establish the advantages of our pro-
posed model on various evaluation metrics over
the state-of-the-art models and other baselines
when applied to the X-CI dataset in both full
and few-shot settings1.

1 Introduction

Complaining is an expression of negative emotions
communicated due to a discrepancy between reality
and expectations (Olshtain and Weinbach, 1985).
In pragmatics theory, Trosborg (2011) proposed
four primary complaint severity levels: (a) no ex-
plicit reproach, (b) disapproval, (c) accusation, and

∗* The first two authors contributed equally to this work
and are jointly the first authors.

1The dataset and code are available at https://github.
com/appy1608/ACL2023

(d) blame. Recent studies on complaint detection
have mainly dealt with automatically identifying
binary complaints and the associated severity lev-
els from social-media data (Preotiuc-Pietro et al.,
2019; Jin and Aletras, 2021). However, these stud-
ies primarily focused on improving complaint de-
tection performance with the help of various mod-
els without providing any perspective or evaluation
of the outcome’s explainability. Since the intro-
duction of explainable artificial intelligence (AI)
(Gunning et al., 2019), providing interpretation for
any AI algorithm’s decision has become essential.
Therefore, rather than enhancing performance by
increasing computational burden, there is a push to
construct trustworthy and transparent interpretable
models.
As sentient beings, we use our commonsense to
establish connections between what is explicitly
said and inferred. As a result, we believe that
adding external knowledge or commonsense knowl-
edge (Sabour et al., 2021a) to complaint detection
systems can help them better grasp the user’s cir-
cumstances and concerns, resulting in more effi-
cient models. In Figure 1, the user shares informa-
tion about a registered case with customer service.
Based on the given information, we can say the user
is waiting for a callback (xNeed) and wants to re-
ceive a callback for the registered case (xWant). To
the best of our knowledge, all the previous attempts
to incorporate commonsense reasoning have only
been done for conversational agents and summa-
rization tasks.
Previous research (Saha et al., 2021; Singh et al.,

2022) has shown that closely related tasks bene-
fit each other when learned concurrently. How-
ever, this strategy entails several problems, such
as negative transfer (where multiple tasks, rather
than benefiting the learning process, begin to hin-
der the training process) (Crawshaw, 2020) and
optimization scheme (assigning weights to differ-
ent tasks during training) (Wu, 2020). To address
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Figure 1: Example from the X-CI dataset in which
causal span annotation (highlighted in blue) and com-
monsense knowledge are used to identify complaints
and associated tasks.

the aforementioned multitask learning issues, and
motivated by generative language models’ ability
to solve downstream tasks in a generative manner
in both full and few-shot (low resource and data
constrained) scenarios (Brown et al., 2020a), we
propose using text-to-text generation to accomplish
the tasks of complaint identification, severity level
classification, and cause extraction.
Research Objectives: Following are the research
objectives of the current study:
1) We aim to understand the effect of using causal
information on the complaint detection, and sever-
ity classification tasks in the proposed framework.
2) We intend to do a comparative study of the dis-
criminative approach (multitask learning) and gen-
erative approach (text-to-text generation), specifi-
cally in the complaint detection domain.
3) Finally, this work aims to study how common-
sense knowledge can further boost the performance
of the generative approach.
Contributions: Our work’s significant contribu-
tions are as follows:
1) This is the first study on explainable complaint
identification; where we determine the cause for
classifying social media data as complaints. We
explore two new challenges: (i) explainable com-
plaint identification and (ii) multitask learning as a
text-to-text generation problem.
2) We develop X-CI, a new benchmark dataset for
explainable complaint detection with causal span
annotation of expressed complaint/non-complaint.
3) To simultaneously solve five tasks, complaint
identification (CI), severity classification (SC),
emotion recognition (ER), polarity recognition
(PR), and cause extraction (CE), we propose a
commonsense-aware unified generative framework,
where CI, SC, and CE are the main tasks, and ER,
PR are the auxiliary tasks.

4) We established the superiority of our proposed
approach on various evaluation metrics over other
baselines and state-of-the-art models. The evalu-
ation results further show that the proposed gen-
erative model consistently outperforms all other
baselines and state-of-the-art models, in full and
few-shot settings.

The rest of the paper is organized as follows. Sec-
tion 2 discusses some of the previous studies on this
subject. Following that, in Section 3, we explain
the dataset development in detail. In Section 4, we
summarize our proposed methodology for the uni-
fied generative method-based experiments. We an-
alyze the experiments, results, and their outcomes
in Section 5. Finally, in Section 6, we conclude our
study and identify the scope of future work.

2 Related Studies

In computational linguistics, previous works on
complaint detection only pivoted on identifying
complaints using feature-based machine learning
models (Preotiuc-Pietro et al., 2019; Coussement
and Van den Poel, 2008), transformer network-
based models (Jin and Aletras, 2021). Recently
multitask complaint analysis models have been de-
veloped that leveraged polarity and affect infor-
mation for enhancing the complaint mining task
(Singh and Saha, 2021; Singh et al., 2022, 2021,
2023).
In affective computing, identifying the causal span
of expressed emotions is crucial for understanding
human emotions (Poria et al., 2021). Motivated by
previous research, we aim to investigate the rea-
sons behind viewpoints, particularly complaints,
expressed on social media

Providing cognitive awareness of the user’s cir-
cumstances and sentiments is essential to design-
ing effective systems for downstream tasks such as
chatbots (Sabour et al., 2021b). Hence, we believe
that allowing complaint detection models to use
commonsense information and draw conclusions
from what the user has openly shared is particularly
useful for better understanding the user’s circum-
stances, resulting in more effective and socially
aware customer support systems.
Recent breakthroughs in deep learning and pre-
trained language models have substantially affected
the development in the field of neural text genera-
tion (Raffel et al., 2020; Lewis et al., 2019). Models
such as GPT-2 (Radford et al., 2019) and GPT-3
(Brown et al., 2020b) are decoder-only transform-
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ers that can generate understandable, and consistent
text because of being pre-trained on a vast amount
of text data. BART (Lewis et al., 2019) and T5
(Raffel et al., 2020) are encoder-decoder transform-
ers that have shown rapid evolution and success
in many NLP applications, such as summarization
and translation.
After an in-depth literature review, it can be con-
cluded that there is no work on explainable com-
plaint detection. In this paper, we attempt to bridge
this research gap.

3 X-CI Dataset Development

For this work, we utilize the Complaints dataset2

published in (Preotiuc-Pietro et al., 2019), which
includes 3,449 tweet instances in English. We se-
lected this dataset because it is openly available and
comprises annotated complaints from the social-
networking site Twitter, a popular choice for data
analysis. Jin and Aletras (2021) augmented Com-
plaints dataset with five severity levels (no explicit
reproach, disapproval, accusation, blame, and non-
complaints). Recently, Singh et al. (2022) enriched
the Complaints dataset with the sentiment (negative,
neutral, positive) and emotion (anger, disgust, fear,
happiness, sadness, surprise and other) classes;
the ‘other’ emotion class depicts tweets that do
not fall under the scope of Ekman’s six basic emo-
tions (Ekman et al., 1987). We utilize this extended
dataset annotated with severity levels, polarity, and
emotion classes for our current work.

3.1 Annotations

Three annotators with expertise in creating super-
vised corpora were assigned the task of annotating
causal spans for each sample in the dataset. The
chosen annotators come from varied backgrounds
and demographics to ensure the elimination of bi-
ases.
Annotators were asked to find the causal span, X(I),
that best described the foundation of the complaint
(C) or non-complaint (NC) label for each occur-
rence (I) in the X-CI dataset. If there is no mention
of X(I) for C/NC in I, the sentence was tagged as
’no cause’ by the annotators. It is worth noting
that 95% of the instances in the dataset have only
either complaint or non-complaint cause, while
5% have no cause. Based on previous research on
span extraction (Rajpurkar et al., 2016), we use the

2https://github.com/danielpreotiuc/complaints-social-
media

macro-F1 measure to assess inter-rater agreement
and achieve a 0.77 F1 score, suggesting that the an-
notations are of good quality. The extended dataset
X-CI now includes the tweet text, complaint label,
severity level, polarity label and emotion label, and
annotated cause for each instance. Please refer
to Section A in the Appendix where we provide
the details related to the annotation procedure and
also provide detailed statistics related to the X-CI
dataset.

4 Proposed Methodology

This section defines our problem before delving
into the details of the proposed framework. The
overall framework is shown in Figure 2.
Problem Definition: An explainable complaint
detection model should predict the review’s cause,
severity level, emotion, and polarity class in ad-
dition to detecting whether it is complaint or
not. Formally, given an input instance Xi =
{x0, x1, .., xi, .., xn} where n is the length of in-
put instance, we intend to learn five closely related
tasks: (i) complaint identification (c), (ii) polarity
classification (p), (iii) emotion recognition (e), (iv)
severity level classification (s), (v) cause extraction
(ce), where c ∈ C, C is the set of complaint classes,
p ∈ P , P is the set of polarity classes, e ∈ E, E
is the set of emotion classes, s ∈ S, S is the set of
severity levels and ce(Xi) ∈ (Xi) that is relevant
to the complaint label, c.

4.1 Explainable Complaint Detection as
Text-to-Text Generation Task

Here, we propose a text-to-text generation
paradigm for solving explainable complaint detec-
tion and other auxiliary tasks in a single unified
manner. To transform this problem into a text gen-
eration problem, we first construct a natural lan-
guage target sequence, Yi, for input sentence, Xi,
for training purposes by concatenating the labels of
all the tasks as defined in the following Equation:
Yi = {< ce(Xi) > [c][s][e][p]}.
We have added special characters after each task’s
prediction, so that task-specific predictions can be
extracted during inference. Now the problem can
be reformulated as: given an input sequence Xi, the
task is to generate an output sequence, Y

′
i , contain-

ing all the predictions as defined in the above equa-
tion using a generative model G; Y

′
i = G(Xi).
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Figure 2: The overall architecture of the proposed model (C2D). The two variations of our proposed model, ConC2D
and FuseC2D are depicted by the enclosed red and blue dotted boxes, respectively.

Figure 3: Commonsense-aware encoder internal archi-
tecture

4.2 Commonsense-aware Complaint
Detection (C2D)

We propose Commonsense-aware Complaint De-
tection, a commonsense-aware unified generative
framework to solve the task of explainable com-
plaint detection. We divide our approach into three
steps for better understanding: 1) Commonsense
Extraction Module, 2) Commonsense-aware Trans-
former Model, and 3) Reinforcement Learning-
based Training.

4.2.1 Commonsense Extraction Module
We use a commonsense extraction module to pro-
vide more context in the form of commonsense rea-
soning to a review, as customers’ reviews are usu-
ally short and cursory. We use the ATOMIC dataset
(Sap et al., 2019) as our knowledge base for the
commonsense extraction module. The ATOMIC
knowledge base provides commonsense reasoning

for six commonsense relations for the entity in-
volved in that event, such as what is the effect of
the event on the entity (xEffect), what is their need
from the event (xNeed), what they want from the
event (xWant), etc. In our problem statement of
complaint detection, the event refers to the tweet in-
stance, and we want to understand what is the need
and desires of customers from their tweets, so we
consider only two commonsense relations3: xNeed
and xWant. To generate the commonsense reason-
ing from customer’s reviews, we employed a pre-
trained BART (Lewis et al., 2019) based language
model COMET (Hwang et al., 2021), which is fine-
tuned on the above-mentioned ATOMIC dataset
as this model is more suitable to provide common-
sense reasoning for the unseen events (Sabour et al.,
2021a). The Commonsense Extraction Module is
outlined as follows: (i) We append two common-
sense relation tokens (xNeed and xWant) to the
customer’s review for each Xi. (ii) We then feed
these two commonsense relations concatenated in-
puts to the pre-trained COMET model to generate
two commonsense reasoning csrneed and csrwant

for xNeed and xWant relation tokens, respectively.
To obtain the final commonsense reasoning CS for
each review Xi, we concatenate the two generated
commonsense reasoning CS = csrneed ⊕ csrwant .

4.2.2 Commonsense-aware Transformer
To leverage the commonsense reasoning CS ob-
tained from the Commonsense Extraction Module,
we have proposed two variations of commonsense-
aware encoder-decoder architecture (ConC2D and

3We performed a thorough comparative analysis of all the
commonsense relations available in the ATOMIC dataset.
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FuseC2D) that are capable of incorporating CS
in their sequence-to-sequence learning process as
detailed below:
Contextualizer C2D (ConC2D): Given an in-
put review Xi and corresponding commonsense
reasoning CS, the task to generate the target se-
quence Y

′
i can be modeled as the following con-

ditional text generation model: Pθ(Y
′
i |Xi, CS),

where θ is a set of model parameters. ConC2D
models this conditional probability by first con-
catenating the tokens of the input review Xi and
the commonsense reasoning CS separated by a
unique token <SEP> to provide us a final input
sequence:Ri = Xi⊕CS. Now, we are given a pair
of input sentences and target sequences (Ri, Yi),
the first step is to feed Ri = {x0, x1, .., xn, <
SEP >, cs0.., csn} to the encoder module to
obtain the hidden representation of input as de-
fined next; HEN = GEncoder({x0, x1, .., xn, <
SEP >, cs0.., csn}) where GEncoder represents
encoder computations.
After obtaining the hidden representation, HEN ,
we will feed HEN and all the output tokens till
time step t − 1 represented as Y<t to the decoder
module to obtain the hidden state at time step t,
defined as: Ht

DE = GDecoder(HEN , Y<t) where
GDecoder denotes the decoder computations.

The conditional probability for the predicted out-
put token at tth time step, given the input and pre-
vious t − 1 tokens is calculated by applying the
softmax function over the hidden state, Ht

DEC :

Pθ(Y
′
t |R, Y<t) = Fsoftmax(θ

THt
DE) (1)

where Fsoftmax represents softmax computation
and θ denotes weights of our model.
Fused C2D (FuseC2D): In this setup, we first feed
both input review Xi and commonsense reasoning
CS to a pre-trained BART encoder to obtain en-
coded representations, Ux and Ucs, respectively. To
fuse the information between these two represen-
tations, we have proposed a commonsense-aware
encoder (shown in Fig. 3), an extension of the
original transformer encoder (Vaswani et al., 2017).
We create two triplets of queries, keys and values
matrices corresponding to Ux, Ucs, respectively:
(Qx,Kx,Vx), (Qcs,Kcs,Vcs). Unlike the original
transformer encoder where we project the same
input as query, key, and value, in FuseC2D, we
propose a cross-attention layer consisting of two
sublayers of multi-head-cross attention and nor-
malization layer that exchanges the key and value

by considering (Qx,Kcs,Vcs) and (Qcs,Kx,Vx) as
inputs to cross attention layer which computes
cross infused vector representation as defined be-
low: Attention(Q,K, V ) = softmax(QKT

√
dk

)V

where (Q,K,V) represents the set of the query, key,
and value and dk represents the dimension of the
query and key.
This cross-attention layer facilitates the exchange
of information between Ux and Ucs. Now, these
multi-head cross attention outputs (Ux−>cs and
Ucs−>x) contain information about each other. Fol-
lowing this, we concatenate Ux−>cs and Ucs−>x

and pass concatenated output Uz through a self-
attention layer, normalization layers, and fully con-
nected layers with residual connections to obtain
the output of the commonsense-aware encoder.
At last, we concatenate input text representation
Ux and commonsense representation Ucs to the
commonsense-aware encoder’s output to obtain the
final commonsense-aware input representation vec-
tor, Z. Then, we feed Z to an autoregressive de-
coder similar to the defined Equation 1.

4.2.3 Reinforcement Learning based Training
We initialize our model’s weights θ with weights
of the pre-trained sequence to sequence generative
model (BART-base). We then fine-tune the model
with the following two training objective functions:
1) Maximum likelihood estimation (MLE) objec-
tive function, which works in a supervised manner
to optimize the weights, θ, as defined in Equation 2.

max
θ

T∏

t=0

Pθ(Y
′
t |Xi, Y<t) (2)

2) On the top of maximum likelihood estima-
tion (MLE) objective function, we also employed
a reward-based training objective function. In-
spired from (Sancheti et al., 2020), we use a
BLEU (Papineni et al., 2002) based reward func-
tion as it calculates the overlap between the tar-
get sequence, Yi, and the predicted sequence,
Y

′
i . We define BLEU based Reward RBLEU as:

RBLEU = (BLEU(Y
′
i , Yi) − BLEU(Y g

i , Yi)),
where Y

′
i denotes the output sequence sampled

from conditional probability distribution (Eq. 1)
at each decoding time stamp and Y g

i denotes the
output sequence obtained by greedily maximiz-
ing the conditional probability distribution at each
time step. To maximize the expected reward,
RBLEU of Y

′
i , we use the policy gradient tech-

nique (Sutton et al., 1999) which is defined as:

7337



Complaint (CI) Severity (SC) Cause (CE)
Model F1 A F1 A JS HD ROS

SOTA(Jin and Aletras, 2021) 86.6 87.6 59.4 55.5 - - -
ConC2DCI+SC+CE 90.7 91.2 73.3 73.3 83.7 75.0 88.7

ConC2DCI+SC+CE+ER 90.7 91.1 72.1 73.0 83.4 74.1 88.2
ConC2DCI+SC+CE+PR 90.1 90.5 73.1 73.2 83.6 74.5 88.3

ConC2DAll 90.8† 91.3† 73.7† 73.4† 84.4† 75.2† 88.9†

FuseC2DCI+SC+CE 88.9 89.1 73.0 73.2 77.4 71.1 85.8
FuseC2DCI+SC+CE+ER 88.1 88.4 72.8 72.1 77.4 70.7 84.2
FuseC2DCI+SC+CE+PR 88.8 89.1 72.9 73.0 78.2 72.1 85.1

FuseC2DAll 88.5 89.5 73.1 73.4 78.1 71.3 85.3
Baseline1(Singh et al., 2022) 81.4 82.8 60.3 62.8 76.1 68.2 81.8

BART 88.9 88.9 62.4 62.6 77.1 69.7 84.2
T5 86.7 86.6 68.7 69.3 84.1 74.1 89.1

SpanBERT - - - - 74.8 70.6 83.5
Baseline2 - - - - 79.2 74.1 87.8

Table 1: Results of different baselines and the two proposed frameworks, ConC2D and FuseC2D. For the CI and SC
tasks, the results are in terms of macro-F1 score (F1) and Accuracy (A) values. F1, A metrics are given in %. JS:
Jaccard Similarity, HD: Hamming Distance, and ROS: Ratcliff-Obershelp Similarity. The maximum scores attained
are represented by bold-faced values. The † denotes statistically significant findings.

∇θJ(θ) = RBLEU · ∇θlogP (Y
′
i |Xi, CS; θ)

5 Experimental Results and Analysis

This section describes the experiments, results, and
analysis of our proposed model. The experiments
are intended to address the following research ques-
tions:
RQ1: How does the generative paradigm perform
in comparison to traditional multitask models and
other baseline models?
RQ2: Out of ConC2D and FuseC2D, which tech-
nique performs better?
RQ3: What is the effect of different task combina-
tions in our framework?
RQ4: What is the impact of commonsense knowl-
edge and Reinforcement Learning on the perfor-
mance of our framework?
RQ5: Is ConC2D able to outperform state-of-the-
art models for CI and SC tasks on full-shot and
few-shot settings?

5.1 Baselines Setup

Multitask systems: Motivated by a recent work
in multitask CI framework we develop Baseline1
(Singh et al., 2022) model as one of the multitask
baselines. We implement the Baseline1 model for
the joint learning of CI, SC, and CE with PR and
ER as additional tasks, keeping the experimental
setup the same as our current work.
Baselines for Cause Extraction Task: Since cause
extraction is a new task in the area of complaint
analysis, we drew inspiration from the work of Po-
ria et al. (2021) in the emotion recognition domain
and used a pre-trained SpanBERT base model fine-

tuned on the SQuAD 2.0 dataset (Rajpurkar et al.,
2018). The SpanBERT baseline is used for the CE
task only. We also added another baseline for the
CE task, Baseline2 where complete review/text is
considered as the cause.
Text to Text Generation Model: We use BART
(Lewis et al., 2019) and T5 (Raffel et al., 2019)
as the baseline text-to-text generation models. We
fine-tune both these models on the proposed dataset
with complaint text as the input sequence and con-
catenated outputs as the target sequence, and train-
ing objective defined in Equation 2.
Ablation Study: The C2D model comprises two
key components: (1) Commonsense Reasoning
(CS) and (2) Reinforcement Learning (RL). In or-
der to establish the necessity of both of these com-
ponents individually, we conduct an ablation study
of the proposed framework.

5.2 Experimental Setup

We have performed all the experiments on the Ty-
rone machine with Intel’s Xeon W-2155 Processor
having 196 Gb DDR4 RAM and 11 Gb Nvidia
1080Ti GPU. All the models are executed using a
nested 10-fold cross-validation approach similar to
that of Jin and Aletras (2021). All the proposed
models are trained for 20 epochs with a learning
rate of 5×10−5 and batch size of 16. Adam op-
timizer is used to train the model with adam ep-
silon value of 1×10−8. All the models are im-
plemented using Scikit-Learn4 and pytorch5 as a
backend. For the CI and SC tasks, accuracy and

4https://scikit-learn.org/stable/
5https://pytorch.org/

7338

https://scikit-learn.org/stable/
https://pytorch.org/


Complaint (CI) Severity (SC) Cause (CE)
Model F1 A F1 A JS HD ROS

ConC2DCI+SC+CE 90.7† 91.2† 73.3 73.3† 83.7† 75.1† 88.7†

-RL 88.7 88.7 64.5 65.1 81.1 73.2 85.5
-CS 89.8 90.3 73.4† 73.3† 82.3 74.2 86.1

FuseC2DCI+SC+CE 88.9 89.1 73.0 73.2 77.4 71.1 85.8
-RL 88.7 88.8 69.6 69.5 77.2 70.0 84.2

-(RL+CS) 88.9 88.9 62.4 62.6 77.1 69.7 84.2

Table 2: Results of the ablation studies performed on the proposed framework, C2D’s key components in terms of
macro-F1 score (F1) and Accuracy (A) values. The maximum scores attained are represented by bold-faced values.
The † denotes statistically significant findings.

macro-F1 metrics are used to evaluate predictive
performance. For the quantitative assessment of
the CE task, we used the Jaccard Similarity (JS),
Hamming Distance (HD), and Ratcliff-Obershelp
Similarity (ROS) metrics. Dataset split follows
the standard 80% training (2671 instances), 10%
validation (344 instances), and 10% testing (344
instances).

5.3 Results and Discussions

This study aims to enhance the performance of CI,
SC, and CE tasks by incorporating two secondary
tasks (ER and PR). We present our findings and
analyses, focusing solely on CI, SC, and CE as the
primary tasks in all combinations.
(RQ1) As can be observed from Table 1, the pro-

posed models, ConC2DAll and FuseC2DAll out-
perform all the other baselines for CI, SC, and
CE tasks by a significant margin illustrating the
superiority of pre-trained sequence to sequence
language models. Complaints dataset is a Twitter-
based dataset with fixed character constraints, due
to which the ConC2D model can capture more
information in the form of commonsense reason-
ing compared to all the other baselines. Sample
sentences from the dataset, such as ’Thank you’,

’I need help’ depict a lack of contextual informa-
tion. Even in baseline setups, generative baselines
(BART and T5) consistently outperform other base-
lines for all the tasks. These findings validate our
idea of re-framing the multitask problem as a text-
to-text generation task.
(RQ2) Unexpectedly, FuseC2D does not improve
performance over ConC2D as their scores are simi-
lar across all multitask variants for all tasks. This is
likely because fusion techniques are more effective
for fusing different modalities (vision or acous-
tic) with text data. Some studies also showed that
direct concatenation performs similarly to fusion-
based methods (Sridhar and Yang, 2022). Another

reason for this is the size of our dataset (around
3,449 samples), which may not be enough to train
a fusion-based model.
(RQ3) It is also evident from the table that
ConC2DALL which includes all the auxiliary tasks,
outperforms all the other corresponding model’s
task variants illustrating that the model can learn
the mapping between different tasks during the
decoding process. However, unlike multitasking
methods, where adding auxiliary tasks results in
significant improvement, here the improvement is
more subtle. One can also observe from the results
that ConC2DALL and generative baseline models
outperform other baselines by a significant margin
for the other two tasks (SC and CE) illustrating that
generative models maintain consistent performance
across all the tasks.
(RQ4) Ablation Study: It is evident from Table 2
that when we remove the RL component from
ConC2D, we notice a significant drop in all the
task’s performances but especially in the case of
the SC task with a drop of 11% in accuracy. This
drop-in performance can be attributed to the fact
that reward-based learning teaches the model to
learn the mapping between different tasks and en-
courages the model to generate sequences that have
a higher overlap with the target sequence, improv-
ing the performance of all tasks, especially sever-
ity classification. As ConC2D - RL only com-
prises of commonsense component (CS), we can
see how commonsense alone is improving the per-
formance of our model over the baseline model,
i.e., -(RL+CS) on SC and CE tasks illustrating how
providing extra context to model is aiding the pre-
dictions of different subtasks. This argument can
be further bolstered when the same trend is ob-
served between the FuseC2D, FuseC2D - RL, and
-(RL+CS). Similarly, when we remove the common-
sense component (CS) from ConC2D, we observe
no effect on SC and only a slight drop in the perfor-
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Figure 4: Comparative performance of our proposed models, ConC2D and FuseC2D with the SOTA model on
Few-Shot settings for the primary tasks (CI and SC).

mance of CI and CE tasks. However, together with
the CS component, the ConC2D model can outper-
form all the ablated models and baseline models on
all subtasks’ overall evaluation metrics illustrating
the contribution of each component.
(RQ5) Comparison with State-of-the-art Technique
(SOTA): Both of our proposed models are able to
outperform the SOTA model (Jin and Aletras, 2021)
on CI and SC tasks. ConC2DAll outperforms the
SOTA by a significant margin of 4.2% and 32%
on CI and SC tasks, respectively. The reasons for
these improvements can also be attributed to the
facts: 1) Both ConC2D and FuseC2D are leverag-
ing the pretrained BART model’s knowledge which
already has been trained on a huge corpus of data,
2) Both of these models have extra context due to
which they are making better predictions, and 3)
Adding an auxiliary task of cause extraction that
enhances the model’s performance for CI and SC
tasks. We also compare the performance of our
models with SOTA in a few-shot setting where we
sampled the training data based on the number of
examples per label: [1, 2, 5, 10, 20, Full] (shown
in Fig. 4). It can be observed from Fig. 4a both of
our models consistently outperform SOTA on all
shots (except 2-shot) in the CI task. A similar trend
is observed for the SC task (Fig. 4b). These few-
shot experiments: 1) illustrate the strength of the
generative language model in data-constrained and
low-resource settings, and 2) further validate our
approach of using the generative language model
to solve multitask complaint detection tasks.

All of the results are statistically significant6

(Welch, 1947).

6We used the Student’s t-test (p-value < 0.04).

5.4 Qualitative Analysis

We noticed that tweets with vital complaint signs,
such as accusatory expressions or blame-related
terms, are less misclassified. The qualitative study
of the complaint severity predictions obtained by
the SOTA (Jin and Aletras, 2021) and the best
performing contextualizer system on a few sam-
ple test instances are shown in Table 3. The table
shows that the CE task combined with CI and com-
monsense reasoning led to improved predictions
than the SOTA system that lacks these elements.
It can also be observed that for both the example
instances, both the models correctly predict them
as complaints, but the severity level is correctly
predicted only by the proposed model.
We also perform a qualitative analysis for the CE
task as shown in Table 4. The first row represents
the causal span that human annotators picked as
relevant for classification. The spans obtained by
the proposed models are shown in the following
two rows. The rationale for this varies between
models, even though the model makes an accurate
prediction for the complaint detection and severity
classification task.

We also assess the linguistic aspect of the model
by involving one expert in the English language,
affiliated with the authors, who independently
evaluated 100 generated causes from our models
(ConC2D and FuseC2D). The evaluator rated the
quality of the responses on a scale of 1 (worst),
3 (moderate), and 5 (best) using three predefined
metrics:
a) Fluency: The generated cause by the model
should be syntactically or grammatically correct.
b) Faithfulness: It measures the factual correctness
of the cause with respect to the input tweet.
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Tweet text SOTA Proposed Actual Label
The <USER> stinks 10mins to take order complaint complaint complaint
& stop asking my name like we’re friends blame disapproval disapproval
Hey guys, I love this product featured today complaint complaint complaint
but don’t see a price? Help a girl out? disapproval no explicit reproach no explicit reproach

Table 3: Qualitative study of the CI and SC predictions by the SOTA (Jin and Aletras, 2021) and the proposed model
(ConC2D). ’Actual Label’: true labels for CI and SC tasks, the red colored text indicates the causal span annotation
of the sentence.

Model Text Severity
Human Annotator No email today :( checked spam and everything... I normally get all my Best Buy emails fine. Disapproval
FuseC2D No email today :( checked spam and everything ... I normally get all my Best Buy emails fine. Disapproval
ConC2D No email today :( checked spam and everything... I normally get all my Best Buy emails fine. Disapproval

Table 4: Example instances comparing the cause predicted by human annotators and the FuseC2D and ConC2D
models. The span highlighted in red color was selected by the human annotator and the models to be essential for
the prediction. The blue-colored text indicates tokens relevant to the model but not to the human annotators.

Model Fluency Faithfulness Redundancy
ConC2D 4.68 4.05 4.33
FuseC2D 4.57 4.11 4.18

Table 5: Average scores obtained by the two proposed
models for quality of the responses generated over three
quality metrics of Fluency, Faithfulness, and Redun-
dancy.

c) Redundancy: It measures that the generated
cause should not contain repeated information.
We report the average scores for these metrics in
Table 5. It can be observed that both these models
perform reasonably well in Fluency. This can be
attributed to the fact the model extracts the content
from input only making it more fluent. For faithful-
ness and redundancy, models perform well but not
as well as in Fluency.

5.5 Error Analysis:

We investigate the possible reasons for the pro-
posed model’s errors:
Fuzzy Intentions: The model predicts hidden in-
tent sentences inaccurately. When a user voices
a complaint without explicitly relaying the actual
reason, the model misclassifies it as non-complaint
based on the text’s literal meaning. For example,
<USER> congratulations. You have reached popu-
lar status and the spamming has begun. The cor-
rect class is complaint but the model misclassifies
it as non-compliant. The complainant’s absence of
straightforward disapproval or accusation could be
one of the reasons behind this.
Hallucinations: Predicting out of input sentence
information as spans: As generative models like
BART are designed to generate output based on the

complete vocabulary it is trained on, there are some
instances where model generates cause which con-
tains some information that is not present in origi-
nal input review. For example, for review The num-
ber is incomplete, the model generates the cause
of complaint as The phone number is incomplete.
However the the word phone is not present in the
input review.

6 Conclusion

In this paper, the explainability factor has been
considered while we try to tackle the complaint
detection problem. As explainable AI systems in-
crease trustworthiness and confidence when used in
real-time, and complaint detection systems benefit
different enterprises for robust customer support,
generating rationale behind actions performed is a
must. The current work makes two contributions:
(a) developing the first explainable complaint de-
tection dataset, which includes annotations of the
rationale/causal span employed in decision-making
(b) a commonsense-aware unified generative frame-
work has been developed to perform five tasks (CD,
SC, CE, PR, and ER) simultaneously. In order to
take advantage of the knowledge of sizable pre-
trained sequence-to-sequence models, this work
demonstrates how a multitasking problem could be
phrased as a text-to-text generation task. Our pro-
posed model outperforms all the baselines and the
SOTA for the three main tasks based on extensive
evaluation.
In future, we will focus on expanding explainable
complaint identification in the multimodal environ-
ment that considers image and text modalities.
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Limitations

We attempted to develop a novel framework for
explainable complaint identification in a multitask
setting. But the proposed approach is having some
limitations as enumerated below:
(1) The proposed methodology has been validated
on an English language complaint dataset; further
training would be required to scale up to code-
mixed language datasets which are prevalent in
multilingual countries.
(2) Users often post some images along with text
while writing complaints. The current system is
unable to handle such multi-modal forms of inputs.
(3) In some cases, users use an implicit sarcastic
tone while writing complaints. In the current setup,
sarcasm detection is not considered as a separate
task. Thus the proposed system will not be capable
of detecting complaints with implicit sarcasm.
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A Appendix

A.1 Annotation Instructions
Before the annotation procedure began the concept
of causal span detection and extraction, specifically
for complaint causes was defined to the annotators.
Complaint Cause is a portion of the text that ex-
presses why the user feels compelled to file a com-
plaint. It is the speech act used by the individual
to describe the circumstances in which their expec-
tations have been violated. The annotators were
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Tweet Complaint Severity Polarity Emotion
<USER> stiching on chino’s bought
1 month ago in <LOCATION> ripped, Complaint Blame Negative Sadness
no help from shop.
Great phone customer service
from <USER> thank you <USER> Non-Complaint Non-Complaint Positive Happiness
<USER> It started yesterday, but i
try again it could work normal. Complaint No explicit Neutral Other
But since last night its just like this. reproach

Table 6: Example instances of annotated X-Complain dataset. The red-colored text denotes the rationale span.

Model IOU F1 Token F1 AUPRC
HateXplain best model (Mathew et al., 2020) 0.222 0.506 0.841
ConC2D 0.243 0.553 0.851
FuseC2D 0.237 0.551 0.859

Table 7: Results of our t wo best performing models, ConC2D and FuseC2D, and the best performing model from
the work (Mathew et al., 2020) on the HateXplain dataset. IOU F1: Intersection over Union F1 score, AUPRC:
Area Under Precision-Recall Curve. The maximum scores attained are represented by bold-faced values.

instructed to mark causal span based on first en-
counter with strong expression of complaint reason
in the tweet, it could be any length of text. Some
example instances were also given before the anno-
tation procedure began.
For example: ’Disappointed with the seller. Prod-
uct delivery was quite fast, but the display is
scratched on the front and left side.’
Causal span annotated: ’the display is scratched on
the front and left side.’ In the given example the
first sentence shows weak intensity of complaint
cause. But the selected causal span shows strong
cause of complaint.
In circumstances where annotators disagree, the
final label is determined through majority voting
(cause vs. no cause). For ambiguous instances, the
authors discuss and clarify them with the annota-
tors during the annotation procedure.

A.2 Statistics related to X-CI dataset
The detailed statistics related to the extended Com-
plaints dataset are as follows:
(1) The original work by (Preotiuc-Pietro et al.,
2019) consists of 1,235 complaints and 2,214 non-
compliant tweets in English.
(2) The distribution of tweets across the severity
classes (SC task) as mentioned in the work by (Jin
and Aletras, 2021) is as follows: 435 tweets belong
to ‘No Explicit Reproach’, 378 belong to ‘Disap-
proval’, 225 belong to ‘Accusation’, and 197 be-
long to ‘Blame’.
(3) The distribution of tweets across the emotion
classes (ER task) as mentioned in the work of
(Singh et al., 2022) is as follows: 844 tweets be-

Model Total Parameters
T5 222903552
ConC2D 204199168
FuseC2D 139420416

Table 8: The trainable parameters for the proposed mod-
els (ConC2D, FuseC2D) and the SOTA model (T5)

long to ’Anger’, 7 tweets belong to ’Disgust’, 8
tweets belong to ’Fear’, 473 tweets belong to ’Joy’,
1,479 tweets belong to ’Other’, 626 tweets belong
to ’Sadness’, and 12 tweets belong to ’Surprise’.
(4) The distribution of tweets across the sentiment
classes (Singh et al., 2022) is as follows: 1,041
tweets belong to ’Negative’, 1,198 tweets belong
to ’Neutral’, and 1,210 tweets belong to ’Positive’.
For the CE task, we employed the macro-F1 met-
ric to assess inter-rater agreement based on earlier
studies on span extraction (Rajpurkar et al., 2016)
and obtained a 0.77 F1 score, indicating that the
annotations are of decent quality (mentioned in
Section 3.2, line no. 206 of the manuscript). The
other three tasks, SC, ER, and PR, have been in-
troduced in other works. The inter-rater agreement
for the main task SC is 0.64 (Fleiss’ Kappa score),
as reported in work by (Jin and Aletras, 2021). The
inter-rater agreement scores for the auxiliary tasks
ER and PR are 0.68 and 0.82 (Cohen-Kappa score),
as reported in work by (Singh et al., 2022). Ta-
ble 6 shows few example instances of causal span
annotation from the X-CI dataset.
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A.3 Performance of Proposed Models on
Different Dataset

To evaluate the performance of our model to de-
tect cause spans from longer texts, we tested our
approach on a benchmark dataset (‘HateXplain
dataset’) released in the work Mathew et al. (2020)
that contains posts from the online social network-
ing site GAB. It is also annotated with explanations
for hate speech labels.
We compared our two best models (ConC2D and
FuseC2D) with the best model mentioned in Hatex-
plain paper (Mathew et al., 2020), and the results
are shown in Table 7. We can observe from the
results that both of these models (ConC2D and
FuseC2D) are able to outperform their best model
on IOUF1, TokenF1, and AUPRC metrics.

A.4 Parameter Comparison Study
We report and compare the number of trainable
parameters for our models (ConC2D, FuseC2D)
with the best SOTA model (T5) in Table 8. It can be
observed from Table 8 that ConC2D has the least
number of parameters and is able to outperform
both models on most of the metrics.
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