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Abstract

Grammatical error correction (GEC) is the
task of correcting typos, spelling, punctuation
and grammatical issues in text. Approaching
the problem as a sequence-to-sequence task,
we compare the use of a common subword
unit vocabulary and byte-level encoding. Ini-
tial synthetic training data is created using an
error-generating pipeline, and used for finetun-
ing two subword-level models and one byte-
level model. Models are then finetuned fur-
ther on hand-corrected error corpora, including
texts written by children, university students,
dyslexic and second-language writers, and eval-
uated over different error types and origins. We
show that a byte-level model enables higher
correction quality than a subword approach,
not only for simple spelling errors, but also
for more complex semantic, stylistic and gram-
matical issues. In particular, initial training on
synthetic corpora followed by finetuning on a
relatively small parallel corpus of real-world
errors helps the byte-level model correct a wide
range of commonly occurring errors. Our ex-
periments are run for the Icelandic language
but should hold for other similar languages,
particularly morphologically rich ones.

https://github.com/mideind/
byte-gec

1 Introduction

Spelling mistakes due to typos and rushed writing,
nonstandard punctuation and spelling, and gram-
matical and stylistic issues are common to almost
everyone who writes any kind of text. This ap-
plies in any language and can distract the reader
or make the communication miss its mark. This
can hinder people who have difficulties writing text
conforming to a particular language standard, be it
due to disability, dyslexia, linguistic background,
limited access to education or any other reason.
Prejudice against people whose writing deviates

from the standard can make some shy away from
communicating with others, leaving their voices
out of important discussions and restricting their
opportunities (Alexander-Passe, 2015).

Grammatical error correction (GEC) is the task
of adjusting a text’s spelling, grammar, and lin-
guistic style to conform to an approved language
standard or convention (Rauf et al., 2017). While
the latest work on GEC is based on Transformer
models (Vaswani et al., 2017), the subword tok-
enization methods commonly used in these models
are a source of problems when it comes to typos
and other variants (Schmaltz et al., 2017). Subword
tokenization (Sennrich et al., 2016; Kudo, 2018)
was presented as a solution to the open vocabulary
problem, as it is a compromise between charac-
ter encoding and whole word encoding, enabling
unknown words to be represented using known
subwords.

However, a significant downside of subword to-
kenization is how it is affected by noisy input; if
a word contains a typo or other spelling variants,
this can completely shift its representation. In ad-
dition, in languages with rich morphology, a word
can have many different surface forms, some rarer
than others, that all carry the meaning of the base
word, but appear in different syntactic contexts. A
subword-tokenized model may struggle to capture
the nuances of such a language effectively since it
may need several different subwords to represent
a single word, depending on spelling and context.
When an unfamiliar variant of the word appears in
unseen text, the model is challenged to decode it
correctly, even when it results in uncommon sub-
word units.

Our motivation is that a byte or character-level
approach should intuitively be more robust to
spelling or morphology variations, as it is not con-
strained by the subword vocabulary. We explore
using a byte-level architecture, ByT5 (Xue et al.,
2022), for correcting everything from typos to com-
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Figure 1: Overview of training data and comparison of output. The Icelandic-English mBART-ENIS model and
the multilingual ByT5 and T5 models are first trained on generated parallel error corpora before being adapted on
curated (collected) true error corpora in Icelandic. The final models are compared on an error correction (EC) task
in Icelandic. The example demonstrates how the byte-level model performs well while the subword model cannot
see the individual characters in every word, leading to degraded performance.

plex grammatical issues in text. The language stud-
ied is Icelandic, a highly-inflected North Germanic
language. For instance, the morphological com-
plexity in Icelandic means that nouns can have up
to 16 different surface forms, and adjectives over
50. GEC for a morphologically complex language
needs to go beyond correcting only single words or
limited phrases; it needs to consider the syntax of
the whole sentence. This is the case for Icelandic
but also for other languages with rich morphology,
such as Arabic, Hebrew, Polish, Basque, Lithua-
nian and Hungarian, to name a few.

We compare the performance of the byte-level
architecture to two subword-based architectures;
ByT5’s predecessor, mT5 (Xue et al., 2021), and
an mBART (Liu et al., 2020) model that has been
pretrained further on both Icelandic and English.
We employ real and synthetic error data for train-
ing, and present models and a framework for error
generation methods that can be adapted to other
languages. For under-resourced languages such as
Icelandic (Rögnvaldsson, 2022), using synthetic
training data makes neural training for GEC a vi-
able option.

Our main contributions include a comparison
between subword tokenization and byte-level to-
kenization for GEC when training over a com-
bination of curated and synthesized data. We

demonstrate how byte-level models not only by-
pass subword-related issues, but can also correct
long-range errors in text. We release our error gen-
eration framework as well as models for GEC using
byte-level and subword tokens in Icelandic. While
our work focuses on the Icelandic language, we
have no reason to believe that similar results do not
hold for other languages, particularly those similar
to Icelandic in terms of morphological complexity.

2 Related work

The bulk of research on grammatical error detec-
tion and correction has been focused on English
and English learner texts, due to existing training
data and benchmarks, and the large market of En-
glish learners worldwide who benefit from an auto-
matic language correction tool (Náplava and Straka,
2019). While spelling and grammar errors appear
in every language, each language has its own set of
error types that are more common than others, due
to different phonetic, morphological and syntactic
characteristics.

2.1 Synthetic data generation for GEC

The problem of data scarcity in GEC, when ap-
proached as a sequence-to-sequence task, is typ-
ically addressed with synthetic data generation
(Stahlberg and Kumar, 2021). One approach to cre-
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ating ungrammatical sentences uses random char-
acter noise and simple rules to manipulate the text.
Another approach is using a spell checker in reverse
to noise text (Grundkiewicz and Junczys-Dowmunt,
2019). In contrast, others have used probabilities
derived from an annotated corpus of naturally oc-
curring errors to corrupt text (Felice and Yuan,
2014). Recent efforts widely employ neural net-
works to create synthetic errors (Stahlberg and Ku-
mar, 2021); many use methods derived from ma-
chine translation (Junczys-Dowmunt et al., 2018),
for example, by creating worse text using deliber-
ately bad translation models (Xie et al., 2018; Zhou
et al., 2020) or roundtrip translations between lan-
guages (Lichtarge et al., 2019). Yet another option
is to leverage available resources with edits, such as
Wikipedia edit histories, to generate corrupted cor-
pora (Grundkiewicz and Junczys-Dowmunt, 2014).

2.2 Sequence segmentation for GEC

GEC can essentially be considered the task of gen-
erating grammatical target text from an ungram-
matical source, similar to machine translation. The
idea of approaching GEC as a machine transla-
tion problem dates back to 2006 (Brockett et al.,
2006), and this approach has since become the most
prevalent method of GEC, with the focus shifting
from statistical machine translation (SMT) to neu-
ral methods as they developed (Yuan and Briscoe,
2016; Ji et al., 2017; Schmaltz et al., 2017; Chol-
lampatt and Ng, 2018; Junczys-Dowmunt et al.,
2018). However, phrase-based SMT continued to
be the state-of-the-art for GEC for longer than in
the field of interlingual neural machine translation
(NMT) (Junczys-Dowmunt et al., 2018). This is
partly because of the data scarcity problem and
partly because of the tokenization methods typi-
cally used in transformer models. Breaking words
up into subword units decreases the vocabulary
size while addressing the out-of-vocabulary prob-
lem (Sennrich et al., 2016). A prominent drawback
of this approach is that the fixed subword vocabu-
lary makes the models sensitive to noise in the text
(Tay et al., 2021; Eger and Benz, 2020).

In a subword-based GEC model, when a word
contains a typo or is spelled unconventionally, it
may look like an unknown word, for which no
known representation exists. The model may then
segment the word differently from what was seen
during training, causing mispredictions. If the sub-
word representation for “different” is [_diff, er,

ent], but the word is misspelled as “diffirent”, its
subwords might be [_diffi, ren, t], and a
subword-based GEC model might correct the typo
by outputting a different word, [_diffi, cul, t].
This issue is highlighted in Figure 1, also showing
how a byte-based approach is not limited by this
issue.

This is also true for unseen words that are
correctly spelled, such as foreign-named entities,
which can lead to the subword-based GEC model
“correcting” a perfectly spelled word it has not seen
before, by replacing it with the most likely candi-
date. In the sentence “The tournament was held
in Espoo, Finland.”, the place name “Espoo” may
be represented by a single subword token Espoo.
Since this token is unfamiliar, the model finds the
most likely subword token for this particular sen-
tence, Helsinki.1 This changes the semantics of
the sentence and can introduce serious errors. The
result is a grammatically correct and meaningful
sentence, but the semantics have drifted away from
the original text.

Due to this known shortcoming of subword tok-
enization (Schmaltz et al., 2017), efforts have been
made to design architectures where the characters
or the underlying bytes are used directly as input
tokens. Byte and character-level models inevitably
result in much longer sequences than subword mod-
els, making them more costly to train, and slower in
inference. Some truly token-free general-purpose
architectures that are increasingly competitive to
token-based models have emerged recently, includ-
ing CANINE (Clark et al., 2022) (character-level),
PIXEL (Rust et al., 2023) (text-to-image), and
ByT5 (Xue et al., 2022) (byte-level). The train-
ing of ByT5 is based on the subword-based mul-
tilingual mT5 (Xue et al., 2021) approach, but in
comparison, the model is equipped with a heav-
ier encoder (three times the depth of the decoder).
Compared to mT5, ByT5 is more robust to noisy in-
put, but inference is slower (1.5 to 2.6 times slower
on average on a transliteration task, and up to 9
times longer on tasks with longer input sequences)
(Xue et al., 2022). Another approach to making
subword models more robust is using subword reg-
ularization to produce multiple segmentations of
the same word (Kudo, 2018; Provilkov et al., 2020).
This is commonly used for addressing the open vo-
cabulary problem and noisy data, such as ungram-

1Actual example from our evaluation data, generated by
an mBART subword model.
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matical text.
Despite the reported advantage of character or

byte-based Transformer models on noisy text (Li-
bovický et al., 2022), work using this approach
to GEC is not very common. A notable excep-
tion is work for GEC in the Lithuanian language,
where ByT5 has been used for diacritics restora-
tion (Stankevičius et al., 2022) and limited GEC
(Stankevičius and Lukoševičius, 2022). They gen-
erate synthetic data by applying noise (common
typographical errors, swapping letters for similar
sounding ones, other non-grammatical word-level
noise) to a crawled and filtered corpus and com-
pare results when training with T5 and ByT5. Their
findings agree with ours that the byte-level model
outperformed the subword model.

Our work deviates from that of Stankevičius et al.
(2022) in the following key ways: We (a) generate
more sophisticated and realistic errors using gram-
matical information from part-of-speech (PoS) tags
and using custom rules based on empirical find-
ings; (b) combine generated error data with true
error corpora from a wide range of demographic
sources; and (c) explore in detail which error and
text types benefit the most from finetuning on true
error corpora, as opposed to training on synthetic
data. As far as we are aware, no attempt at byte-
level Transformer-based GEC, trained on synthetic
and real error corpora, has been published. Concur-
rent work using ByT5 for Icelandic is (Jasonarson
et al., 2023), where errors in the OCR output of
historical Icelandic texts are corrected using a gen-
erated corpus of errors extracted from real data.

Current state-of-the-art in GEC is based on
sequence-tagging methods (Omelianchuk et al.,
2020), which instead of generating whole se-
quences, tag the erroneous sentence with its cor-
rections, and on sequence-to-sequence methods, as
has been described. Further work has explored au-
tomatic character transformations for GEC tagging
(Straka et al., 2021) to better handle character-level
errors. One of the current highest-scoring models
on English GEC benchmarks is gT5 (Rothe et al.,
2021), which is based on the mT5 model.

2.3 Prior work for Icelandic

Apart from some rule-based spell checkers that
don’t make use of the full context, one rule-based
correction system exists for Icelandic, based around
parse trees, GreynirCorrect (Óladóttir et al., 2022).
This system is contingent on the sentence parsing

according to a pre-defined context-free grammar,
and can only handle issues that fit pre-defined rules.
This setup is both a strength and a weakness as the
system is highly configurable and capable of many
things, such as detecting syntactic inconsistencies
and errors, and can give the user useful information
on the errors found. Still, when a text has many
errors, complexity builds up and rules can start in-
terfering. Sentences containing many issues, such
as from users with dyslexia, generally have lower
accuracy using this method.

The work presented here is the first where neural
networks are used in GEC for Icelandic. Snæb-
jarnarson et al. (2022) use neural methods for de-
tecting such errors, but not for correcting them.

3 Methods

3.1 Curated dataset

A single collection of parallel error corpora exists
for Icelandic, the Icelandic Error Corpus (IceEC).
The corpora are annotated and corrected by lan-
guage experts (Arnardóttir et al., 2021). The dataset
is highly granular in its categories, containing hun-
dreds of labels, but with a limited number of high-
level groups (coherence, grammar, orthography,
style and vocabulary).

The IceEC is split into a larger general corpus
and three specialized corpora (Arnardóttir et al.,
2022). The general one contains 58,239 sentences
of student essays, online news texts and Wikipedia
articles. This corpus is annotated with around 50k
errors of different categories. The three special-
ized corpora are much smaller and contain texts
from Icelandic language learners (6270 sentences),
dyslexic native speakers (1362 sentences), and chil-
dren (2070 sentences), volunteered by the users
themselves. These smaller corpora contain more
errors per sentence than the general one, and add
diversity to the training data.

This curated error data was used for finetuning
our models, and combined into one training dataset
for a total of 64k input sequences (single sentences),
after setting aside validation and test data. The
general IceEC also includes a 5.3k sentence test set
used for evaluation.

3.2 Synthetic dataset

We applied a diverse set of methods for error gen-
eration, both using linguistic knowledge and ran-
dom noising methods. This rule-based approach to
synthetic data generation gave us control over the
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Noise

1. Grammatical case swapped in nominals*
2. Indicative changed to subjunctive*
3. Dativitis*
4. Spaces added to words according to morphological

rules*
5. Known misspellings added
6. Spaces deleted between words
7. Commas deleted from sentence
8. Word order swapped
9. Words duplicated
10. Characters duplicated
11. Characters dropped
12. Characters swapped according to simple

language-specific rules (y ↔ i, ýi→ýji ...)
13. Characters accented or accents removed

(a↔á, I↔Í ...)
14. Random character replacement

Table 1: Noise and modifications used on a high-quality
corpus (IGC) to generate synthetic training data. We
use * to indicate noise that relies on PoS tags and/or
morphological lookup.

types of noise applied, and allowed us to generate
evaluation data for each error type.

As our basis of correct text to be noised, we
used the Icelandic Gigaword Corpus (IGC) (Ste-
ingrímsson et al., 2018), a collection of Icelandic
editorial texts. These are mostly news articles, pub-
lished literature and legal texts. We selected from
this corpus those text sources that are the most
likely to have been reviewed as part of the edi-
torial process of each publication/source (litera-
ture, journals, news, laws, adjudications and tran-
scribed parliamentary speeches). Some of these
texts still have their share of typos and other er-
rors and inconsistencies, especially the news arti-
cles, which were deemed important training data
because of their general vocabulary, not found in
the more formal text sources. As a preprocess-
ing step, we filtered out lower-quality and irrele-
vant sentences, by removing sentences containing
mostly foreign texts, illegal characters and words
with known misspellings, sourced from lists of
common misspellings. The corpus was tokenized
using the Greynir Tokenizer (Þorsteinsson et al.,
2019) and PoS tagged using the GreynirSeq tagger
(Snæbjarnarson et al., 2022).

We generated three categories of errors: 1) noise
within words; 2) noise at the sequence level; and 3)
grammatical and morphological modifications. The
first two resemble those used when noising back-
translation data (Edunov et al., 2018). The third
type is based on using available tools and linguistic

Source Text

Synth Atvinnuleisi er ekki eein afff a4f ástæðna fólks-
fækkun áNorðurlandi véstrá.

Orig Atvinnuleysi er ekki ein af ástæðum fólksfækku-
nar á Norðurlandi vestra.

Synth Ég er mað 4eita að ogg vynnu mér langarað fá
að skoða atvinnuauglýsingrnar.."

Orig Ég er að leita að vinnu og mig langar að fá að
skoða atvinnuauglýsingarnar.

Table 2: Synthetic error examples.

knowledge to create errors that are unlikely to be
formed randomly, but resemble those of human
writers.

In order to explore to what extent subword and
byte-level models can learn and generalize gram-
matically complex issues in a morphologically rich
language, we go beyond naive language-agnostic
noising of text. A more detailed explanation of
the Icelandic-specific noise is given in Appendix
C. The noise methods are shown in Table 1. This
is by no means a finite list of linguistic variants or
errors found in Icelandic texts, but constitutes ex-
amples chosen for studying the model performance
on these more grammatically complex challenges.

The error generator allows for noising levels to
be configured via hyperparameters. Experiments
with different noise ratios in the synthetic data
showed that highly noised text provided the best
training examples, without the models learning to
“overcorrect“, i.e., to introduce false positives. In-
stead of producing even more synthetic data, we
geared up the noise to produce highly error-dense
examples, setting the random and more naive error
noise to appear in 80% of cases, and the rule-based
error noise to be used wherever possible.2 Exam-
ples of parallel sentences with and without syn-
thetic errors are shown in Table 2. A total of 35M
synthetic parallel sentences were generated using
these methods. 2000/4000 lines were set aside for
validation/testing, respectively, and special evalu-
ation sets were generated for each error type (see
Section 4).

3.3 Models
We compared three model architectures to evaluate
the differences between using subword tokeniza-
tion and a byte-level method. Comparing models
with different architectures calls for defining which

2This may seem excessive, but preliminary experiments
with the mBART model showed that lower noise ratios resulted
in too much copying behavior.
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factors are compared. In particular, byte sequences
are longer than subword sequences when count-
ing the number of tokens, roughly 4 times longer
on average in the original multilingual mT5/ByT5
training data (Xue et al., 2021). And as Xue et al.
(2022) note, the mT5 architecture tends to need
less training time than ByT5. We compared the
models after an equal amount of training samples
(100k updates). We also continued the training of
the ByT5 model, using more than five times the
number of updates.

3.3.1 mBART
We continued training of the pretrained multilin-
gual BART25 model (mBART) (Liu et al., 2020),
using the original pretraining objective on texts in
Icelandic and English. The training of the model
is detailed in Appendix A. This model, mBART-
ENIS, was then finetuned on the synthetic error
data, to teach it to correct errors in Icelandic texts.

Training on the synthetic error data was per-
formed with an effective batch size of 3000 in-
put tokens (roughly 60 sequences), a learning rate
of 3e-5 with an inverse square root scheduler, 0.1
dropout, 0.3 attention dropout, 1000 warmup steps,
0.1 label smoothing, no weight decay, and using
the Adam optimizer, for 100k updates on an A100
card for a day.3

In addition to the above experiments, we con-
ducted separate experiments using segmentation
regularization (Kudo, 2018) to introduce more
noise to the training examples and explore alterna-
tive measures to mitigate the subword tokenization
problem. The BART architecture uses unigram sub-
word units; we applied subword regularization with
α = 0.7 and keep all other parameters unchanged.

3.3.2 ByT5
For the byte-level approach we employed the ByT5-
base model (Xue et al., 2022), which is based on
the multilingual T5 model (Raffel et al., 2020),
but operates on bytes instead of subwords. The
ByT5 model is pretrained on over 100 languages,
but has only seen a limited amount of Icelandic.
The mC4 dataset which is used to train ByT5 and
mT5 is also lacking in quality for low-resource
languages, in particular for Icelandic, as shown by
Snæbjarnarson et al. (2022).

The pretraining task in ByT5 has been adapted

3The model had not completely converged, but little gains
were observed on the validation data when compared to train-
ing for 150k updates.

to a byte-level model, with span infilling based on
bytes, not subwords. Apart from this, the main
difference between the mT5 and ByT5 model ar-
chitecture is the heavier encoder of ByT5.

Sequences in byte-level architectures are long
and correspond more or less to the number of char-
acters in Icelandic, resulting in increased training
time. We trained the ByT5-base model using a
maximum sequence length of 512 bytes, which
was found to be a reasonable compromise, as most
sentences in Icelandic texts are shorter than this.

The ByT5-base model was finetuned on the syn-
thetic data with an effective batch size of 32 se-
quences (sentences). The learning rate was set to
2e-5 using the Adam optimizer with 1000 warmup
steps and no weight decay. This model was further
trained for a total of 550k updates, or 13 A100 card
days.4

3.3.3 mT5
For a more direct comparison of byte-level and
subword-level models, we also finetuned the mT5-
base (Xue et al., 2021) model on the same data,
with the notable difference to the mBART model
that it was not further trained on Icelandic. The
mT5 models were pretrained on the same data as
ByT5 and have a similar architecture, as described
above, and are thus as comparable as subword and
byte-level models can be. As previously mentioned,
mT5-base is the base for the state-of-the-art gT5
(Rothe et al., 2021) model for multilingual GEC.

We finetuned the mT5-base model on the syn-
thetic data using the same parameters as in our
ByT5-base finetuning and evaluated it at 100k up-
dates.5

3.4 Finetuning on curated corpora

Using the curated error corpora (IceEC), we fine-
tuned the byte-level and subword-level models to
convergence. For the mBART model, this meant
training with a learning rate of 2e-6 for 53k up-
dates (67 epochs), with attention dropout set to 0.1,
weight decay to 0.001 and other parameters being
the same as during the synthetic finetuning.

4Training was stopped after two weeks due to computing
limitations, even though the validation loss was still decreas-
ing. However, this potential undertraining is not crucial to our
results, as we are mostly interested in evaluating the model
at earlier stages. This should be taken into consideration in
future work.

5The models had not completely converged at this point,
but we only saw marginal gains by adding 80k more steps to
the synthetic finetuning.
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The ByT5 and mT5 models were finetuned with
a learning rate of 2e-6, other parameters were the
same as during finetuning on the synthetic data.
The ByT5 model had converged at 120k updates
(60 epochs), while the mT5 was still improving on
the validation data at 200k updates (100 epochs),
but with time we found it forgot too much of the
synthetic error correction task. We report evalua-
tion scores at 130k.

For comparison, we also finetuned the different
models (mBART-ENIS, mT5 and ByT5-base) on
the IceEC data only, without the synthetic finetun-
ing phase. This was done to examine how much the
models learn from the added synthetic examples,
and how far we can get using a small amount of
hand-corrected examples. The mT5 and ByT5 mod-
els were trained for 100k updates and the mBART-
ENIS model for 10k updates.

4 Results

Different metrics exist for evaluating GEC perfor-
mance, but most are language-specific, and have
not been adapted to Icelandic. Here we employ
a language agnostic metric for scoring our mod-
els, the GLEU score (Napoles et al., 2015, 2016).
GLEU6 is a variant of the BLEU (Papineni et al.,
2002) score used to evaluate machine-translation
output. It has been modified to account for both
the source and the reference, by rewarding overlap
between the source and the target sentence, and
penalizing n-grams that should have been changed,
but were not.

When evaluating GEC for English, ERRANT
(Bryant et al., 2017) is commonly used. It is a span-
based correction method that uses the F 0.5 metric,
where precision weighs twice as much as recall.
Though this metric has not been implemented for
Icelandic, we also report ERRANT scores using
a language-agnostic approach, disregarding error
types and only reporting the span-based F 0.5 scores
for each test set. These results are shown in Table
5 in Appendix E; they align well with the GLEU
results in Table 3 which are described below.

We consider a variety of curated and synthetic
test sets to get a good overview of the differences
between the byte-level and subword-level approach
for GEC. For the real errors, we report scores over
the IceEC.test set, the test set from the IceEC,
which contains around 5000 sentences. In con-

6Not to be confused with Google BLEU, also called GLEU
(Wu et al., 2016).

trast, the dyslexic, L2 and children test sets contain
500 held-out sentences each from the respective
specialized error corpora described in section 3.1
(only 100 examples were collected for the dativitis
error type, a rarer occurrence in the data). We also
annotated a small dataset (163 sentences) of data
from an Icelandic news outlet (news), where each
sentence contains at least one error; this is further
described in Appendix B.

For the synthetic errors, we report GLEU scores
over the test.synth set, which contains around 4000
held-out sentences from the synthetic data. Fur-
thermore, we generated test sets of synthetic exam-
ples, each containing a particular error type in each
sentence (dativitis, spaces, commas, dupl-words,
mood, rand-noise, noun-case). This last group
of test sets was generated using source texts that,
while editorial, may include other errors, just like
the synthetic training examples. The models, as
they get better, learn to correct these errors as well.
This may paradoxically lower the GLEU score as
the corrected output deviates from the erroneous
reference. These generated test sets still provide
valuable information about what the models learn
about each error type in isolation.

To understand what approach is best suited
for GEC we trained the models on different data
combinations and using different pre-trained mod-
els. The Synth-100k models are all trained for
100k updates on the same synthetic data, and the
Synth-100k-EC models are additionally finetuned
on the curated IceEC error corpus. To provide
a baseline for the GLEU scores, we also report
no_corr scores, where the source text is not cor-
rected. This gives some idea of the noise level of
the test sets, with test.synth being the noisiest and
IceEC.test containing the least noise.

The GreynirCorrect (Óladóttir et al., 2022) (GC)
results were produced by applying GreynirCorrect
to the test sets in its two configurations; correcting
single-word errors on the one hand (spell.) and all
errors found on the other (all). The GC system was
developed in part to focus on the error categories
and error frequencies defined in the IceEC training
data, and this may be reflected in the scores for
the IceEC test sets (asterisked in Table 3). The
news test set (†) was created using only sentences
flagged by GC (see Appendix B) and is therefore
heavily biased towards that system.

Models trained only on the synthetic data (Synth
100k) generally perform best on the synthetic er-
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CURATED ERROR CORPORA SYNTHETIC ERROR CORPORA
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(not trained) no corr. 83.4 39.1 47.5 33.3 76.6 2.9 74.3 72.3 65.8 79.0 65.9 64.6 31.0

(rule-based) GC (spell.) 84.6∗ 44.2∗ 47.3∗ 38.2∗ 89.1† 31.8 73.4 75.6 65.1 92.8 65.4 83.8 30.6
GC (all) 83.6∗ 44.6∗ 47.3∗ 38.2∗ 92.9† 31.8 88.0 74.6 63.5 97.4 67.6 84.1 37.8

Synth 100k mB-ISEN 83.4 44.5 48.4 39.1 83.3 89.9 90.0 98.0 73.8 98.4 88.1 96.7 87.9
mB-ISEN+reg 83.4 44.5 48.3 39.3 83.4 90.1 89.8 97.9 75.6 98.2 88.9 96.8 88.5
mT5 83.4 44.1 47.4 38.3 83.4 84.4 83.5 97.6 71.7 97.9 83.8 95.5 82.8
ByT5 83.6 46.1 48.9 39.7 84.0 91.5 94.3 98.2 76.6 98.2 83.0 96.8 88.7

Error Corpora (EC) mB-ISEN 85.3 45.0 52.2 38.9 82.2 12.0 73.0 88.3 65.9 86.0 80.0 74.5 47.1
mB-ISEN+reg 85.7 46.8 53.6 42.3 82.8 13.8 74.1 89.6 66.7 85.4 80.8 75.2 48.8
mT5 84.6 41.7 46.4 36.8 78.5 4.4 73.3 82.2 64.8 81.9 65.4 65.5 30.3
ByT5 85.9 46.5 50.6 43.4 81.8 20.0 72.2 90.0 69.1 89.0 71.2 75.0 32.7

Synth 100k + EC mB-ISEN 86.5 50.0 57.6 47.6 86.3 79.3 89.6 95.6 72.0 96.2 87.3 93.0 77.7
mB-ISEN+reg 86.4 50.8 56.8 47.5 86.1 80.1 90.1 96.1 72.5 96.9 87.6 93.4 79.8
mT5 86.3 47.4 52.8 42.9 85.8 65.0 75.3 95.3 69.1 95.6 80.1 90.4 57.7
ByT5 87.0 53.4 58.3 50.1 87.8 80.5 93.1 96.6 72.9 81.3 86.4 93.5 81.0

Synth 550k ByT5 84.2 46.3 49.4 40.9 84.3 95.0 96.4 98.0 78.9 97.0 86.5 97.2 91.4
Synth 550k + EC ByT5 87.4 54.9 59.6 51.9 89.4 88.5 93.0 96.8 75.5 88.6 88.2 94.8 90.2

Table 3: GLEU scores for Icelandic GEC over different model and data combinations. The two highest-scoring
configurations for each subcorpus are in bold while the highest score is underlined. Scores marked with a symbol
are explained in Section 3.

ror corpora and thus solve the more simple and
systematic spelling errors such as mistakes in punc-
tuation, missing white space and word duplication.
Their performance on the curated error corpora is
somewhat lacking.

In contrast, models trained only on the curated
error corpora (EC) generally produce somewhat bet-
ter GLEU scores on the curated error corpora than
the Synth 100k models, but do not generalize to
the error categories presented in the synthetic test
sets. They are also unable to correct multiple errors
in a single sentence (test.synth).

Training on the synthetic data and then fine-
tuning on the curated error corpora (Synth100k/
Synth550k+EC) performs best on the curated er-
rors and retains much of the performance on the
synthetic test sets. In all of these experiments, we
can see that the ByT5 models generally perform
better than the subword counterparts.

This is also reflected in the ERRANT scores in
Appendix E, Table 5, where the ByT5 models score
highest overall.

5 Discussion & Conclusion

Our results show that the ByT5 models are the over-
all high-scorers on the real-world test sets, and on
most of the synthetic ones. We include finetuning
results on the ByT5 model that has been trained
for longer on the synthetic data (550k updates) to

compare how performance improves with time. We
see the GLEU scores keep going up with time, and
more importantly, when taking a close look at the
actual generated output, this is the model that best
corrects real-world errors. This makes it the most
feasible option for use in real-world scenarios. A
comparison of the output of the models trained on
both data sources is shown in Appendix D.

An example from the test data is
when the subword-tokenized model
mBART-ENIS-Synth100k+EC incorrectly changes
the name of a person from a rare name (“Láretta”)
to a more common one (“Lára”). This kind of
error is not seen in the byte-level model, which is
quite conservative in its corrections of unknown
entities. While this means ByT5 occasionally
misses actual errors, we find that it is much better
suited for production than a subword-level model
that makes serious semantic errors. These more
nuanced error correction examples may not be
fully captured by the automated metrics, but are
crucial for real-world use.

The subword regularization experiments are
included as an alternative approach for mitigat-
ing the subword tokenization problem. The re-
sults are marginally better than the model without
subword regularization when trained on the syn-
thetic data, and the model performs better than
the ByT5-Synth100k model in the case of dupli-
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cate words, which linguistically is a quite trivial
task, and in more intricate mood errors. It however
doesn’t do any better than the mB-ISEN-Synth100k
trained without subword regularization on the cu-
rated datasets, and this also holds when the model
is finetuned additionally on curated data. The
model finetuned on only the curated data with sub-
word regularization (mB-ISEN-reg-EC) however
performs consistently much better than its coun-
terpart without subword regularization, often on
par with or surpassing ByT5. This model has not
seen any of the highly noised synthetic data, and
thus has the most to gain from the subword noise.
We speculate that this is one of the reasons we
don’t see more gains from adding subword regular-
ization; the training examples are already so highly
noised that there is not much to be learned from the
added subword noise.

The IceEC finetuning data contain real-world er-
rors which have been hand-corrected. These texts
are somewhat different from the highly noised train-
ing examples with synthetic errors, have fewer er-
rors on average and are more varied as they are
naturally occurring. They also include stylistic ed-
its from the reviewers, which improve the text’s
fluency, but in those cases the original is not neces-
sarily incorrect as per the language standard. With
these differences in mind, we expect the models to
have to forget some of the synthetic error correction
task in order to adapt to this “new” denoising task.
We see this happen in the mBART-ENIS finetuning
on the curated data, and to a lesser extent in the
ByT5 finetuning. The denoising task performance
on the synthetic errors from the previous step has
in part been lost, which is expected, since some
of these errors are not particularly common in real
texts.

For the more grammatically complex error-types
in the synthetic data (dativitis and changes to noun
cases and verb moods), we find that the mBART-
ENIS trained on synthetic data generally does well;
for some subsets even surpassing the ByT5 coun-
terpart that was finetuned on curated corpora. We
suspect that this has to do with the linguistic knowl-
edge the model has already gained during its pre-
training on Icelandic texts, as explained in Ap-
pendix A. The ByT5 model that was trained for
longer however manages to surpass it on the mood
error type, indicating that it is still adapting to the
Icelandic language, alongside its primary denoising
task.

The models trained on only the finetuning data
perform the worst throughout. The results show
that they do not manage to correct the synthetic
categories much beyond the baseline, except for
mBART-ENIS in some cases. We expect that this
has to do with their extra knowledge of Icelandic
and the denoising objective used in the synthetic
error correction finetuning. The results for these
models on the curated in-domain test sets are in
fact mostly on par with the models finetuned on
the synthetic data only. Looking at the generated
output, we see that the error types these models
correct are not the same as those that the synthetic-
only models are able to correct, which is expected,
as they are trained on different data.

We conclude that adopting a byte-level approach
rather than a subword approach leads to best results
for the task of GEC, at the very least in the case of
a morphologically rich language such as Icelandic.
Finally, we find that the optimal way of capturing
a wide range of errors is to train on a combination
of synthetic and curated data, particularly when the
curated data is limited.

Limitations

Potential limitations to our work can mainly be
attributed to two factors: 1) the fact that we run our
experiments using the Icelandic language, and 2)
inherent biases in the corpora we use.

Icelandic is North Germanic language (along
with Faroese, Norwegian, Danish and Swedish).
As such, it is both Germanic and Indo-European.
While we are fairly confident that our results hold
for these languages, different results may hold for
other languages, particularly those not using Latin
script or those using logograms, such as Chinese
characters.

The curated datasets we use only represent a
fairly small proportion of all possible demograph-
ics and users of the Icelandic language. In partic-
ular, annotations are performed by a handful of
university students, bringing in their biases to the
annotated data. Even so, the data should serve well
to compare the relative differences.

The resources we use to develop the models con-
sist of a few high-performing GPUs. While these
are powerful, this is a relatively low requirement
compared to many industry or academic use cases.

Finally, it is worth re-iterating that the ByT5
model we use is slow compared to subword-based
models for texts of similar length. Inference in our
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setting was around 2.3x slower on average than for
mT5. As such, production use of these methods
may be better suited to offline processing, particu-
larly for longer documents.

Ethics Statement

While we do not believe the data we use to train the
error-correcting models to be sensitive, the models
can be applied in sensitive settings where an incor-
rect edit may cause an issue. As such, corrections
may introduce both stylistic or semantic changes
based on either the biases found in the pretrained
models or the curated error corpora.

In particular, we have noticed a bias in the
subword-based models for entities, such as loca-
tions, being overcorrected to a different entity if
there is a spelling mistake in the input.

The stylistic changes found in the curated Ice-
landic corpora may reflect on the socio-economic
background of the annotators and writers of the
data. While we don’t believe this to be a large issue
in this particular setting, one can easily imagine
this to be more complex in regions where language
use is connected to disputes or oppression. As
such, a text correction or improvement tool could
be used to homogenize discourse or otherwise limit
freedom of expression, knowingly or unknowingly.
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Towards Lithuanian grammatical error correction. In
Artificial Intelligence Trends in Systems, pages 490–
503, Cham. Springer International Publishing.
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A mBART-ENIS training

We continued the pretraining of the multilingual
BART25 model using texts from various sources
in Icelandic and English. The Icelandic text used
was the Icelandic Common Crawl corpus (IC3)
(Snæbjarnarson et al., 2022), IGC (Steingrímsson
et al., 2018), papers published in the Icelandic
Medical Journal (https://hirsla.lsh.is), text
extracted from Icelandic student theses (https:
//skemman.is), and Icelandic e-books in the pub-
lic domain (https://rafbokavefur.is). English

data used was the Newscrawl 2019-2020 dataset
(Tiedemann, 2012), English Wikipedia and the
Books3 corpus (Kobayashi, 2018).

The goal of the pretraining is that the model
already has some knowledge of the Icelandic lan-
guage. English is included as we speculate that it
is beneficial to continue including a language used
in the earlier training, making the model a better
starting point for other use cases such as machine
translation and cross-lingual transfer tasks.

Due to the English data outnumbering the Ice-
landic data, we upsampled the Icelandic data by
about a factor of 6.5, resulting in a sample language
probability of 55% English and 45% Icelandic.

The model has 354M non-embedding parame-
ters, and 256M parameters for embeddings. Note
that not all of them are used when only training on
Icelandic and English. The model was trained for
316k updates with an effective batch size of 44k
tokens per update, 5k warmup steps, a learning rate
of 7.5e-5 and a dropout of 0.2. Other hyperparame-
ters, such as for noising, were the same as for the
original mBART model. The training took approxi-
mately 18 A100 days but was not continued until
convergence due to computational constraints.

B News test set collection and annotation

We collected a small test set of erroneous sentences
by running news articles from the RÚV (National
Icelandic Broadcasting Service) website through
the open-source GreynirCorrect (Óladóttir et al.,
2022) spelling and grammar correction tool for
Icelandic. We filtered out the sentences flagged
as containing errors, and manually chose 163 sen-
tences that contained only a single obvious error,
for evaluation clarity. The sentences were then
hand-corrected by a linguist and used as an addi-
tional test set in our experiments. (Since Greynir-
Correct was used to find the erroneous sentences,
this test set is unreliable for evaluating that particu-
lar system’s performance.)

C Icelandic-specific grammatical noise

We generated various grammatical errors to cre-
ate our synthetic error corpus. Icelandic has four
grammatical cases; we swapped those randomly
in nouns, producing ungrammatical sentences of
a type commonly seen in learner texts. We also
changed the mood of verbs from the subjunctive to
the indicative, a variation often seen for both native
speakers and learners. Another common variation,
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which is more or less accepted in informal language
but still discouraged in formal language and written
texts, is the so-called “dativitis”, i.e., the use of the
dative case instead of the accusative or nominative
with certain verbs with oblique subjects, such as
“mér (dat) hlakkar” (“I look forward to”) instead
of “ég (nom) hlakka”, or “Páli (dat) langar” (“Páll
wants”) instead of “Pál (acc) langar”. This modifi-
cation was produced using the Greynir engine by
extracting and modifying whole nominal clauses.

We used available resources to apply realistic
misspellings to single words – these are lists of
common misspellings and their corrections. We lo-
cated the corresponding correctly spelled words in
the corpus and substituted their misspelled variants
from the error lists. The error lists are sourced
from nonwords and misspellings in IceSQuER
(Arnardóttir et al., 2020), the IceEC (Arnardóttir
et al., 2021), The Database of Modern Icelandic
Inflection (Bjarnadóttir, 2019), and GreynirCorrect
(Óladóttir et al., 2022).

D Example outputs

We selected three sentences at random from the
dyslexia subcorpus of the IceEC. These sentences,
their corrected reference and the respective cor-
rected outputs from various model variants can be
seen in Table 4. The examples show some of the
paraphrasing and stylistic changes that appear in
the IceEC, which can be substantial, and that we
don’t expect the neural models to mimic.

E ERRANT results

Table 5 presents ERRANT scores for the test sets.
The data is tokenized and converted to M2 format,
then evaluated using the original ERRANT scorer
developed by Bryant et al. (2017).
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Model Text

Original Ef notandi valdi að ítta á rétt kemur upp þessi síða þar sem notandi getur
seð nánar um réttin með innihaldsefnun og næringaupplýsingum.

Reference Ef notandi valdi að ýta á rétt kemur upp þessi síða þar sem notandi getur
séð nánari upplýsingar um réttinn, innihaldsefni og næringarupplýsingar.

mB-ISEN-Synth100k+EC Ef notandi valdi að ýta á rétt kemur upp þessi síða þar sem notandi getur
séð nánar um réttinn með innihaldsefnunum og næringarupplýsingum.

mT5-Synth100k+EC Ef notandi valdi að ýta á rétt kemur upp þessi síða þar sem notandi getur
seð nánar um réttinn með innihaldsefnun og næringaupplýsingum.

ByT5-Synth100k+EC Ef notandi valdi að ýta á rétt kemur upp þessi síða þar sem notandi getur
séð nánar um réttinn með innihaldsefnum og næringarupplýsingum.

ByT5-Synth550k+EC Ef notandi velur að ýta á rétt kemur upp þessi síða þar sem notandi getur
séð nánar um réttinn með innihaldsefni og næringarupplýsingum.

Original En aftur á móti hefur sá hópur sem reykir marjúana daglega eining stækkað,
en dregið úr áfengisneyslu.

Reference Sömuleiðis hefur dregið úr áfengisneyslu. Aftur á móti hefur sá hópur sem
reykir marijúana daglega einnig stækkað.

mB-ISEN-Synth100k+EC En aftur á móti hefur sá hópur sem reykir marjúana daglega eining stækkað,
en dregið úr áfengisneyslu.

mT5-Synth100k+EC En aftur á móti hefur sá hópur sem reykir marjúana daglega eining stækkað,
en dregið úr áfengisneyslu.

ByT5-Synth100k+EC Aftur á móti hefur sá hópur sem reykir marjúana daglega einnig stækkað,
en dregið úr áfengisneyslu.

ByT5-Synth550k+EC Aftur á móti hefur sá hópur sem reykir marijúana daglega einnig stækkað,
en dregið úr áfengisneyslu.

Original Það koma alltaf sama villan sem má sjá _ mynd 1.
Reference Það kom alltaf sama villan sem má sjá á mynd 1.
mB-ISEN-Synth100k+EC Það kemur alltaf sama villan sem má sjá á mynd 1.
mT5-Synth100k+EC Það koma alltaf sama villan sem má sjá á mynd 1.
ByT5-Synth100k+EC Það koma alltaf sama villan sem má sjá á mynd 1.
ByT5-Synth550k+EC Það kom alltaf sama villan sem má sjá á mynd 1.

Table 4: Example outputs from selected models, on evaluation data sourced from the IceEC dyslexia corpus. Red
indicates an error, and teal a correct word or phrase in the context of the sentence. Model outputs may not correspond
to the hand-corrected reference sentence, but still be a quality correction of the original.
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CURATED ERROR CORPORA SYNTHETIC ERROR CORPORA
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(not trained) GC (spell.) 0.36∗ 0.35∗ 0.20∗ 0.37∗ 0.78† 0.75 0.05 0.54 0.00 0.86 0.06 0.79 0.04
(rule-based) GC (all) 0.32∗ 0.35∗ 0.22∗ 0.40∗ 0.75† 0.75 0.72 0.47 0.00 0.87 0.34 0.74 0.40

Synth 100k mB-ISEN 0.48 0.51 0.50 0.54 0.69 0.92 0.66 0.79 0.40 0.85 0.77 0.84 0.87
mB-ISEN+reg 0.46 0.52 0.48 0.55 0.67 0.92 0.70 0.82 0.40 0.87 0.78 0.85 0.88
mT5 0.26 0.35 0.20 0.35 0.57 0.95 0.66 0.89 0.39 0.90 0.77 0.91 0.92
ByT5 0.29 0.40 0.23 0.37 0.58 0.97 0.85 0.91 0.59 0.93 0.76 0.92 0.93

Error Corpora (EC) mB-ISEN 0.40 0.37 0.35 0.36 0.53 0.51 0.00 0.75 0.13 0.70 0.71 0.61 0.63
mB-ISEN+reg 0.44 0.41 0.41 0.47 0.57 0.54 0.07 0.74 0.20 0.65 0.71 0.61 0.65
mT5 0.31 0.17 0.13 0.24 0.29 0.26 0.00 0.66 0.00 0.50 0.03 0.21 0.00
ByT5 0.45 0.38 0.30 0.45 0.50 0.65 0.02 0.77 0.27 0.76 0.44 0.60 0.15

Synth 100k + EC mB-ISEN 0.48 0.51 0.50 0.54 0.69 0.92 0.66 0.79 0.40 0.85 0.77 0.84 0.87
mB-ISEN+reg 0.46 0.52 0.48 0.55 0.67 0.92 0.70 0.82 0.40 0.87 0.78 0.85 0.88
mT5 0.47 0.44 0.38 0.47 0.69 0.89 0.30 0.83 0.29 0.90 0.70 0.84 0.76
ByT5 0.52 0.56 0.52 0.57 0.70 0.92 0.78 0.83 0.45 0.45 0.78 0.86 0.88

Synth 550k ByT5 0.31 0.42 0.25 0.39 0.61 0.98 0.87 0.90 0.63 0.88 0.75 0.92 0.91
Synth 550k + EC ByT5 0.54 0.57 0.54 0.58 0.74 0.95 0.75 0.82 0.51 0.72 0.78 0.85 0.90

Table 5: ERRANT span-based F 0.5 scores calculated over different model and data combinations. The best scoring
setup per error subcorpus is in bold. Scores marked with a symbol are explained in Section 3.
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