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Abstract

Multi-modal emotion recognition has gained
increasing attention in recent years due
to its widespread applications and the
advances in multi-modal learning approaches.
However, previous studies primarily focus
on developing models that exploit the
unification of multiple modalities. In this
paper, we propose that maintaining modality
independence is beneficial for the model
performance. According to this principle, we
construct a dataset, and devise a multi-modal
transformer model. The new dataset, CHinese
Emotion Recognition dataset with Modality-
wise Annotions, abbreviated as CHERMA,
provides uni-modal labels for each individual
modality, and multi-modal labels for all
modalities jointly observed. = The model
consists of uni-modal transformer modules that
learn representations for each modality, and a
multi-modal transformer module that fuses all
modalities. All the modules are supervised by
their corresponding labels separately, and the
forward information flow is uni-directionally
from the uni-modal modules to the multi-
modal module. The supervision strategy
and the model architecture guarantee each
individual modality learns its representation
independently, and meanwhile the multi-
modal module aggregates all information.
Extensive empirical results demonstrate that
our proposed scheme outperforms state-of-the-
art alternatives, corroborating the importance
of modality independence in multi-modal
emotion recognition. The dataset and
codes are availabel at https://github.com/
sunjunaimer/LFMIM.

1 Introduction

The goal of human emotion recognition is to
automatically detect or categorize the emotional

states of human according to some inputs.

Nowadays, emotion recognition can be found in
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a broad range of applications, including but not
limited to emotional support (Tu et al., 2022;
Liu et al., 2021), human-computer interaction
(Chowdary et al., 2021) and healthcare surveillance
(Dhuheir et al., 2021). Henceforth, emotion
recognition has attracted increasing attention from
both research community and industry in recent
years (Hu et al., 2021a; Shen et al., 2021).

The early works perform emotion recognition
primarily with a single modality (Mehendale,
2020; Alvarez-Gonzalez et al., 2021; Schuller
et al., 2010), e.g., vision, text, audio and so on.
Recent multi-modal approaches have showcased
more appealing performance than their uni-modal
counterparts (Hu et al., 2021b; Zhao et al.,
2022). However, most existing literature on multi-
modal learning overemphasizes the combination
of different modalities without fully respecting
modality independence, which might be harmful to
the model. In the sequel, we illustrate this through
the lens of datasets and model design.

Datasets Current datasets for multi-modal
emotion recognition are usually annotated with
the joint observation of all modalities, resulting
in shared labels for all modalities (Zadeh et al.,
2016, 2018; Busso et al., 2008; Poria et al., 2019;
Li et al., 2017b). This leads to the fact that all
modalities in the multi-modal model are supervised
by the same common labels, which reduces the
modality diversity and might even mislead some
modalities (Yu et al., 2020). In practice, it is
anticipated that inconsistent labels will be attained
if we annotate different modalities separately. In
this circumstance, in order to learn diverse and
modality-specific representations, the modules for
different modalities are expected to be trained with
their own labels rather than the common labels.

Model design The emerging transformer has
contributed to many success stories in natural
language processing and computer vision (Devlin
et al., 2019; Dosovitskiy et al., 2020). Naturally, it
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is introduced to the field of multi-modal learning
thanks to its versatility in dealing with sequences of
different forms. Multi-modal transformer (MulT)
is proposed in(Tsai et al., 2019), which adopts
cross-modal attention to fuse any pair of modalities,
and then incorporates all the information. The
drawback of MulT is that it has a complexity of A2
in terms of the number of cross-modal transformer
blocks (n is the number of modalities). To
address the complexity issue, progressive modality
reinforcement (PMR) and multimodal bottleneck
transformer (MBT) which scale linearly with the
number of modalities are proposed in (Lv et al.,
2021) and (Nagrani et al., 2021), respectively.
PMR and MBT devise a message hub which draws
information from the uni-modal blocks, performs
fusion, and returns the fused common information
to the uni-modal blocks. It can be concluded that,
both MulT and the message hub based models
reinforce each modality with the information from
other modalities. This can lead to the problem that
the model might rely heavily on some modalities,
leaving other modalities under-trained. The reason
is that the dominated modalities can cheat by
peeping at the well-learned modalities, and hence
becomes "lazy" in their own learning process.

With the above observations of prior datasets
and models for multi-modal emotion recognition,
it is clear that existing studies primarily focus on
establishing the dependency between modalities
and capturing combined multi-modal information
for the final task. Different modalities are coupled
from both the labels and the model structure,
and the resultant representations of different
modalities share rich common information and
lack diversity. However, it has been observed that
more differentiated information from modalities
facilitates to improve the complementarity between
the modalities (Yu et al., 2020; Qu et al., 2021).

In the light of the limitations of current datasets
and fusion models, in this work, we construct a
new dataset and propose a transformer model for
multi-modal emotion recognition. Each sample
in our dataset is annotated with three uni-modal
labels corresponding to three modalities—text,
audio and vision, and a multi-modal label for all
modalities jointly observed. The proposed model
employs three uni-modal transformer blocks as the
backbones for the three individual modalities and
one multi-modal transformer block for multi-modal
information fusion. The uni-modal transformers

process their own information independently,
and are supervised by the corresponding uni-
modal labels; the multi-modal transformer fuses
information from the uni-modal transformers
layer by layer, and is supervised by the multi-
modal labels. The forward information flow
in the model is uni-directionally from the uni-
modal modules to the multi-modal module.
The supervision strategy and the uni-direction
information flow promote modality independence,
which reduces mutual information and increases
complementary information across modalities (as
Figure 2(b) in Section 4 illustrates). Therefore,
the overall effective information for the final
emotion recognition task aggregated by the multi-
modal module can be maximized. The proposed
model features Layer-wise Fusion with Modality
Independence Modeling, termed LFMIM. In
summary, the contributions of this paper are mainly
threefold.

* A new dataset is built for multi-modal emotion
recognition, of which the modalities are
annotated separately. Apart from multi-modal
emotion recognition, the dataset supports the
research for the modality (label) inconsistency
problem in multi-modal learning.

* A model that encourages modality
independence is proposed, and it is trained
with uni-modal labels and multi-modal
labels simultaneously. The model leads to
more diverse representations, and therefore
captures more complementary clues from
different modalities.

* The proposed model demonstrates substantial
improvement over existing competing models.
The results shed light on the future research
on the balance between modality dependence
and independence in multi-modal learning.

2 Related Works

There are a large volume of relevant works on multi-
modal emotion recognition, for which interested
readers can refer to survey papers (Siddiqui et al.,
2022; Ahmed et al., 2023) and references therein.
In this section, we only cover the most related
works, corresponding to the datasets and multi-
modal fusion models in the following.

2.1 Datasets

Popular datasets for multi-modal emotion
recognition or sentiment analysis include CMU-
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MOSI (Zadeh et al., 2016), CMU-MOSEI
(Zadeh et al., 2018), IEMOCAP (Busso et al.,
2008), MELD (Poria et al., 2019), CHEAVD (Li
et al., 2017b), CH-SIMS (Yu et al., 2020), and
CH-SIMS_v2 (Liu et al., 2022). Most previous
datasets annotate the samples with the same labels
for all modalities. It is noteworthy that the two
Chinese datasets, CH-SIMS and CH-SIMS_v2, are
currently the only datasets that conduct annotations
for each modality independently. However, these
two datasets are for sentiment analysis, and are
labeled with polarized labels, (weakly) positive,
(weakly) negative, and neutral. To the best of
our knowledge, our dataset CHERMA is the
first one that is targeted for multi-modal emotion
recognition, and has modality-wise annotations.

2.2 Multi-modal fusion models

At the core of multi-modal emotion recognition is
the modality fusion strategy. TFN (Zadeh et al.,
2017) integrates the multi-modality information
via calculating the outer product of modality
embeddings. Unfortunately, the computation and
memory required grow exponentially with the
number of modalities, which is addressed by the
work of LMF (Liu and Shen, 2018) with low rank
approximation. From the perspective of model
structure, the previous fusion strategies are usually
classified into early fusion and late fusion. Early
fusion (Lazaridou et al., 2015; Williams et al.,
2018) simply concatenates the low-level features of
all the modalities, and feeds the joint feature to the
model. Early fusion can suffer from the problem of
data sparseness (Wu et al., 2014). Late fusion (Liu
et al., 2014; Nguyen et al., 2018; Yu et al., 2020)
concatenates the high-level features (some studies
also refer this to model-level fusion (Chen and
Jin, 2016)) or decisions separately obtained from
individual modalities, which is weak in establishing
fine-grained correspondence across modalities.

Compared with the concatenation methods,
multi-modal transformer is a more powerful tool
that is capable of capturing the intra-modal and
cross-modal dependency(Poria et al., 2017; Lian
et al., 2021). Recent transformer-based works
(Tsai et al., 2019; Lv et al., 2021; Nagrani et al.,
2021) can be regarded as layer-wise fusion, to
differentiate them from early and late fusion
approaches. Layer-wise fusion carries out feature
fusion layer by layer from low level to high
level, which can capture fine-grained correlation

Ttem [[ Quantity

Number of utterances 28,717
Average length of utterance (second) 4.6
Minimum number of words per utterance 4
Maximum number of words per utterance || 63

Male 11,207
Female 17,510
Preteen 288
Teen 18,500
Middle-age 8,522
Old 1,407

Table 1: Statistics of dataset CHERMA.

across unaligned modalities. Due to its promising
performance, this paper also leverages multi-modal
transformer with layer-wise fusion for our emotion
recognition task.

3 Dataset Description

In this section, we give a detailed introduction
to the new dataset—CHERMA. We will present
how the data is collected and annotated, the
characteristics of the data, and the pre-processing
of the data for model training.

Before introducing the data, we give the
definitions of some notations. Let ¢, a, v represent
the three modalities—text, audio, and vision,
respectively; let m denote the joint of the three
modalities. Denote by X, € RT«X%u for 4 €
{t, a, v}, the feature sequence of the corresponding
modality, where T, and d, are the sequence
length and the feature dimension, respectively.
Associated with each feature sequence is its uni-
modal labels and multi-modal label {y,|lu €
{t,a,v,m}}. For our training dataset, we
use ({X{LL}uE{t,a,v}v {yg}ue{t,a,v,m}) for n €
{1,2,---, N} to represent the n-th sample, where
N denotes the total number of samples. In the rest
of the paper, we sometimes drop the index n for
brevity when no confusion occurs.

3.1 Data acquisition and annotations

In order to cover as many scenarios as possible, our
data is acquired from various sources, including
148 TV series, 7 variety shows, and 2 movies.
The language of the video is Chinese, yet it
can be translated to other languages for broader
applications. The video is split into utterances with
Adobe Premiere Pro. Only the utterances where
there is a single person speaking and the speaker’s
face appears clearly are selected as our samples.
In total, 28,717 utterances are rounded up,
of which the total length is 2,213.84 minutes.
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Figure 1: (a) The distributions of uni-modal labels and multi-modal labels. (b) Overall modality inconsistency. (c)
Inconsistency between uni-modal labels and multi-modal labels.

Table 1 reports the statistics of dataset CHERMA,
including the information of the utterance samples,
the gender and age distributions of the speakers in
the video. The scenarios span household, hospital,
restaurant, office, outdoor, telephone conversation,
and so on. In a word, the acquired data is
representative and close to real-world scenarios,
and is therefore of practical value.

Following the convention, we categorize the
samples into Ekman’s six basic emotions (Ekman,
1992) plus emotion neutrality, i.e., happiness,
sadness, fear, anger, surprise, disgust and neutrality.
Each sample is annotated with three uni-modal
labels and a multi-modal label.

All the recruited annotators have experience
in emotion annotations. Moreover, they are
required to receive training for our annotation
task and pass an examination before carrying out
annotations. For the uni-modal annotations, the
annotators are shown corresponding uni-modal
information. While for multi-modal annotations,
all the modalities are available; that is, the videos
are displayed in their original form. Each label is
determined as a result of the following majority
voting process. For each labeling, the feature, uni-
modal or multi-modal, is first assigned to three
annotators. Each annotator gives it a unique label
independently. If the labeling result is 3 : O,
consensus is reached and the label is determined
accordingly; if the resultis 1 : 1 : 1, this sample
will be discarded because of the disagreement;
otherwise, if the result is 2 : 1, then one more
annotator will join. In this case, if the final result
is 3 : 1, the label obtained; otherwise, 2 : 2 or
2 : 1 : 1 means the sample will be discarded.
Considering the limited labor, the above annotating
scheme ensures the reliability of the labels in that
3 annotators out of 3 or 4 agree on each label, and
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meanwhile the samples of ambiguity are discarded.
After the annotations, all the samples are shuffled,
and are split into training, validation and test
datasets with ratio 6:2:2.

3.2 Label inconsistency

Upon finishing the annotations, we explore the
dataset by simple statistical analysis. Figure 1(a)
shows the distributions of the uni-modal labels and
the multi-modal labels. We have two observations:
1) There are a large number of samples, of which
the four labels are not identical to each other; 2)
With single modality, some emotions cannot be
identified and possibly be recognized as neutrality;
while using multi-modal information can infer
more emotions.

To quantify the label inconsistency, we define
the overall modality inconsistency between any two
modalities uy, us € {t,a,v, m} as follows:

Zr]yzl 1y3}1 FYily

Incon(uy,ug) := ~

where 1, = 1, if x is true; 1, = 0, otherwise.
Define the inconsistency of modality wu
with multi-modality m for any label y €
{happiness, sadness, fear, anger, surprise, disgust,
and neutrality } as follows:
N
D n=1 Lynzy
2

N
n=1

Figure 1(b) reports the overall modality
inconsistency, =~ which is  significant—the
inconsistency between any pair of modalities
exceeds 0.3. The inconsistency between uni-
modality and multi-modality is less than that
between any two uni-modalities. This is reasonable
because the multi-modal label which is obtained

Incon(u, m;y) := .
Ym=Y



with all modality information can be regarded as a
weighted average of three uni-modal labels.

If the multi-modal labels are regarded as
the ground-truth, a conclusion can be drawn
from Figure 1(c) that some modalities are
better at inferring some emotions than other
modalities. It is shown that audio performs well in
identifying sadness, anger and neutrality. Vision
is good at recognizing happiness, sadness and
anger. In comparison, text shows more balanced
performance among all emotions.

3.3 Data pre-processing

In this subsection, we explain how the raw data is
pre-processed for model training. The original data
of the three-modalities will be converted to feature
sequences with the following methods.

Text: We pass the texts to pre-trained Chinese
BERT-base (Cui et al., 2021) to obtain
contextualized word embeddings. Since the
maximum number of words in all the texts is 78,
all texts that have fewer words are padded to length
78. With CLS and SEP tokens prepended and
appended to each text, respectively, the input of
BERT is of length 80. Finally, each text modality
information is represented by a sequence of length
80 and dimension 768.

Audio: The audio is sampled at frequency 16kHz
with receptive field 25ms and frame shift 20ms.
Then the extracted frame-level feature is input
to pre-trained wav2vec (Zhang et al., 2022),
generating a feature sequence of dimension 768.
The length of the sequence corresponds to the
number of the audio frames which depends on the
length of the raw audio.

Vision: The video is first processed with MTCNN
(Zhang et al., 2016) to obtain aligned face and
each frame is cropped to size of 224 x 224. For
each video utterance, we partition it evenly into 8
segmentations, and then randomly sample 8 frames
from each segmentation, resulting in a 64-frame
vision sequence. Each frame is then fed to a
pre-trained Resnet 18 (trained with RAF-DB (Li
et al., 2017a)), which outputs a feature sequence of
length 64 and dimension 512.

4 The Proposed Model

4.1 Model overview

As visualized in Figure 2, the proposed model,
LFMIM, consists of two main components, three
uni-modal transformers and one multi-modal

s @
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Figure 2: (a) The model architecture. The blocks with
colors green, orange, pink and purple represent the
text, audio, vision and multi-modal blocks, respectively;
symbols @ and © denote summation and concatenation
operations, respectively.  (b) The overall useful
information (represented by the area covered by the
three circles) increases with modality dependence
reduced; each circle represents the information of the
corresponding modality.

transformer. Each uni-modal transformer processes
its corresponding modality independently; while
the multi-modal transformer relies on all the uni-
modal transformers. To be specific, the input of
layer [ 4 1 of the multi-modal transformer comes
from the output of its [-th layer and the outputs of
[-th layer of all three uni-modal transformers. Each
uni-modal module are independent from each other,
and yields its own label prediction.

4.2 The uni-modal modules

The input features of all the modalities are
of the same sequence form.  The module
for each individual modality adopts the same
simple structure, mainly including a uni-modal
transformer with L multi-head self attention layers.
As Figure 2(a) illustrates, the feature sequence,
Xu,u € {t,a,v} first goes through a 1D
convolutional layer to unify the feature dimension
for the following concatenation; next, positional
embedding (PE) is added, yielding the input
sequence of the uni-modal transformer, Z}, u €
{t,a,v}. Then, the sequence is processed by
the corresponding uni-modal transformer, and the
input and output of the /-th transformer layer are
Z! and Z'H', respectively, v € {t,a,v} and
l€{1,2,---,L—1}. After the transformer block,
a pooling layer reduces the output sequence into
a feature vector. Subsequently, on the top is an
MLP followed by a softmax layer, which gives the
predicted label ¢, u € {t,a,v}. It is obvious that
each uni-modal module does not depend on the
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information from other modalities in the forward
pass.

4.3 The multi-modal module

The multi-modal module is a feature extractor
which draws three modalities from uni-modal
transformers and fuses them layer by layer.
Specifically, we define a learnable multi-modal
FEature EXtraction token, FEX, to extract and
summarize useful information from all modalities.
The input of the [-th layer of the multi-modal
transformer is Z., = [FEX'; Z};Z!:Z!], and
the output is Z4H! = [FEX!*1; ZITL, ZI+1, Z+1,
Z*1 Yy € {t,a,v} are updated as follows:
Z'i+1 _ afj—lzi—i-l + OZZHZQZLH,

where olflu € {t,a,v} and 1| €
{0,1,2,--- ,L — 1} are learnable parameters;
Z Yu € {t,a,v} are all-zero matrices with
proper size. After the multi-modal transformer
block, the following structure is the same as the
uni-modal modules as introduced in last subsection.
The final label prediction of the multi-modal
module is ¥,,. As shown in Figure 2(a), in the
forward pass, the multi-modal module absorbs
information from the uni-modal modules layer by
layer, and does not return its information to the
uni-modal modules.

4.4 Optimization objective

With the aforementioned model, our training task
boils down to the optimization problem below.

N
min <30 Y ALl i),

n=lue{t,a,v,m}

where L(-,-) is the cross-entropy loss function;
Bu,u € {t,a,v,m} are the weight parameters that
balance the loss among different modalities.

To sum up, following the principle of
maintaining modality independence, our approach
utilizes separate supervisions for different
modalities, and bans direct communications
across individual modalities. In this way, it is
expected that each modality can fully explore
and exploit itself without relying on other
modalities. Hopefully, as illustrated in Figure 2(b),
by aggregating more distinctive uni-modal
representations with less mutual information and
more complementary information, the overall
useful information summarized by the multi-modal
module can be maximized.

It should be clarified that albeit we advocate
modality independence, we do not oppose modality
reinforcement for each other. In this work, we only
investigate the independence side to unveil and
highlight its importance. For more general multi-
modal learning, the two sides should be carefully
balanced, which deserves further investigation.

Furthermore, the modality independence is
relative to existing layer-wise fusion approaches
which couple the modalities with the same
labels and modality interactions in the forward
propagation. Actually, in our model, through
backward propagation the multi-modal labels can
also take effect in supervising uni-modal modules.
To be more precise, our approach reduces modality
dependence, but does not completely eliminate the
indirect interactions across modalities.

S Experiments and Analysis

In this section, we first compare our proposed
model with typical benchmark models to validate
the effectiveness of our model. Then we perform
ablation studies to analyze the proposed model, and
demonstrate the differences between our model and
its compared counterparts.

5.1 Comparisons with baseline models

5.1.1 Baseline models

We compare our proposed model, LFMIM, with
6 typical baseline models: tensor fusion network
(TEN) (Zadeh et al., 2017), low-rank Multi-
modal fusion (LMF) (Liu and Shen, 2018),
early fusion transformer (EF-transformer), Late
fusion transformer (LF-transformer), multi-modal
transformer (MulT) (Tsai et al.,, 2019), and
progressive modality reinforcement (PMR) (Lv
et al., 2021). Note that for early fusion and late
fusion methods, we use more powerful transformer
models instead of the models in (Williams et al.,
2018) and (Yu et al., 2020) for the sake of fairness.
We adapt the original PMR (introduced in the
introduction section) to be trained with uni-modal
labels and multi-modal labels as our model.

5.1.2 Implementation details

To concatenate the features of the three modalities,
we utilize 1D convolutional layers to convert them
into 128-dimensional feature sequence. For the
audio feature which is of varying length, we fix
the length to be 100. If the original length is
over 100, we uniformly sample 100 feature vectors;
otherwise, we pad it with zero vectors.
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Figure 3: (a) The training loss and test loss of each modality during training. (b) The overall emotion recognition
accuracy of each modality on training dataset and test dataset. (c) The test accuracy of different models.

Emotion [[ happiness [ sadness [ fear [ anger [ surprise [ disgust [ neutrality | overall

TFN 7491 75.56 66.15 | 74.41 66.29 43.34 65.60 68.37

LMF 74.52 75.83 66.73 | 74.55 65.08 45.70 65.64 68.23

EFT 74.98 76.88 67.32 | 74.85 66.73 47.48 64.60 68.72

LFT 75.07 76.29 66.80 | 74.88 66.67 47.74 65.97 69.05

MulT 76.18 76.88 67.36 | 74.85 68.18 46.96 65.26 69.24

PMR 75.68 76.46 67.97 | 75.43 67.37 48.93 66.59 69.53

LFMIM 76.6 77.83 69.44 | 75.32 69.83 50.20 68.24 70.54
Table 2: Performance (in terms of F1 score) comparison with baseline models.

Model [[ Acc-2 | Acc-3 | Ace-5 | Fl score and vision modality the worst (with test accuracy
MLF-DNN || 82.28 | 69.06 | 38.03 | 82.52 54.60%).
MLMF 8232 | 67.70 | 37.33 | 82.66 .
MTEN 45 16002 13720 18236 Figure 3(c) compares the test accuracy curve of
LFMIM 83.37 | 71.33 | 4836 | 83.71 LFMIM and other baseline models—the accuracy

Table 3: Results on dataset CH-SIMS.

The transformer blocks in LFMIM are all
comprised of 4 multi-head self attention (MHSA)
layers, where each MHSA is with 8 heads. The
optimizer utilized is SGD, and Lambda learning
rate schedule is adopted. The initial learning rate
is 0.005, obtained with grid search. The weight
coefficients in the objective are set as 3, = 1,Vu €
{t,a,v,m}. The reported results in the following
are the average of five repeated experiments with
different seeds.

5.1.3 Performance comparisons

As our model design philosophy advocates the
independence of different modalities.  Each
modality module is associated with a training loss
and a test loss that reflect how well this modality
learns for the task. As illustrated in Figures 3(a)
and 3(b), all the losses and the accurac of LFMIM
converge, yet reach different levels. Moreover, the
gap between training loss (resp. accuracy) and test
loss (resp. accuracy) exhibits significant variation
with modalities. These observations mirror that the
modality diversity does exist and have significant
impact on emotion recognition; that is, audio
modality performs best (with test accuracy 70.37%)

of LFMIM surpasses that of all the others. It is
noticed that PMR tends to overfit, which might be
attributed to the fact that it employs a complicated
model with 6 transformer blocks. Table 2 reports
the detailed performance of the models, i.e., the
overall and emotion-wise F1 scores. It is shown
that LFMIM outperforms the competing models
by a significant margin in overall accuracy (i.e.,
the overall F1 score) and in all emotions except
emotion anger (slightly outperformed by PMR).

5.1.4 Results on dataset CH-SIMS

In this subsection, we conduct experiments with
the CH-SIMS dataset which is annotated for each
modality with sentiment labels: negative, weakly
negative, neutral, weakly positive, positively. We
compare LFMIM with MLF-DNN, MLMF and
MTEN, of which the results are from the reference
(Yu et al., 2020), as shown in Table 3. Acc-k (k €
{2,3,5}) represents the accuracy for classification
with k classes (for binary classification, all labels
reduce to negative and positive; for 3-class
classification, labels are negative, neutral and
positive), and the Fl-score pertains to binary
classification. The results in Table 3 show that
LFMIM significantly outperforms the previous
models, and LFMIN achieves a remarkable
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Figure 4: (a) The test loss of each modality during training. (b) The overall test accuracy of each modality. (c) The

standard deviation of F1 score over three modalities.

Emotion [[ happiness | sadness [ fear | anger | surprise | disgust | neutrality | overall

t 66.14 67.94 61.72 | 72.06 68.06 37.31 71.00 67.39

PMR a 63.08 79.05 55.04 | 77.24 45.15 36.22 75.61 71.52

v 7891 70.03 57.62 | 73.15 16.30 16.59 64.54 67.08

m 75.68 76.46 6797 | 75.43 67.37 48.93 66.59 69.53

LFMIMML | m || 7536 | 7677 | 68.51 | 75.10 | 68.76 | 4950 | 67.00 | 69.79
t 66.10 63.60 56.62 | 68.85 65.90 33.42 69.09 64.61

LEMIM a 61.65 77.59 54.05 | 76.04 40.41 34.31 75.13 70.37

v 74.11 53.55 14.53 | 56.98 13.68 12.81 54.14 54.60

m 76.60 77.83 69.44 | 75.32 69.83 50.20 68.24 70.54

Table 4: Performance (in terms of F1 score) comparison from the perspective of modality.

improvement of 10 percentage points in terms of
Acc-5.

5.2 Ablation studies

LFMIM distinguishes from others mainly in 1)
different modalities are trained with its own labels;
2) the forward information flow in the model is
uni-directionally from uni-modal modules to multi-
modal module. Therefore, in this subsection, we
compare LFMIM with the model that is trained
with only the multi-modal labels, and the model
that allows bi-directional information flow between
multi-modal and uni-modal modules. The former
corresponds to LFMIM-ML (LFMIM trained with
multi-modal labels for all modules), and the later
is exactly PMR in last subsection.

We first compare the LFMIM with PMR in
Figure 4 to demonstrate the impact of information
flow in the model. In Figures 4(a) and 4(b),
comparing LFMIM and PMR in each modality,
it is obvious that the uni-directional information
gives rise to 1) larger (resp. lower) uni-modal
losses (resp. accuracy); 2) smaller (resp. higher)
multi-modal loss (resp. accuracy); and 3) larger
modality gap in terms of loss gap and accuracy
gap between different modalities. Table 4 shows
that for each emotion, modalities £, a,and v of
PMR respectively outperform the corresponding
modalities of LFMIM in terms F1 score, but

modality m of LFMIM outperforms that of PMR
(except for emotion anger), reversely.

Interestingly, the above results demonstrate
that although the uni-directional information
flow degrades the performance of each single
modality, it does promote that of multi-modality.
The reason is that bi-directional information
flow in PMR allows each modality to draw
information from other modalities, thus hindering
the individual modality from fully exploiting
itself. In contrast, uni-directional information
flow encourages the modalities to learn more
independent and distinctive representations, which
can maximize the overall useful information
attained by the multi-modal module.

Tabel 4 summarizes the F1 scores of different
modalities for all the emotions. LFMIM has
large standard deviation of F1 score over the three
modalities u, Vu € {t,a,v} than PMR except for
emotion happiness, which is more clearly displayed
in Figure 4(c). This, to some degree, illuminates
that uni-modal modules of LFMIM yield more
distinctive representations, which contributes to
the promising performance of our multi-modal
module.

That modality m of LFMIM outperforms that
of LEMIM-ML in Table 4 demonstrates the merit
of uni-modal labels which also boost the diversity
of the uni-modal representations. Comparing the
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three m rows in Table 4 shows that LFMIM trained
with modality-wise labels and uni-directional
forward information flow sets a strong baseline
for dataset CHERMA. It is worth mentioning
that although the accuracy of multi-modal module
in LFMIM is lower than that of its uni-modal
counterpart for some emotion (see emotions anger
and neutrality), it does not means multi-modal
information does not improve the performance over
uni-modal information, because they corresponds
to different labels.

6 Conclusions

In this paper, we uphold modality independence
for multi-modal emotion recognition in the context
of modality inconsistency. Therefore, we build
a new dataset that includes uni-modal labels
and multi-modal labels. Our model maintains
modality independence via 1) supervising each
modality with its own labels, and 2) enforcing
uni-directional information flow from uni-modal
modules to multi-modal module. Numerical results
verify that independence indeed helps to gain
more effective information from the modalities
and improve the model performance for the multi-
modal emotion recognition. Albeit independence
benefits the multi-modal learning, it does not mean
that individual modality should be prevented from
exploring other modalities in any circumstance.
There should be a sweet point between modality
independence and dependence, which constitutes
our future research interest.

Limitations

The limitations of this work are mainly twofold.
1. Different modalities are trained with the same
optimizer setting, which might cause imbalance
across modalities. 2. No theoretical analysis
is established to provide insight of the balance
between modality independence and dependence.
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