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Abstract

Subword tokenization schemes are the dom-
inant technique used in current NLP models.
However, such schemes can be rigid and tok-
enizers built on one corpus may not adapt well
to other parallel corpora. It has also been ob-
served that in multilingual corpora, subword to-
kenization schemes oversegment low-resource
languages, leading to a drop in translation per-
formance. An alternative to subword tokeniz-
ers is byte-based tokenization, i.e., tokeniza-
tion into byte sequences using the UTF-8 en-
coding scheme. Byte tokens often represent
inputs at a sub-character granularity, i.e., one
character can be represented by a span of byte
tokens. This results in much longer byte se-
quences that are hard to interpret without ag-
gregating local information from multiple byte
tokens. In this paper, we propose a Local Byte
Fusion (LOBEF) method for byte-based ma-
chine translation—utilizing byte n-gram and
word boundaries—to aggregate local semantic
information. Extensive experiments on mul-
tilingual translation, zero-shot cross-lingual
transfer, and domain adaptation reveal a con-
sistent improvement over vanilla byte-based
models. Further analysis also indicates that our
byte-based models are parameter-efficient and
perform competitive to subword models.

1 Introduction

Multilingual neural machine translation (NMT)
has proven effective to transfer knowledge learned
from a high-resource language to a low-resource
language. However, existing multilingual NMT
models still rely on a pre-built subword tok-
enizer (e.g., BPE (Sennrich et al., 2016), Senten-
cePiece (Kudo and Richardson, 2018)) to tokenize
a sentence into a sequence of subword units. This
has two drawbacks. First, once the tokenizer is
fixed, we lose the flexibility of changing the word
tokenization if we aim to fine-tune the NMT model
on another parallel corpus of interest for adaptation.

Second, when a subword tokenizer is built on unbal-
anced multilingual data, word tokens from a low-
resource language are usually under-represented,
resulting in over-segmentation of a word into many
single characters. A recent study (Rust et al., 2021)
measures over-segmentation by the fertility score
of a subword scheme which indicates how many
subwords a whole word is broken down into. It
shows a negative correlation between the fertility
score and the performance of multilingual models
on the over-segmented languages.

Although character-based models have often
been proposed as a solution to these problems
(Gupta et al., 2019; Libovický and Fraser, 2020; Li
et al., 2021), they come with their own tradeoffs re-
lated to the significant overhead of processing long
character sequences during training and inference
(Libovický and Fraser, 2020). Besides, these mod-
els still adopt a fixed vocabulary of characters, lead-
ing to the same issue as a fixed subword tokenizer
for adaptation. Another point of difference is that
in character-based methods, the vocabulary still
consists of one unique embedding for each charac-
ter under consideration. In byte-based approaches,
the tokens are at a sub-character granularity and
the model has to figure out how to combine bytes
for different languages. Recently, there has been re-
newed interest in character-based models that adopt
a byte tokenization scheme (Clark et al., 2021;
Xue et al., 2021; Tay et al., 2021)—tokenization
of texts into UTF-8 byte tokens. Although these
byte-based models have shown competitive perfor-
mance to subword models on multilingual NLU
benchmarks (Hu et al., 2020), their performance on
multilingual generation, especially on multilingual
NMT is still underexplored. Although Shaham
and Levy (2021) recently demonstrate the effec-
tiveness of byte tokenization for bilingual machine
translation, a comprehensive study of such byte-
based methods on the multilingual paradigm across
a wide variety of languages and domains is still
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Figure 1: (a) LOBEF; (b) Byte-nCF uses four convolutional layers (width=n, stride=n) to aggregate char-level
information; (c) Byte-WSF uses word boundaries with block-wise self-attention to aggregate word-level information.

missing. Particularly in the multilingual setting, as
characters in different languages can be tokenized
into a varying number of byte tokens, this produces
byte sequences much longer than the original sen-
tences, and vanilla byte-based MT models can only
implicitly reconstruct character-/word-level repre-
sentations from byte tokens in an entirely data-
driven fashion.

To remedy these issues, we propose two variants
of Local Byte Fusion (LOBEF) 1 techniques that
explicitly aggregate byte tokens to learn character-
/word-level representations for byte-based NMT
models. Our first variant utilizes four n-gram con-
volutional layers to aggregate bytes for learning
character-level information, and our second vari-
ant utilizes word boundaries to aggregate a span
of bytes for learning word-level context. We con-
duct extensive experiments to compare our meth-
ods with the vanilla byte-based model and the em-
beddingless model from Shaham and Levy (2021)
in a multilingual translation setting. Our many-to-
one translation results show that aggregating local
information in earlier layers encourages the model
to capture local information for seven source lan-
guages, yielding an average gain of up to 1.4 BLEU
over the vanilla byte-based NMT model while per-
forming competitively with subword models. We
further demonstrate the effectiveness of LOBEF
on the zero-shot/few-shot cross-lingual transfer
and cross-domain adaptation settings, showing the
flexibility of byte-based NMT models over sub-
word baselines when fine-tuning is required for
data adaptation. Additionally, our method also im-
proves over vanilla byte-based NMT models for
adaptation. Our contributions are as follows:

• To the best of our knowledge, we are the first to
evaluate byte-based embeddingless NMT models

1The code can be found at https://github.com/
makeshn/LOBEF_Byte_NMT

in a multilingual translation setting.
• To further improve the encoding of local se-

mantics for byte-based NMT, we propose two
variants of local fusion techniques based on
character-/word-level aggregation over byte to-
kens.

• We provide a fine-grained analysis to show the
effectiveness of byte-based models on cross-
lingual and domain adaptation settings.

2 Preliminaries

2.1 Unicode and UTF-8
Unicodeis a universal, platform-agnostic standard
for handling text in most of the world’s writing sys-
tems, covering characters in all of the world’s living
languages as well as emoji and non-visual codes.
Each code point defined by Unicode is mapped to
a unique integer, ranging from 0 to 10FFFF16. For
instance, the English character set A-Z is denoted
by the integers from 97-122. In modern computers,
each Unicode code point can be implemented as
bytes by multiple encoding protocols, and UTF-8
is the dominant encoding protocol used by over
95% of webpages.

In UTF-8, each Unicode code point is repre-
sented as one to four bytes (8 bits per byte) de-
pending on the range of its Unicode integer. Some
languages may have a combination of characters
that require a varying number of bytes. For ex-
ample, most characters in German require only a
single byte, while some special characters like à
or â use two bytes. Since the Unicode and the
UTF-8 encoding scheme is already well-defined,
we do not have to construct source and target vo-
cabularies similar to how it is done for subword
models. Tokenization and de-tokenization for byte
based models is as simple as a single line of code
in Python and does not involve any heuristic pre-
processing. In this paper, we adopt the UTF-8 byte
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tokens as inputs to our model.

2.2 Byte-based NMT
Shaham and Levy (2021) recently propose an em-
beddingless NMT model that takes sequences of
UTF-8 byte tokens as the inputs and outputs, and
uses a fixed one-hot representation for each byte
token instead of a dense learnable embedding vec-
tor. Such a byte-based NMT model eliminates the
input and output token embedding layers usually
used in subword-based NMT models, leading to a
significant reduction in model parameters.

Formally, given a source-target sequence pair
from a parallel corpus (x, y) ∼ D where x =
(x1, ..., xN ) and y = (y1, ..., yM ) are both se-
quences of byte tokens, the input sequence is
first embedded by one-hot representations, i.e.,
Embed(x) = X ∈ RN×d, and further encoded
into the source hidden representation Z by a vanilla
L-layer Transformer encoder:

Z = Encoder(X, L). (1)

Finally, an attention-based decoder performs the
attention over Z and estimates the probability of
predicting the next byte token yt by

P (yt|y<t, x) = Decoder(y<t,Z). (2)

Compared to subword-based NMT models, byte-
based NMT models have shown effectiveness on
bilingual machine translation, while their perfor-
mance in multilingual machine translation is still
unexplored. Especially in the many-to-one trans-
lation, the encoder is used to encode multiple lan-
guages which aggregate varying numbers of byte
tokens (i.e., 1 to 4 bytes) to represent one character.

3 Local Byte Fusion

For languages that do not exclusively use the En-
glish character set, encoding them often requires
more than one byte. Vanilla byte-based models can
only implicitly aggregate character-level or word-
level representations for these languages, poten-
tially resulting in poor interpretability and sub-
optimal results in multilingual settings. Hence,
we propose two fusion techniques that encourage
models to explicitly aggregate character-level and
word-level information from byte sequences.

We also adopt byte sequences as inputs and out-
puts for our model, and use vanilla Transformer
as the backbone. As we focus on multilingual en-
coding in this work, we only modify the encoder,

and adopt the same decoder architecture from (Sha-
ham and Levy, 2021). Note that a more sophis-
ticated design of the decoder will also involve a
special design of decoding algorithms (Libovický
et al., 2022) which goes beyond the scope of this
work. Besides, to conduct a more comprehensive
study, we also consider the case where we retain
embedding layers for the encoder and decoder of
the byte-based model. This implies that instead of
one-hot representations for the byte sequences, we
can learn dense vector representations. Since the
vocabulary size of all byte tokens is 256, this does
not amount to adding a significant number of extra
parameters.

3.1 n-gram Convolutional Fusion (nCF)

Before we explicitly aggregate the character-level
information, we first encode the input byte se-
quence by a shallow encoder with Ls Transformer
layers, which allows the model to have a shallow
access to the sentence context before local fusion.

S = Encoder(X, Ls) (3)

Since characters can be represented as a com-
bination of 1 to 4 bytes depending on the lan-
guages, we apply four different 1-D convolutional
layers to aggregate the n-gram byte tokens where
n ∈ {1, 2, 3, 4}. Specifically, we define convn as
the 1-D convolution layer with a kernel of size n
and stride n. We do right padding at the end of the
byte sequence. Therefore, when we use a stride n
greater than 1, the length of the input byte sequence
is reduced by a factor corresponding to the stride n.
We then define the output from the convn layer by:

[
fn1 , · · · , fnN

n

]
∈ R

N
n
×d ← convn (S) . (4)

To make all of the outputs the same length as
the input, we repeat the output tokens in place by a
factor corresponding to the stride length n.

Fn =
[
repeat(fn1 , n), · · · , repeat

(
fnN
n

, n
)]

, (5)

where repeat(x, n) creates n copies of a vector x.
Applying this repetition process to the output from
each of the convolution layers, we have four repre-
sentations of equal sequence length as the source
sequence,2 i.e., F1,F2,F3,F4 ∈ RN×d. We pass
these representations through a linear layer to get a

2Extra tokens at the end are truncated to ensure equal length.
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single weighted representation:

F =
4∑

n=1

λnFn, (6)

where λ = [λ1, · · · , λ4] are weights for the n-gram
representations. We pass this weighted representa-
tion to the remaining (L− Ls) Transformer layers
to obtain the final encoder hidden representation
which is further sent to the decoder by Eq. (2).

Z = Encoder (F, L− Ls) (7)

The n-gram fusion enables the model to learn
what combination of the input byte sequence repre-
sentations results in better character-level features.

3.2 Word-based Self-attention Fusion (WSF)
In addition, we also propose a word-based self-
attention fusion method that utilizes the word
boundary information in the raw sentence to ag-
gregate byte tokens within the same word. As char-
acters in most languages are represented by more
than one byte and words contain varying number
of characters, using byte tokens as input to the
model results in a much longer sequence. There-
fore, this property may require the model to recog-
nize a meaningful span of byte tokens in order to
capture the semantic of a word token in the raw sen-
tence. However, vanilla byte-based NMT models
(§2.2) use the traditional full self-attention, which
implies that every byte token in the sequence at-
tends to all byte tokens even though some far-away
byte tokens may have little association to the query
byte. Besides, as words are represented by a span
of bytes in a small vocabulary of size 256, it is
likely to produce a high attention weight between
two identical byte tokens even when these byte
tokens are used in two completely irrelevant words.

We tackle this issue by aggregating local infor-
mation of a byte span for a word using a block-
wise self-attention. Formally, for a byte sequence
x = (x1, · · · , xN ), we define its (untokenized)
word sequence as w = (w1, · · · , wT ) and a map-
ping π : [t] → [a : b] that maps the word index t
to the beginning and the end indices of the corre-
sponding byte span, i.e., wt = xπ(t) = xa:b. By
leveraging the word boundary, we naturally break
the long byte sequence into a list of sub-sequences,
then we apply an Lw-layer Transformer encoder to
encode byte tokens only in their sub-sequences:

Fπ(t) = Encoder(xπ(t), Lw),∀t ∈ [1 : T ], (8)

where Fπ(t) ∈ R|b−a|×d is hidden representation
of byte tokens in the t-th word spanning over the
sub-sequence xa:b. This allows byte tokens to ef-
fectively aggregate local information for each word
token, which is useful for the model to distinguish
identical byte tokens used in two different words.
Note that the word-based self-attention in Eq. (8)
can be efficiently implemented by pre-computing a
block-wise attention mask matrix (Figure 1 (c)), en-
suring that self-attenion is only performed among
a byte span of a word in a Transformer layer. Fi-
nally we obtain the word-aware representation of
the input byte sequence F by putting Fπ(t) in the
word order, i.e., F = [Fπ(1), · · · ,Fπ(T )] ∈ RN×d,
and feed F as input to the remaining (L − Lw)
Transformer layers similar to Eq. (7).

4 Experimental Settings

4.1 Datasets

Multilingual Many-to-One Translation: We
use the OPUS public data (Tiedemann, 2012) to
construct a multilingual parallel corpus that has
a fair mix of high-resource and low-resource lan-
guages. We train a multilingual translation model
from seven source languages to English. Table 1
shows the statistics of the training data. We use
the Flores-101 (Goyal et al., 2022) benchmark to
evaluate the performance of our models.

Zero-shot Cross-lingual Translation: Follow-
ing Neubig and Hu (2018), we use the same Ted
Talk dataset that include four language pairs where
each pair has a high-resource language (HRL) and a
low-resource languages (LRL) written in the same
script. Table 2 shows the statistics of the dataset.

Cross-domain Adaptation: In this task, we train
all models on the WMT19 German-English dataset
on the news domain, and directly evaluate on the
test data used in Aharoni and Goldberg (2020) from
three diverse domains (Koran, IT, Medical).

4.2 Models

To fully evaluate the efficacy of byte-based tech-
niques, we consider models under settings where
we learn dense embeddings for the input byte to-
kens (DENSE) as well as the embeddingless case
where there are no learnt embeddings (ONE-HOT).
Our main baseline for comparison is the vanilla
byte-based model and the ONE-HOT model pro-
posed in Shaham and Levy (2021). We also include
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Lang. ID Script Fertility #Train #Test

German deu Latin 1.6 2.56M 1,012
Hindi hin Devanagari 1.6 1.6M 1,012
Nepali npi Devanagari 2.0 445K 1,012
Tamil tam Brahmic 2.6 268K 1,012
Telugu tel Brahmic 2.5 108K 1,012
Khmer khm Khmer 8.5 127K 1,012
Lao lao Lao 9.5 2.7K 1,012

Table 1: Writing scripts, fertility of seven source lan-
guages, no. of sentences in the many-to-English training
set from OPUS and test set from Flores-101.

results of subword and character-based models for
a holistic comparison.

Subword Model: We use BPE models trained
using Sentencepiece3 as our subword model.

Char Model: We use character-based models
with inputs and outputs being character sequences.

Byte Based Models: For each of these models,
we consider both ONE-HOT variants where models
do not have learnt embeddings and DENSE variants
where we learn continuous dense embeddings.

• Byte: Similar to the vanilla byte-based model
proposed by (Shaham and Levy, 2021), the in-
puts and outputs are UTF-8 byte tokens.

• Byte-nCF: We use a shallow Transformer en-
coder4 (Ls = 1) and four convolutional layers
to fuse character-level information and learn a
weighted n-gram representation (§3.1)

• Byte-WSF: We use a Lw-layer Transformer en-
coder5 with a word-based self-attention over byte
tokens within word boundaries (§3.2).

4.3 Multilingual Translation
In this experiment, we evaluate the subword and
byte-based models on many-to-one translation (xx-
eng) where xx refers to seven source languages
listed in Table 1. We first clean the training data by
removing sentences that are longer than 800 bytes
in either the source or the target side, and then to-
kenize the sentences using the Moses tokenizer.6

Doing such preprocessing does not affect the diver-
sity of the dataset in terms of length as less than
0.5% of the samples are discarded. The byte-based
models do not have any preprocessing apart from
3https://github.com/google/sentencepiece
4Appendix C shows that Byte-nCF works best on {deu,khm}-
eng translations when fusing lower-layer representations.

5Appendix D shows that Lw = 4 empiricall works best.
6https://github.com/moses-smt/
mosesdecoder

the Moses tokenization and even whitespaces are
included as valid tokens. For low-resource lan-
guages that share the same script as high-resource
languages, we can reuse the same tokenizer for the
high-resource language. For the subword-based
model, we construct a shared vocabulary of 64K
BPE tokens for all the source languages and an En-
glish vocabulary of 8K BPE tokens for this experi-
ment. All models are trained for the same number
of epochs on our OPUS train set, and evaluated on
the Flores-101 test set.

4.4 Cross-lingual Transfer

This experiment evaluates how effective subword
and byte-based methods are in transferring perfor-
mance across languages that share similar language
scripts. We train both the subword and byte-based
models on parallel data in a high-resource language
(HRL) for 50K steps, and evaluate them in a zero-
shot manner on the corresponding low-resource
language (LRL) without training on any LRL data.
Table 2 shows the data statistics. We focus on xx-
eng translation where xx is either HRL or LRL.

In the case of subword models, this amounts
to constructing a vocabulary (i.e., BPE tokenizer)
based on only the HRL data and using that to tok-
enize the LRL data, while byte-based models use
an universal tokenization scheme to tokenize both
HRL and LRL data into UTF-8 byte tokens.

We also investigate a few-shot setting where the
models pre-trained on the HRL data is further fine-
tuned on a few parallel training samples in LRL.
We examine the impact of different numbers (i.e.,
1K, 2K, 3K, and 4K) of few-shot samples on the
translation performance of these models. We fine-
tune all models for 5K steps on the few-shot sam-
ples, and then evaluate them on the test set in LRL.

HRL LRL
Language ID Train Size Language ID Test Size|<unk>%

Turkish tur 182k Azerbaijani aze 1k | 41.5%
Russian rus 208k Belarusian bel 0.6k | 48.1%
Portugese por 185k Galician glg 1k | 23.7%
Czech ces 182k Slovak slk 2.5k | 30.0%

Table 2: Sentence sizes for LRL/HRL, and unknown to-
ken rate on the LRL test set using HRL BPE tokenizers

4.5 Cross-domain Adaptation

Having translation systems adapt to domains apart
from the one it has been trained on is a good mea-
sure of how robust models are. In the experiment,
we compare subword and byte-based models on
how effectively they translate sentences from do-
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Lang. Pairs DENSE Models ONE-HOT Models
Src Tgt Subword Char Byte Byte-nCF Byte-WSF Byte Byte-nCF Byte-WSF

deu eng 31.5 29.2 31.3 32.1 31.7 31.1 (-0.4) 31.6 (-0.6) 31.3 (-0.3)
hin eng 24.8 21.9 23.9 25.5 25.4 24.3 (-0.2) 25.6 (+0.1) 24.9 (+0.0)
npi eng 18.1 17.3 18.2 19.8 19.9 17.9 (-0.1) 19.1 (-0.7) 19.2 (-0.8)
tam eng 18.2 17.4 17.9 19.5 18.9 18.3 (-0.4) 19.1 (-0.4) 18.8 (-0.1)
tel eng 20.3 17.5 20.5 22.2 22.1 19.9 (-0.5) 21.1 (-1.1) 20.8 (-1.0)
khm eng 12.6 11.1 12.4 13.5 13.9 12.2 (-0.2) 12.6 (-1.3) 13.1 (-0.8)
lao eng 9.2 7.7 5.9 6.4 6.5 5.8 (+0.1) 6.3 (-0.1) 6.9 (+0.4)

Avg. 19.2 17.4 18.6 19.9 19.7 18.5 (-0.1) 19.4 (-0.5) 19.3 (-0.4)

Table 3: BLEU scores of the DENSE and ONE-HOT models on the Flores-101 dataset. Highest scores for each
language pair on these two sets of models are highlighted in bold font. The differences of BLEU scores between
ONE-HOT models and their corresponding DENSE variants are highlighted in the brackets.

mains that are not part of the training set. Similar
to the cross-lingual transfer setting (§4.4), we train
both subword and byte-based models on the source
domain (News) and evaluate them in a zero-shot
manner on three target domains (Koran, IT, Medi-
cal). Each model is trained on the source domain
dataset for 50K steps, and then evaluated on each
of the target domain test sets.

4.6 Hyperparameters

We use the Fairseq7 library as the codebase. To
make a fair comparison, we strictly follow the ar-
chitectural choice of Shaham and Levy (2021) and
employ the vanilla transformer encoder-decoder
architecture as our backbone for all experiments.
For all models, we use a total of 6 Transformer
layers for the encoder and 6 layers for the de-
coder with 8 attention heads, 512 hidden units and
the feed-forward dimension of 2048. We use the
Adam(Kingma and Ba, 2014) optimizer with an
inverseq square root learning rate scheduler, and
warm up 4K steps to reach a peak learning rate of
5e-4. We apply a weight decay of 1e-4 and a label
smoothing of 0.1. We also train all models for an
equal number of epochs in all the experiments.

4.7 Evaluation

For a fair, consistent evaluation, we follow Shaham
and Levy (2021) in using Sacre-BLEU8 with 13a
tokenizer for all language pairs using the raw text
to compute the BLEU scores.

5 Results

In this section, we detail the results of the various
experiments and discuss their implications.

7https://github.com/facebookresearch/
fairseq

8https://github.com/mjpost/sacrebleu

5.1 Multilingual Translation

Table 3 shows the BLEU scores on the test set of
the FLORES-101 data for many-to-one translation.
We further investigate the following questions.

Do we need dense embeddings? In line with the
findings of (Shaham and Levy, 2021) that embed-
dingless models are competitive with subword mod-
els in bilingual settings, we find that they perform
on par with their corresponding models that use
dense embeddings with an average difference of
less than 0.5 BLEU over seven languages. We find
that for six out of the seven source languages un-
der consideration, the byte-based models perform
competitively with the subword models. However,
subword models still hold the edge for extremely
low-resource languages such as Lao-English trans-
lation with only 2.7K training data. Besides, as
Lao’s written script is not shared with any of the
other languages, we hypothesize that training byte-
based multilingual models requires more training
data in order to figure out the different fusion of
byte tokens across languages while subword mod-
els with an explicit vocabulary for all languages do
not have this requirement.

How effective is character/word fusion? Our
proposed methods (Byte-nCF and Byte-WSF) that
induce higher level semantic representations for
bytes improve over vanilla byte-based models in
both cases (ONE-HOT and DENSE models) on all
language pairs with an average gain of up to 1.4
BLEU. Since sequence lengths tend to be extremely
long when using byte sequences, aggregating infor-
mation locally in the lower layers enables the model
to quantitatively obtain higher scores than even
subword-based models except in the extremely low-
resource regime.

Which fusion works better? Comparing our
two proposed variants, the Byte-nCF model per-
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Lang. Pair DENSE Models ONE-HOT Models
Src Tgt Subword Byte Byte-nCF Byte Byte-nCF

aze eng 3.7 6.9 7.8 5.7 6.9
bel eng 1.7 3.9 5.3 4.6 5.4
glg eng 7.6 15.2 16.7 16.4 17.2
slk eng 2.9 11.4 12.6 11.9 12.2

Avg. 4.0 9.4 10.6 9.7 10.4

Table 4: BLEU scores of the DENSE and ONE-HOT
models on the Ted Talk dataset. Highest score among
all models is in bold font.

forms slightly better than the Byte-WSF model
in the DENSE case, while both perform compa-
rably in the ONE-HOT case. In particular, Byte-
nCF performs better than Byte-WSF on relatively
high-resource languages (e.g., German, Hindi) with
more than 1M training data. Besides, both variants
perform comparably on low-resource languages
(e.g., Khmer, Lao) with large fertility scores.

5.2 Cross-lingual Transfer

The performance of byte-based and subword mod-
els on cross-lingual transfer is shown in Table 4.
As Byte-WSF and Byte-nCF have shown compara-
ble performances in Table 3, we only include the
Byte-nCF variant in the comparison below.

Does universal tokenization work? When eval-
uating subword and byte-based models in a zero-
shot setting (§4.4), byte-based models outperform
subword baselines by a clear margin of up to 6.1
average BLEU over all languages. The gains com-
pared to vanilla byte baseline is 1.2 BLEU for
DENSE variant and 0.7 BLEU for ONE-HOT mod-
els. Our results indicate that even for languages
written in the same script, a rigid subword sched-
ule is infeasible for NMT models to perform an
effective cross-lingual transfer. Particularly, we ob-
serve a significant increase in BLEU in the glg-eng
and slk-eng translations when using byte tokens as
inputs.

Does fusion help cross-lingual transfer? We
find that using the Byte-nCF fusion variant leads to
marginal improvement over the vanilla byte-based
model with an average gain of up to 0.4 BLEU. It
should be noted that most of these language pairs
share the same script and hence the convolution
fusion technique works very well. Investigating
whether such fusion techniques work for languages
that do not share the same script can be explored
in future work.

Domain DENSE Models ONE-HOT Models
Subword Byte Byte-nCF Byte Byte-nCF

WMT19 News 17.6 21.2 21.3 21.1 21.5
Koran 1.8 6.6 7.4 6.8 7.7

IT 3.9 10.4 11.6 10.2 11.3
Medical 4.1 13.6 15.3 12.9 15.4

Table 5: BLEU scores of the DENSE and ONE-HOT
models on zero-shot cross-domain adaptation.

Does the few-shot setting improve performance?
Figure 2 shows the translation performance in
terms of BLEU for the BPE and byte-based models
in the few-shot setting. We find that as the number
of training data in LRL increases, the performance
of the byte-based models improves, and Byte-nCF
consistently improves over the vanilla byte model.
The BPE baseline suffers from the issue of having
a high unknown token rate and cannot take full
advantage of the additional training data.
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Figure 2: Few shot translation performance of BPE and
Byte (ONE-HOT) based models.

5.3 Cross-Domain Adaptation

Table 5 shows the results of subword and byte-
based models on zero-shot cross-domain adapta-
tion. The first row indicates the BLEU scores on the
in-domain test set (WMT19 News), and the other
rows showcase the performance on out-of-domain
test sets (Koran, IT, Medical).

Are byte-based models robust to domain shift?
We find that the performance of both subword and
byte-based models is susceptible to domain shifts.
The BLEU scores on other domains are signifi-
cantly lower for all variants. However, on com-
parison, we find that byte-based models are more
robust than subword models against domain, yield-
ing higher BLEU scores on all out-of-domain test
sets.

Employing convolution fusion with the byte-
based models improves performance over subword-
based models, especially in the IT and medical do-
mains. The issue with cross-domain adaptation re-
mains that each new domain consists of specific jar-
gon and entities that are not captured in the source
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domain. This inhibits the models from capturing
the required semantic information to translate out-
of-domain sentences effectively.

6 Discussion and Analysis

Next, we further present a qualitative analysis of
byte-based models and our proposed variants.

We use the compare-mt toolkit (Neubig et al.,
2019) to holistically analyze how the outputs of
these models differ and what aspects different mod-
els excel at. We compare the multilingual NMT
models (§5.1) on the German-English translation
as a sample language pair for the analysis. Specif-
ically, we group all source words in the test sen-
tences into buckets by the word fertility score (Fig-
ure 4a) and the word length in terms of characters
(Figure 4b). Recall that the word fertility score
measures how many subword units a word is bro-
ken into, and we use the BPE tokenizer used in
Section 5.1. We evaluate byte-based models (i.e.,
Byte, Byte-WSF, Byte-nCF) using one-hot repre-
sentations on each group in terms of source word
translation accuracy.

As German is a high-resource language, most
German words (45%) have a fertility score of 1
implying that they are not segmented by the BPE
tokenizer, and all byte-based methods perform com-
parable on these words. We find that the Byte-
nCF method performs better than the other two
byte-based methods on oversegmented words (as
indicated by the accuracy on words with fertility
scores above 4). We also find that the Byte-nCF
method outperforms other methods on translating
long words (depicted by the accuracy on words
with length greater than 15 characters). Comparing
to the word-based (Byte-WSF) or sentence-level
full self-attention (Byte), we hypothesize that this
is a result of encoding a smaller sequence length
when using the convolution fusion operation, reduc-
ing the pressure of byte-based models to capture
too much information from a span of byte tokens.

7 Related Work

Subword Models Byte Pair Encoding (Sennrich
et al., 2016), Wordpiece (Wu et al., 2016) and
SentencepPiece (Kudo and Richardson, 2018) are
widely-used subword tokenization schemes for
NMT models, or perhaps most neural NLP models.
However, the rigid tokenization scheme poses chal-
lenges in terms of oversegmenting low-resource
languages and adapting a pre-trained model to new

languages or new domains of different corpora (Sun
et al., 2020; Bostrom and Durrett, 2020; Provilkov
et al., 2020; Kudo, 2018; Godey et al., 2022).

Character-level Models Applying neural mod-
els directly on character sequences has been ex-
tensively studied (Sutskever et al., 2011; Graves,
2013; Kalchbrenner et al., 2016; Zilly et al., 2017;
Melis et al., 2018; Al-Rfou et al., 2019; Kim et al.,
2016; Gao et al., 2020; Tay et al., 2022). Character-
aware methods were mainly developed by the use
of word boundaries and convolutions over char-
acters (Kim et al., 2015; Jozefowicz et al., 2016;
Peters et al., 2018; El Boukkouri et al., 2020; Ma
et al., 2020). However, for machine translation,
character-based NMT models (Lee et al., 2017;
Cherry et al., 2018; Libovický et al., 2022) still
suffer from a high computational overhead of en-
coding and decoding much longer sequences.

Tokenization-free Methods Recent attempts
have focused on using Unicode or UTF-8 encod-
ing scheme to remove pre-built subword tokeniz-
ers from preprocessing. These byte-based meth-
ods have achieved promising results in terms of
accuracy and speed-up in several multilingual lan-
guage understanding tasks (Clark et al., 2021; Tay
et al., 2021; Xue et al., 2021) or bilingual transla-
tion tasks (Shaham and Levy, 2021), while their
application to multilingual or cross-lingual/domain
settings is still underexplored.

8 Conclusion

We propose a Local Byte Fusion (LOBEF) method
with two variants—one employing convolutions on
byte n-grams and the other utilizing word-based
self-attention restricted to word boundaries. We
show that these two fusion variants improve upon
vanilla byte-based models indicating that neural
machine translation models benefit from the ex-
plicit aggregation of local semantic information for
characters or words at lower layers of neural net-
works. Our experiments show that both ONE-HOT

and DENSE versions of byte-based models perform
competitively on multilingual machine translation
and even beat subword baselines on multiple lan-
guage pairs. We also conduct an investigation of
the effectiveness of byte-based techniques in both
zero-/few-shot cross-lingual transfer and domain
adaptation settings, and find that they outperform
subword models by a large margin.
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Figure 3: Translation Word Accuracy grouped by word fertility/length for ONE-HOT Byte models on deu-eng.

9 Limitations

Despite achieving high translation performance on
various language pairs, LOBEF has some limita-
tions, coming from the nature of processing UTF-8
byte sequences.

Speed: As shown in Table 8 in the appendix, the
inference times for byte-based models are higher
when compared to subword-based models. It is
also worth noting that we use the same amounts
of model parameters for a total of 6 Transformer
encoder layers and 6 Transformer decoder layers
for all models in comparison. As shown in Ta-
ble 7, byte-based models can effectively reduce the
amounts of parameters for the embedding layers
comparing to the subword-based models, leading
to faster training time as shown in Table 8. How-
ever, as indicated by Xue et al. (2021), by adding
more encoder layers, we can construct byte-based
models with comparable amounts of parameters as
subword-based models, and these larger byte-based
models still require much longer time for training
than subword-based models.

Extremely Low-resource Languages: The per-
formance of byte-based models on extremely low-
resource languages (e.g., 2.7K training data for
Lao-English) is still lower than subword models es-
pecially in the multilingual setting. We suspect that
byte-based methods require a relatively larger num-
ber of training data in order to aggregate informa-
tion from a combination of byte tokens, comparing
to subword-based models that explicitly maintain a
subword vocabulary.

Extra Preprocessing: The Byte-WSF model
requires an extra preprocessing step that pre-
computes the attention mask corresponding to the
words in each sentence. This adds a slight over-
head before training, while training the Byte-WSF
model is as fast as the Byte model, as both model
use the same Transformer architecture. However,

for languages (e.g., Chinese) that do not have white-
spaces to indicate the word boundary, we may rely
on an off-the-shell word segmentation tool to pre-
process the text.
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Appendix

A Datasets used for Multilingual Training

Language OPUS Corpora

deu-eng Wikipedia, WMT-News, Bible
hin-eng IITB Hindi-English corpus
khm-eng CCAligned, GlobalVoices, QED, GNOME, TED2020, KDE4, tico-19, Tatoeba
lao-eng Wikimedia, TED2020, QED, GNOME, Ubuntu, Tatoeba
tel-eng Wikimedia, TED2020, QED, GNOME, Bible
tam-eng Wikimedia, TED2020, QED, GNOME, Tanzil
nep-eng Wikimedia, TED2020, QED, GNOME, Bible, GlobalVoices

Table 6: List of datasets from OPUS we use to construct our corpus for multilingual experiments.

B Computational Efficiency

For comparing the byte based and subword models in terms of the number of parameters, training and
inference times we consider the transformer base architecture. For the subword baseline, we consider a
source vocabulary of 32k and 8k for the target vocabulary (English).

Parameters When comparing the number of parameters in subword and byte based models, we find
that byte based models have far fewer parameters (~30% fewer) as compared to the subword baselines.
We highlight the differences in Table 7.

Model #Parameters

ONE-HOT

Byte 44.1M
Byte-nCF 46.5M
Byte-WSF 44.1M

DENSE

Subword 68.7M
Byte 44.3M
Byte-nCF 46.7M
Byte-WSF 44.1M

Table 7: Comparison of number of parameters in subword and byte based models. We find that byte based models
have on average 30% fewer parameters than comparable subword models.

Training and Inference times For comparing the training times, we train the models on the WMT19
de-en data for 5k steps. We use a warmup of 1k steps to eliminate any hardware discrepancies like GPU9

cold starts. Since the byte based models are smaller than comparable subword models, they are 20%
faster to train. The inference times are based on evaluating the model on the validation set across all
batches10. We find that byte based models are significantly slower than subword models for inference.
The byte sequences are significantly longer than subword sequences and thus the decoding time takes a
hit. Table 8 shows the training and inference times for the subword and byte baesd models.

It should be noted that while the training time is shorter for byte-based approaches when comparing the
same number of gradient steps, when we consider the training time for the same number of epochs, we do
not observe faster training performance. Since byte sequences are much longer than subword sequences,
training them for the same number of epochs involves using a longer number of training steps which
makes their training times comparable.
9All numbers are obtained using a single RTX 3090 GPU using a batch size of 7k tokens and 8 gradient accumulation steps for
training.

10beam size of 3 and batch size of 256
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Model Train time(s) Inference time(s)

ONE-HOT
Byte 4184.1 50.963
Byte-nCF 4387.6 52.315

DENSE Subword 5176.8 22.445

Table 8: Comparison of the training time and inference time of subword and byte models. Byte-based models are
faster to train, but are slower during inference than subword models.

Computing Infrastructure All models are trained on a Linux server with 4 RTX 3090 GPUs and 16
CPU cores. On average, training all models on 2 GPUs for 200K steps can be finished within 24 hours.
After training, we pick the best checkpoints based on the performance on the development set.

C Number of Shallow Encoding Layers for Byte-nCF

#Layer 0 1 2 3 4 5

deu-eng 19.4 21.5 21.4 20.1 20.4 19.7
khm-eng 10.4 12.6 12.3 11.8 11.3 10.7

Table 9: BLEU score of Byte-nCF using Ls shallow encoding layers.

D Number of Word-based Self-Attention Layers for Byte-WSF

#Layer 1 2 3 4 5

deu-eng 28.3 27.9 28.8 28.2 27.4

Table 10: BLEU score of Byte-WSF using Ls word-based self-attention layers.

E Byte-BPE Baseline

There are some works exploring the use of BPE vocabulary on byte tokens (Wang et al., 2019a) to
get the best of both worlds - i.e. we would not have the out-of-vocabulary issue since every character
can be represented as one of the 256 byte tokens and we also make use of the advantages of subword
tokenization scheme to reduce the sequence length and decoding time. For a more reasonable comparison
with similar-sized byte-based models, we strictly follow the settings of Wang et al. (2019b), using BBPE
models and setting vocab size to 2K or 4K. From our results below, we find that our proposed methods for
byte fusion (using 256 vocab size) are slightly better than BBPE with 4K vocab size, with an avg. gain of
up to 0.8 BLEU.

Note that BBPE may fall back to using single bytes when dealing with new byte combinations in a
new language or domain. We also run a cross-lingual transfer experiment by training the BBPE(4k)
model on tur-eng and evaluating it on aze-eng in a zero-shot manner. We find that it gets a BLEU of
7.4, which is better than vanilla byte models (6.9) but worse than our proposed Byte-nCF (7.8 BLEU).
This suggests that even though there is a byte fall-back in such models, a certain fraction of BPE tokens
used in high-resource languages may not be used in the low-resource language, and the model still has to
implicitly fuse the new byte tokens for low-resource language, similar to vanilla byte baseline.

This baseline is more comparable to BPE and is not the main baseline for our consideration since we
are focused on improving over the vanilla byte-based methods.
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Language Pairs BBPE 2K BBPE 4K

deu-eng 30.8 31.1
hin-eng 24.7 25.1
npi-eng 18.4 18.7
tam-eng 19.3 19.6
tel-eng 20.4 21.1
khm-eng 11.2 11.6
lao-eng 6.1 6.4

Avg. 18.7 19.1

Table 11: BLEU scores for BBPE
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Figure 4: Translation performance (indicated by Word Accuracy) grouped by whether the words were seen or
unseen during training on different domains for ONE-HOT Byte models on deu-eng.

s
F Seen vs Unseen words - Domain Adaptation

To compare how well the models generalize across domains, we compute the word accuracy score based
on whether the source words were observed or unobserved during the training stage. Since all the models
are trained on the WMT News domain and evaluated on the IT and Medical domains, analyzing the word
accuracy on unseen words reveals where the performance gain stems from. We see that the Byte-nCF
model has much higher word accuracies on the unseen words when compared with the Byte and BPE
models
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