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Abstract

A challenge towards developing NLP systems
for the world’s languages is understanding
how they generalize to typological differences
relevant for real-world applications. To this
end, we propose M2C, a morphologically-
aware framework for behavioral testing of
NLP models. We use M2C to generate tests
that probe models’ behavior in light of spe-
cific linguistic features in 12 typologically di-
verse languages. We evaluate state-of-the-art
language models on the generated tests. While
models excel at most tests in English, we high-
light generalization failures to specific typo-
logical characteristics such as temporal expres-
sions in Swahili and compounding possessives
in Finish. Our findings motivate the develop-
ment of models that address these blind spots.1

1 Introduction

In natural language processing (NLP), there is a
need to build systems that serve more of the world’s
approximately 6,900 languages. As one measure
of linguistic diversity, the World Atlas of Lan-
guage Structures (WALS; Haspelmath et al., 2005)
records 192 linguistic features along which lan-
guages differ. These range from the order of sub-
ject, object, and verb (Dryer, 2013) to the number
of basic color categories (Kay and Maffi, 2013).
Languages present in existing NLP datasets mostly
lie in low-density regions of the space of possible
typological features (Ponti et al., 2021). In other
words, many linguistic features that are common
across the world’s languages are not observed in
languages that are the focus of NLP research.2

It is thus important to investigate to which lin-
guistic features models can generalize and where
they face challenges. However, existing datasets

1We make all code publicly available at https://github.
com/google-research/multi-morph-checklist.

2For instance, while tone is present in around 80% of
African languages (Adebara and Abdul-Mageed, 2022), few
Indo-European languages can be considered tonal.
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Figure 1: Top: Comparison of state-of-the-art models
on M2C tests in a selected set of languages. Models
perform well on English but poorly on certain tests in
other languages. Bottom: Even the largest models fail
on tests probing language-specific features, e.g., the dis-
tinction between habitual and one-time motion verbs in
Russian (left) or possessives in Finnish (right); see Ap-
pendix B for English glosses and additional examples.

do not allow for a fine-grained cross-lingual evalua-
tion and mainly permit comparisons on a language
level (Hu et al., 2020). Prior studies focused on syn-
tax and grammar through the lens of acceptability
judgements (Ravfogel et al., 2018; Ahmad et al.,
2019; Mueller et al., 2020; Papadimitriou et al.,
2022). While these enable the evaluation of what
a model deems ‘natural’ in a given language, it is
often unclear how such biases relate to real-world
applications of NLP technology.

We propose Multilingual Morphological Check-
list (M2C) to enable the investigation of a broader
set of cross-lingual differences in practical sce-
narios. Specifically, we create a morphologically-
aware behavioral testing framework (Ribeiro et al.,
2020) that allows for the specification of tests in
a diverse set of languages. Using this framework,
we design tests that probe model’s behavior in light
of specific capabilities and typological features in
12 typologically diverse languages. We focus on a
question answering setting as it represents one of
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Figure 2: General workflow of using M2C for model evaluation. 1) Templates including context (C), question (Q),
and answer (A) and placeholders for morphological features are created. 2) M2C is used to generate test cases. 3)
A model is evaluated on the generated tests in a prompting setting and M2C is used to validate the predictions.

the most general and widely useful NLP applica-
tions (McCann et al., 2018) and enables zero-shot
evaluation of models. We create tests that cover a
diverse set of reasoning capabilities involving gen-
eral linguistic features that are expressed differently
across languages—negation, numerals, spatial and
temporal expressions, and comparatives—as well
as features unique to certain languages such as
time in Swahili, measure words in Chinese, com-
pounding possessives in Finnish, and motion verbs
in Russian. We evaluate state-of-the-art language
models on the generated tests in zero-shot and one-
shot settings. Our findings shed light on general-
ization failures to specific typological features. For
instance, all models struggle with time expressions
in Swahili and measure words in Chinese. We show
the workflow of using M2C, from template creation
to model evaluation, in Figure 2.

Our contributions are: (1) We create a new
morphologically-aware multilingual behavioral
testing framework. (2) We highlight linguistic fea-
tures that are challenging in different languages.
(3) We design tests that probe model capabilities
in light of practically relevant typological differ-
ences. (4) We evaluate state-of-the-art language
models on the generated tests. (5) We shed light on
the challenges posed by typological differences in
multilingual scenarios.

2 Related Work

Perplexity Perplexity is a standard measure of
evaluating language model performance, which
has also been used in multilingual settings (Gerz
et al., 2018). Besides being difficult to compare
across segmentations, perplexity does not provide
more fine-grained insights regarding model behav-
ior (Meister and Cotterell, 2021). Acceptability
evaluations compare perplexity between minimal
pairs of grammatical and ungrammatical sentences
(Linzen et al., 2016; Warstadt et al., 2020). Such
evaluations have been extended to other languages
(Ravfogel et al., 2018; Ahmad et al., 2019; Mueller
et al., 2020; Xiang et al., 2021; Papadimitriou et al.,
2022), which requires writing extensive language-
specific grammars while the relevance of syntax
biases in real-world applications remains unclear.

Evaluation of large models Most benchmarks
designed for evaluating large models focus on as-
sessing their performance on a collection of com-
plex tasks (Wang et al., 2019; Hu et al., 2020;
Hendrycks et al., 2021; Gehrmann et al., 2021; Sri-
vastava et al., 2022). However, such benchmarks
are unable to highlight more fine-grained model
limitations (Ethayarajh and Jurafsky, 2020) and are
outpaced by the development of new models.
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Behavioral testing Behavioral testing sheds
light on model capabilities via the design of simple
targeted tasks. Early work such as bAbI (Weston
et al., 2016) focused on toy tasks requiring sim-
ple reasoning capabilities while oLMpics (Talmor
et al., 2020) consisted of 8 short classification tasks
for masked language models. Recently, LMentry
(Efrat et al., 2022) provides simple tests assessing
fundamental generation capabilities. A common
test bed is natural language inference (Naik et al.,
2018; McCoy et al., 2019) where analyses of rea-
soning types have been extended to other languages
(K et al., 2021; Joshi et al., 2020; Hartmann et al.,
2021) but require existing data.

The CheckList framework (Ribeiro et al., 2020)
enables the generation of behavioral tests for NLP
models but its templates are English-centric. En-
glish Checklist tests have been extended to other
languages via translation (Ruder et al., 2021; K
et al., 2022). Such approaches, however, struggle
with comprehensively covering linguistic features
specific to a language and are not able to easily
represent morphological variation. Relatedly, Jiang
et al. (2020) create templates that integrate mor-
phology for simple knowledge retrieval queries
while Kassner et al. (2021) automatically translate
knowledge retrieval queries into other languages.
Compared to their approach, our framework allows
for integrating morphology into a broader range of
tests and is more scalable and flexible.

3 CheckList

CheckList (Ribeiro et al., 2020) relies on templates
to generate a large amount of samples in order to
evaluate models’ behavior regarding different tasks
and capabilities in a controlled manner. A tem-
plate consists of a string with placeholders such
as {first_name} delimited by curly brackets, e.g.,
“{first_name} is {adj}”. The user provides
a set of values for each placeholder, for instance,
{first_name} = {Michael, John, ... } and {adj} =
{busy, friendly, ... }, which are used to populate the
templates with their Cartesian product. The gener-
ated samples can then be applied to systematically
test a model’s performance in a specific setting.

Multilingual tests CheckList has been designed
for English and provides mainly English-specific
functionality. For example, it matches indefinite
articles with nouns based on their starting letter, i.e.,
the placeholder {a:job} generates “a lawyer” and
“an engineer”. As a consequence, CheckList is not

capable of effectively generating tests in languages
with richer morphology, which require maintaining
agreement between multiple parts of the template—
a feature that is beyond the scope of CheckList.

While multilingual tests can be generated by
translating English tests (Ruder et al., 2021; K et al.,
2022), optionally including template extraction and
human verification, such generated templates strug-
gle with handling rich morphology. In addition,
in order to systematically probe linguistic features
specific to a language, it is crucial to be able to
efficiently generate in-language tests from scratch.

4 M2C Framework

We propose the M2C (Multilingual Morphological
Checklist) framework in order to enable the gener-
ation of tests in a broad set of languages, including
languages with rich morphology. A user provides a
template as a string, a list of values for each place-
holder, and an optional configuration dictionary in
case of duplicate placeholders. The placeholder
values can either be passed without inflections (for
example, names in English) as a list of strings, or
as a list of dictionaries with their corresponding
inflected values. Each key of the dictionary is a fea-
ture combination (e.g., MASC.PL) and the value is
the corresponding string (e.g. “apples”). As such,
each entity can have multiple inflections, for in-
stance, in English “apple” and “apples”. We show
the general M2C workflow in Figure 2.

Morphological categories Our library follows
the UniMorph Schema representation (Sylak-
Glassman, 2016), which decomposes morphology
into 23 dimensions and over 212 features. For
example, Gender is one dimension, which con-
tains features such as Feminine (FEM), Masculine
(MASC), and Neuter (NEUT).

The ability to indicate these dimensions using
a clear codification allows us to describe both the
value attributes given to placeholders and their de-
pendence on one another. As an example, in order
to differentiate between “Juliette est grande” and
“Julien est grand” in French, it is necessary to en-
sure gender agreement between noun and adjective
by including the Gender attribute in the template.
To cover such functionality, we introduce a syntax
describing the morphological dependence between
placeholders: {X.<Y.D>} signifies that X should
have the same feature for dimension D as Y. In the
above example, this is realized by “{first_name}
est {adj.<first_name.GENDER>}”.
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Language-specific dimensions While initially
relying on the UniMorph schema, we found cases
where the existing dimensions are not sufficient to
describe morphology of placeholders within the
templates, which is especially necessary for deal-
ing with exceptions. For instance, the trifold ar-
ticle distinction in Italian masculine gender—il
treno, l’hotel, lo studente—depends on whether
the noun starts with a consonant, vowel or h, or a
specific consonant combination3 respectively. In
order to lexically encode such exceptions, we pro-
vide the ability to add dimensions, in this case
STARTSWITH, which includes features VOW, CONS,
and CONS2. While the goal of M2C is not to be
exhaustive, it should enable encoding a sufficient
number of dimensions to allow the user to write
templates for diverse use cases.4

Advanced templating system To cover the va-
riety of morphological phenomena, we designed
a templating system with a rich syntax. When
describing dependence rules, features can be
added sequentially and are commutative, e.g.,
<first_name.GENDER.NUMBER> is equivalent to
<first_name.NUMBER.GENDER> where NUMBER =
{singular, plural}. Often, only two or three output
values are necessary, which directly depend on a
placeholder’s feature. We allow a simple expres-
sion to be passed directly in the template to make
this rule explicit:

{val_1:placeholder.feature_1 | ... | val_n:placeholder.feature_n},

e.g., {is:first_name.SG|are:first_name.PL},
which produces “is” for a singular {first_name}
and “are” for a plural one. Finally, we al-
low multiple placeholders with the same type,
e.g., {first_name1} and {first_name2}, to be
populated by values of a common type, i.e.,
first_name. In the case of multiple placehold-
ers, we can provide a configuration for each place-
holder type that specifies boolean repetition and
order fields to, for instance, avoid having exam-
ples like “John and John” (repetition) or “John and
Mary” and “Mary and John” (order).

Manual enumeration of features and their cor-
responding values is a barrier to scaling. To cir-
cumvent this, we integrate UnimorphInflect (Anas-
tasopoulos and Neubig, 2019), which uses mod-

3gn, pn, ps, x, y, z, s followed by another consonant or i
followed by a vowel.

4UniMorph defines a generic dimension ‘Language Spe-
cific features’ with attributes LGSPEC1, .., LGSPECN, which
does not provide the clarity and flexibility of our setup.

els trained on Unimorph data using the Unimorph
Schema to generate inflections in 55 languages. As
Unimorph models are imperfect—test accuracies
range from 90%+ in many languages to 23% in
Arabic—we envision a workflow where inflections
are generated at scale using UnimorphInflect and
then manually inspected by annotators for correct-
ness. We expect the increase in productivity, and
thus reduction in cost, to be significant by leverag-
ing semi-automated as opposed to manual genera-
tion for languages with good performance.5

Answer validation Most prior benchmarks for
behavioral testing of language models have focused
on classification tasks (Talmor et al., 2020; Ribeiro
et al., 2020). As M2C aims to support the evalua-
tion of generative models using arbitrary templates,
we implement functionality to match a range of
outputs for each template, based on morphology,
string matching and regex.6

Summary Overall, the M2C framework enables
the systematic and controlled generation of high-
quality tests at scale in a broad set of languages.
As such, it occupies a middle ground between li-
braries such as SimpleNLG (Gatt and Reiter, 2009)
that generate high-quality data but require encoding
each language-specific rule, and template expan-
sion via generative language models (Honovich
et al., 2022), which are highly scalable but less
reliable and underperform on languages with lim-
ited data (Hu et al., 2020). M2C enables modular
design by allowing the addition of user-specified
dimensions and features for specific templates and
languages without requiring to encode all possible
rules of a language. Furthermore, an advanced tem-
plating syntax and the semi-automatic generation
of inflections may improve user productivity.

5 Capabilities and Typological Features

Languages We generate tests targeting capabil-
ities and typological features in 12 typologically
diverse languages: English (EN), Spanish (ES), Ital-
ian (IT), French (FR), German (DE), Swedish (SV),
Finnish (FI), Slovak (SK), Russian (RU), Swahili
(SW), Mandarin Chinese (ZH), and Arabic (AR).

Recent models have excelled at a wide range of
tasks in English requiring a diverse set of reasoning

5In order to ensure high-quality tests for the experiments
in §6, we manually enumerate all relevant inflections.

6For each of the templates in §6, we curate possible outputs
and implement regex and functions capturing them.
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Test Template Generated test

Negation

.{job2.NOM.<name2.NUMBER.GENDER>} {name2} ð {job1.NOM.<name1.NUMBER.GENDER>} {name1} :C

?{job1.NOM.<name2.NUMBER>.MASC} {��
Ë:name2.SG| A��
Ë:name2.DU} 	áÓ :Q

.{name2} :A

. I. �KA¿ QÔ«ð �Y	JêÓ YÔg


@ :C

? �Y	JêÓ ��
Ë 	áÓ :Q

.QÔ« :A

Numerals

C: На столе {number1.<fruit1.GENDER>} {fruit1.NOM.<number1.NUMBER>}
и {number2.<fruit2.GENDER>} {fruit2.NOM.<number2.NUMBER>}.
{name} {съел:name.MASC|съела:name.FEM}
{number3.<fruit1.GENDER>} {fruit1.<ACC:number3.SG|NOM>.<number3.NUMBER>}.

Q: Сколько {fruit1.NOM.GTPL} на столе?
A: {$diff(number1,number3)}.

C: На столе три ягоды клубники и пять ананасов.
Анна съела две ягоды клубники.

Q: Сколько ягод клубники на столе?
A: Одна.

Spatial

C: {ART1.DEF.<obj1.NUMBER.STARTSWITH.GENDER>.TO_CAPITALIZE} {obj1} e
{ART2.DEF.<obj2.NUMBER.STARTSWITH.GENDER>} {obj2} sono
{prep.<place.STARTSWITH.GENDER>} {place}.
{name} mette {ART2.DEF.<obj2.NUMBER.STARTSWITH.GENDER>} {obj2} sul pavimento.

Q: {Dov’è:obj1.SG|Dove sono:obj1.PL} {ART3.DEF.<obj1.NUMBER.STARTSWITH.GENDER>} {obj1}?
A: {prep.<place.STARTSWITH.GENDER>.TO_CAPITALIZE} {place}.

C: Il libro e le penne sono accanto al tavolo.
Leonardo mette le penne sul pavimento.

Q: Dov’è il libro?
A: Accanto al tavolo.

Temporal

C: {name1} na {name2} ni {job1.PL} lakini {name1}
atabadilisha kazi na atakuwa {job2.SG}.

Q: {name1.TO_CAPITALIZE} atakuwa nani?
A: {job2.SG.TO_CAPITALIZE}.

C: Jabari na Jelani ni waandishi lakini
Jabari atabadilisha kazi na atakuwa mwalimu

Q: Jabari atakuwa nani?
A: Mwalimu.

Comparative

C: 如果{obj1}{comp1.GT}一点，{name}会{act}它。
如果{obj2}{comp2.GT}一点，{name}会{act}它。

Q: 如果它不那么{comp1.LT}，{name}会{act}什么？
A: {obj1}

C: 如果公寓小一点，佳丽会买它。
如果电脑便宜一点，佳丽会买它。

Q: 如果它不那么大，佳丽会买什么？
A: 公寓。

Table 1: Templates including context (C), question (Q), and answer (A) with generated test examples for linguistic
features in Arabic, Russian, Italian, Swahili, and Mandarin Chinese. Placeholders are defined within curly brackets
with their morphological dependence.

and understanding capabilities (Wang et al., 2019;
Hendrycks et al., 2021). As most languages are
morphologically richer than English, they encode
the linguistic features representing such capabilities
in more complex ways. The features we investigate
are relevant in a variety of real-world applications
including sentiment analysis (Wiegand et al., 2010),
question answering (Dua et al., 2019), grounding
(Kordjamshidi et al., 2020), reasoning with tempo-
ral change (Lazaridou et al., 2021) and quantitative
attributes (Elazar et al., 2019).

We investigate capabilities and linguistic fea-
tures present in all our investigated languages as
well as linguistic features unique to certain lan-
guages. For each feature, we highlight differences
in its cross-lingual instantiation and challenges for
natural language understanding and generation. We
create templates using the M2C framework to test
a model’s understanding of each capability and fea-
ture. We show a subset in Table 1.

5.1 Language-agnostic features

Negation In Indo-European languages, negation
is often expressed via a separate particle such as
not (English), inte (Swedish), etc. In contrast,
in Swahili, for instance, negation morphemes are
fused with the verb root and thus harder to iden-
tify. For other negation terms such as kein (Ger-
man) models need to produce the correct agree-
ment when generating text. In addition to gen-
der and number agreement with the subject, Ara-

bic negation takes up to five forms in singular,
three forms in dual, and five forms in plural, e.g.,
��
Ë (SG.MASC) and �I��
Ë (SG.FEM).

Numerals Models must be able to recognize and
reason with numbers in their spelled-out and nu-
merical forms across different writing and numeral
systems, e.g., seventeen (English) and 17 (Western
Arabic numerals) and Qå��« �éªJ.� and 17 (Eastern
Arabic numerals). For generation in Russian and
Slovak, models must inflect the noun depending on
the quantity of the object. Slovak, for instance, has
separate inflections for quantities of one, two/three-
/four, and five and more, which also vary based on
the object’s animacy.

Spatial expressions In Russian, prepositions are
associated with different cases, for example the
instrumental case for за (behind) and the preposi-
tional case for on. Such case agreement needs to
be taken into account when generating text in Rus-
sian. Finnish, in addition to prepositions, follows a
system of postpositions, which relate the location
of one thing to another and require objects to be
inflected in either partitive or genitive case.

Temporal expressions Some languages with
rich morphology such as Finnish and Swahili en-
code temporal expressions in less complex ways
than their inflection-sparser counterparts. In
Swahili, verbal structure follows a simple com-
pounding schema of subject marker + tense marker
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Prompt: Svara på frågan.

Sp
at

ia
l

Kontext: Pennan är under stolen
och telefonen är på fönstret.
Fråga: Var är telefonen?
Svar: På fönstret
Kontext: Boken är under soffan
och pennan är på hyllan.
Fråga: Var är pennan?
Svar:

Table 2: Zero-shot and few-shot prompt example in
Swedish spatial template. The zero-shot prompt only
includes the information in bold while the one-shot
prompt also includes the additional exemplar.

+ verb, e.g. a-na-soma (he reads) or u-ta-soma (you
will read).

Comparatives Commonly, comparatives are ex-
pressed by a suffix or using a quantifier, e.g., more/-
less. Spanish and French follow the latter approach
by placing más/menos and plus/moins before the
adjective with only a few standard exceptions. On
the other hand, in Finnish, for example, the for-
mation of comparatives follows a complex system
of rules for compounding that includes categories
depending on the endings of adjectives and a suffix
mpi.

5.2 Language-specific features

Time in Swahili In many languages, the day is
divided into two periods: a.m. and p.m., with the
daily cycle starting at midnight (0:00) and running
through noon (12:00). In Swahili, time is based
on sunset and sunrise, defined to be 6 pm and 6
am respectively in standard time. For example,
11.30 am in standard time is 5.30 in the morning in
Swahili time. Understanding different time systems
is key not only for in-language reasoning but also
for cross-lingual applications.

Possessives in Finnish Compounding in Finnish
along with its system of 15 cases is one of the most
challenging aspects of the language. One relevant
feature are the possessive suffixes, which attach to
the stem of nouns, e.g., koulu (school) becomes
kouluni (my school) and koulumme (our school).
Possession is expressed via a suffix -lla, which
compounds with other suffixes, e.g., siskollani (my
sister has), which must be correctly inflected by
models in order to achieve the intended meaning.

Particles in Mandarin Chinese Another lan-
guage specific-feature are measure words in Man-
darin Chinese, which include over 150 cases and
are used for different types of objects depending
on their characteristics, e.g., “本” for books, “双”
for pairs, or “辆” for vehicles.

Motion verbs in Russian In most Slavic lan-
guages, motion verbs are a challenging concept as
they behave differently than other verb categories.
While most verbs have two forms (imperfective and
perfective), motion verbs have three forms: one
perfective form and two imperfective forms. Of
the imperfective forms, the definite form indicates
unidirectional or current one-time motion while
the indefinite form represents multi-directional or
habitual motion.

6 Experiments

Experimental setting We evaluate models on
the generated tests in a question answering setting
as can be seen in Figure 2. Each test consists of
a context, a question, and an answer that needs to
be predicted by the model. For each template, we
generate 2,000 test examples on which the model
is evaluated. A model’s performance on a template
is its accuracy of predicting a valid answer for a
test averaged across all tests of the template.

We evaluate models in both zero-shot and one-
shot settings for each capability and language. In
the one-shot setting, a test randomly generated us-
ing the same template is used as the exemplar. This
simplifies the task in two ways: i) it provides the
model with a clear format for generating the answer
and may enable the model to infer the answer’s re-
lationship to the rest of the template. While we
conduct one-shot experiments to show the impact
of additional instructions, zero-shot evaluation is
the only setting that fully tests the model’s under-
standing and generative capabilities independent
of confounders such as the exemplar choice (Zhao
et al., 2021), in line with prior work on behavioral
testing (Ribeiro et al., 2020; Efrat et al., 2022). We
provide an example of both settings in Table 2.

Models We evaluate five state-of-the-art pre-
trained language models of different sizes: an LM-
adapted version (Vu et al., 2022) of mT5-XXL
(13B parameters; Xue et al., 2021); PaLM-S (8B pa-
rameters), PaLM-M (62B parameters), and PaLM-
L (540B parameters; Chowdhery et al., 2022); and
PaLM 2 (Google et al., 2023). All models have
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EN ES IT FR DE SV FI SK RU ZH SW AR Avg.

mT5-XXL 59.6 32.0 43.9 41.4 50.4 39.3 44.8 28.5 39.1 40.0 30.6 52.1 41.8
PaLM-S 66.5 38.9 36.6 47.9 47.1 53.3 39.8 23.9 33.9 44.7 23.4 29.4 40.4
PaLM-M 84.5 70.9 60.1 78.2 71.8 66.2 53.5 50.6 54.0 55.1 35.1 48.8 60.7
PaLM-L 92.5 89.5 89.2 92.0 86.7 90.7 87.4 76.8 80.5 82.0 70.6 78.1 84.7
PaLM 2 98.1 98.2 93.6 98.3 95.0 97.0 88.7 88.5 93.1 88.3 83.9 91.2 92.8

Table 3: Average accuracy (in %) of different models on the generated tests in a zero-shot setting.

Test type Model EN ES IT FR DE SV FI SK RU ZH SW AR Avg.

N
eg

at
io

n In context
mT5-XXL 80.7 72.8 85.5 80.2 63.1 55.8 84.4 31.8 45.3 30 33.7 43.1 56.9

PaLM 2 99.9 100 98.4 100 100 100 100 100 100 90.1 100 92.3 98.3

In question
mT5-XXL 19.1 30.1 23.4 25.1 36.1 20.6 19.7 16.7 9.6 5.2 3.7 58.2 22.6

PaLM 2 100 100 98.9 100 99.8 99.3 100 100 100 76.6 99.6 95.1 97.2

N
um

er
al

s Addition
mT5-XXL 0.4 0.2 2.3 2 1.7 1.6 0 0 0 0 0.1 42.6 4.6

PaLM 2 96.1 100 68.7 99.7 96.5 100 100 99.9 96.9 66.5 94.5 79.3 91.1

Subtraction
T5-XXL 33.4 21.5 24.2 22.2 33 31.3 26.8 19.8 12.9 23 5.9 32.1 23.0
PaLM 2 95 92.4 90 93.6 93.6 89.1 87.5 88.4 93.6 81.2 68.7 87.4 87.8

Sp
at

ia
l Prepositions

mT5-XXL 98.8 28 51.4 40.2 78.3 59.6 27.6 51.3 49.5 99.9 52.8 74.4 55.7
PaLM 2 100 100 94.8 100 100 100 100 100 99.9 100 100 98.7 99.4

Position
mT5-XXL 90.9 15 74.5 61.1 95.2 35.1 60.3 29 50 100 49 65.3 57.7

PaLM 2 100 100 99.9 100 100 100 99 100 99.9 100 46.7 91.0 94.2

Te
m

po
ra

l

Past
mT5-XXL 86.3 27.8 44.4 62.1 50.4 77.5 78.7 61.7 93.1 81.1 35.2 68.9 61.9

PaLM 2 99.3 100 89.8 100 86.8 100 100 83.5 96.9 96.7 62.9 96.2 92.1

Future
mT5-XXL 85.7 79.8 48.4 56.9 55.3 55 62.2 38.3 93.5 52.7 39 58.7 58.2

PaLM 2 100 100 100 100 100 100 100 95 99.1 100 100 99.8 99.4

C
om

pa
ra

tiv
e

Standard
mT5-XXL 58.1 44 37.3 48.7 45.3 28.3 60 31.3 17.3 7.7 51.7 45.3 37.9

PaLM 2 100 97.7 100 100 100 100 100 100 100 99.3 100 100.0 99.7

Conditional
mT5-XXL 42.4 1.1 47.8 15.8 45.5 28.1 28.7 4.7 19.8 0 35.2 32.1 23.5

PaLM 2 90.6 92.1 95.1 89.4 73.3 81.7 0 18.1 44.2 72.7 66.3 72.1 64.1

Table 4: Accuracy (in %) of mT5-XXL and PaLM 2 on the generated tests in a zero-shot setting.

been trained on large amounts of web text but
have not been otherwise fine-tuned for instruction-
following or few-shot learning.

Generation Predictions are generated using
greedy decoding with a temperature of 0 and a
maximum of 20 decoding steps.

7 Results

7.1 Performance across Languages

We show the average results across tests covering
language-agnostic features across languages and
models in Table 3. We present the detailed results
across test types for mT5-XXL and PaLM 2 in
Table 4 and for PaLM-S, PaLM-M, and PaLM-L in
Appendix A. We show results on language-specific
features for all models in Table 5.

M2C tests are challenging, particularly for
smaller models and for certain languages.

mT5-XXL and PaLM-S achieve comparatively
poor performance on average across languages.
While performance is highest for English, across
the other languages both models only pass at most
50% of tests—and less than a third for Slovak (SK),
Swahili (SW), and Arabic (AR) for PaLM-S. These
results highlight that the tests generated with M2C
are challenging for the majority of state-of-the-art
models and demonstrate that a clear gap between
performance on English and performance in other
languages remains for most models.

Competence with language-agnostic features
emerges at scale. We observe a 20 point im-
provement in average performance from PaLM-S
to PaLM-M to PaLM-L, highlighting that model
robustness to linguistic features improves with
scale. The strongest model, PaLM 2, reaches al-
most perfect performance on English and on the
Indo-European languages. Compared to PaLM-L,

7187



PaLM 2 achieves the largest improvements on Slo-
vak, Russian, Swahili, and Arabic. On Finnish,
Slovak, Chinese, and Swahili average performance
of PaLm 2 is still below 90%, however, indicating
that there is headroom left in terms of competence
with regard to language-agnostic features for even
the strongest current models.

7.2 Performance across Linguistic Features

Language-agnostic features The most challeng-
ing test types for mT5-XXL and PaLM 2 in Table
4 are numerals and comparatives. mT5 performs
poorly on addition and only slightly better on sub-
traction while PaLM 2 achieves around 90% perfor-
mance on most languages. On comparatives, both
models have more difficulty in the conditional case.
While PaLM 2 passes negation tests with almost
perfect accuracy across different languages, mT5
displays reduced performance, particularly when
the question is negated and for non-Indo-European
languages. This highlights that robust reasoning
with negation only emerges at scale. On spatial and
temporal tests, mT5 achieves reasonable perfor-
mance in most languages, while PaLM 2 achieves
perfect performance in most cases and only under-
performs in Swahili.

Language-specific features We show the results
on the language-specific feature tests in Table 5.
All models have acquired a reasonable ability to dis-
tinguish between different forms of motion verbs
in Russian. Small and medium-sized models gen-
erally fail to reason with compounding possessives
in Finnish and time expressions in Swahili while
all models are unable to perfectly employ the cor-
rect measure words in Chinese, despite it being a
high-resource language. Similarly, even PaLM 2
is unable to correctly reason with time expressions
in Swahili. We show examples of errors in model
predictions for each test type together with English
glosses in Appendix B.

7.3 Evaluating Morphological Correctness

The generated tests focus on evaluating a model’s
understanding capabilities with regard to specific
capabilities and linguistic features. As the linguis-
tic features are often expressed via morphology,
we additionally calculate the fraction of errors due
to morphology in the models’ output for the tests
with morphological variation in the answer. This
enables us to assess a model’s ability to generate
morphologically correct forms. For instance, in

FI RU ZH SW Avg.

mT5-XXL 1.2 62.6 38.8 0 25.7
PaLM-S 3.6 68.1 5.1 0 19.2
PaLM-M 12.4 86.9 61.4 0 40.2
PaLM-L 63.4 90 71.6 13.6 59.7
PaLM 2 98.7 99.4 77.5 69 86.2

Table 5: Accuracy (in %) on tests testing language-
specific features: time (Swahili), possessives (Finish),
particles (Chinese), motion verbs (Russian).

Languages FI SK RU

N
eg

-
at

io
n In context 31.6 45.7 27.6

In question 10 51.8 3.2

N
um

-
er

al
s Addition 8 16.2 4.2

Subtraction 12.4 30 11.8

Sp
a-

tia
l Prepositions 7.8 8.2 0

Position 0 0 0.1
Te

m
p-

or
al Past 0 21.8 39.8

Future 0 8.3 0

C
om

p-
ar

at
iv

e Standard 0 0 0
Conditional 4.5 3.2 25.6

Table 6: Percentage of morphological errors (in %)
by PaLM-L on the generated tests with zero-shot set-
ting. Example erroneous predictions corresponding to
highlighted cells are in Appendix C.

Slovak, a model must generate the correct accents
and suffixes, e.g., it is an error if the model predicts
the Trináste (13th) instead of Trinást’ (13). We
automatically identify and manually curate these
errors for PaLM-L and report the proportion of
morphology-related errors for a subset of tests and
languages in Table 6. We show examples of errors
in model predictions that are due to morphology in
Appendix C.

For certain tests with morphological variation in
the answer, a non-negligible fraction of errors are
due to producing incorrect morphological forms.
For negation in Slovak, around half of PaLM-L’s er-
rors are due to morphology such as an incorrect use
of diacritics or suffixes, highlighting a weakness of
subword-based models. For numerical reasoning,
models frequently produce incorrectly inflected nu-
merals. Similarly, models generate outputs with an
incorrect case or number for tests related to spatial
and temporal expressions and comparatives.
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7.4 One-shot Evaluation
We show one-shot results for all models in Ap-
pendix D. The one-shot setting generally improves
results as it allows the model to infer the format
of the answer and potentially its relationship to the
rest of the template. Improvements are larger for
smaller models, which benefit more from informa-
tion about the template. Nevertheless, even in this
setting models are unable to achieve perfect accu-
racy across all languages. Reasoning with numer-
als and comparatives are still challenging for most
models while improvements on numerals are also
relatively smaller than on other test types. Mod-
els struggle particularly in Swahili across different
test types. Overall, these results demonstrate that
even in one-shot settings, large language models
are not able to systematically generalize to certain
typological features in multilingual settings.

8 Conclusion

In this paper, we have introduced M2C, a multilin-
gual morphological framework for targeted behav-
ioral evaluation of language-specific capabilities.
As world languages present different challenges,
M2C aims to provide flexibility in defining a suit-
able templating system with its individual dimen-
sions and features. We have conducted experiments
on state-of-the-art large language models, high-
lighted typological features that models struggle
with, and quantified errors occurring due to mor-
phology. We hope M2C inspires further research
focused on tackling typological and morphological
challenges with large language models.
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A Zero-shot Results

We show zero-shot results for PaLM-S, PaLM-M,
and PaLM-L across different tests and languages
in Table 7.

B Examples of Errors on
Language-specific Feature Tests

We show examples of errors on language-specific
feature tests with PaLM-L together with English
glosses in Table 8.

C Examples of Morphological Errors

We show example errors in predictions of PaLM-L
that are due to morphology in Table 9.

D One-shot Results

We show one-shot results for all models in Table
10. We show summary statistics of the average rel-
ative change in performance of the one-shot setting
compared to the zero-shot setting for each language
and model in Table 11.
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Test type Model EN ES IT FR DE SV FI SK RU ZH SW AR Avg.

N
eg

at
io

n In context
PaLM-S 47.6 31.6 33.7 40.6 42.2 31.1 29.8 29.2 20.1 47.7 37.6 30.3 35.1
PaLM-M 97.6 61.3 75.1 89.1 71 89.2 71.4 83.5 44.6 50.4 45.4 40.1 68.2
PaLM-L 99.9 99 99.3 99.2 99.7 100 99.7 95.2 90.5 90.2 97.6 91.2 96.8

In question
PaLM-S 56.5 30.4 44.7 29.2 37.2 38.8 39.9 30.9 46 49.8 9.4 26.9 36.6
PaLM-M 85.6 43.1 58.2 61.8 57.9 60.9 36.3 51.9 45.3 34.4 62.8 36.4 52.9
PaLM-L 99.7 90.1 94.2 95.2 99.6 99.3 99.3 90 92.6 65 73.3 74.2 89.4

N
um

er
al

s Addition
PaLM-S 66.7 43.5 33.5 36.9 43.3 48.3 3.5 1.9 1.5 1 0 4.8 23.7
PaLM-M 77.2 55.8 17.2 64.3 56.8 10.4 15.9 9.3 22.7 36.1 2.8 12.5 31.8
PaLM-L 96.5 92.6 94.1 97.9 98.2 87 61.7 58.8 74.6 82.5 47.3 59.7 79.2

Subtraction
PaLM-S 47.8 8.3 18.1 27.1 32 4 17.4 4 4.8 20 0 11.4 16.2
PaLM-M 44.5 38.2 36.4 65.4 46.2 35.4 27.5 17.6 34.1 59 0.1 31.9 36.4
PaLM-L 93.6 92.4 77.9 93 62.2 86 87.9 77.2 90.4 86.6 33 53.1 77.8

Sp
at

ia
l Prepositions

PaLM-S 84.9 73.6 52 75.9 86.2 88.6 41.5 31.5 30.1 87.4 14.1 31.9 58.1
PaLM-M 99 99 50 94.5 93.3 77 67.1 72.2 87.9 96.2 88.7 65.3 82.5
PaLM-L 99.9 95.8 96.9 99.7 100 99.5 93.3 88.2 99 100 99.4 96 97.3

Position
PaLM-S 54.6 49.4 38.6 44.8 59 58.5 44.9 14.9 11.8 49.2 20.9 29.1 39.6
PaLM-M 65.9 73.3 42 56 62.5 57 46.7 31.4 36.7 62.4 18.9 42.8 49.6
PaLM-L 61.1 58.7 74.6 55.1 73.7 74.6 88.1 66.9 41 89.2 23.7 74.7 65.1

Te
m

po
ra

l Past
PaLM-S 81.9 14.1 21.5 36.5 31.1 95 74.5 26 90.5 80.5 38.4 41.2 52.6
PaLM-M 99.6 94.5 92.9 95.8 94.4 92.1 98 93.8 94.7 96.3 40 67.8 88.3
PaLM-L 100 98.5 84.4 99.8 99.9 95.3 100 95.9 95.6 99.8 93.6 94.3 96.4

Future
PaLM-S 92 36.3 15 77.5 32.6 95.5 60.2 20.6 89.1 86.8 58.1 51.2 59.6
PaLM-M 99.9 94.2 93.6 94.8 91.5 95.4 98.6 59.9 72.2 88.4 30.4 69.3 82.4
PaLM-L 100 98.4 98.9 96.2 100 99.2 99.8 81.2 91.4 95.6 98.4 92.4 96.0

C
om

pa
ra

tiv
e Standard

PaLM-S 75.3 57.3 69.3 96.7 73.7 71.7 79.7 62 43.3 25 55.7 38.1 62.3
PaLM-M 92.3 69 80.7 83 82.7 77 58 71.7 69.7 26.3 61.3 73.1 70.4
PaLM-L 100 87.3 100 98.7 100 100 99.3 100 98.7 86 99.3 91.6 96.7

Conditional
PaLM-S 57.2 44.2 39.2 13.4 33.9 1.3 6.4 17.6 1.7 0 0.1 29.5 20.4
PaLM-M 82.9 80.6 55.2 77 62.1 67.7 15.1 14.2 32.3 1.6 0.6 49.2 44.9
PaLM-L 73.9 82.4 71.8 85.3 33.6 65.8 44.8 14.3 31 25 40.4 53.6 51.8

Table 7: Accuracy (in %) of PaLM-S, PaLM-M, and PaLM-L on generated tests in a zero-shot setting.
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Language Test and prediction English gloss

Russian

C: Иногда он ходит в университет.
Редко он ездит в театр.
Q: Что он делает иногда?
A: Ходит в университет.

P: Идёт в университет.

C: Sometimes he goes (by foot) to the university.
Rarely does he go (by transportation) to the theatre.
Q: What does he do sometimes?
A: Goes to the university (multiple times).

P: Going to the university (one time).

Finnish

C: Äitini antoi isoäidilleni mukin.
Isäni antoi sedälleni kameran.
Q: Kenellä on uusi muki?
A: Isoäidilläni.

P: Isoäidilleni.

C: My mother gave my grandmother a mug.
My father gave my uncle a camera.
Q: Who has a new mug?
A: My grandmother has.

P: To my grandmother.

Chinese

C: 桌子旁边放着六样东西，都是狗。
Q: 多少狗在桌子旁边?
A: 六只。

P: 六个。

C: Next to the table are six things,
all are dogs.
Q: How many dogs are next to the table?
A: Six (measure word for animals).

P: Six (generic measure word).

Swahili

C: Sadiki anakula saa nne usiku
na anaendesha masaa matatu baadaye.
Q: Anaendesha saa ngapi?
A: Saa saba usiku

P: Saa moja usiku.

C: Sadiki eats at 10 PM and then drives three hours after.
Q: What time does he run?
A: At 1 AM.

P: At 7 PM.

Table 8: Examples of errors in PaLM-L predictions and English glosses for language-specific feature tests. Each
example includes a context (C), question (Q), answer (A), and the model prediction (P). Tests probe motion verbs
in Russian, possessives in Finnish, measure words in Chinese, and time expressions in Swahili.
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Test type,
Test and prediction English gloss

Language

Negation
Slovak

C: Pavol a Oskar nie sú vedci,
ale Bohuš a Miroslav sú.
Q: Kto sú vedci?
A: Bohuš a Miroslav

P: Bohús a Miroslav.

C: Pavol and Oskar are not scientists,
but Bohuš and Miroslav are.
Q: What are scientists?
A: Bohuš and Miroslav.

P: Bohús and Miroslav.

Numerals
Russian

C: На столе три груши и девять арбузов.
Елена съела одну грушу.
Q: Сколько груш на столе?
A: Две

P: Два

C: There are three pears and nine watermelons
on the table. Elena ate one pear.
Q: How many pears are on the table?
A: Two. (Feminine Nominative)

P: Two. (Masculine Nominative)

Spatial
Finnish

C: Mukit ovat ikkunan päällä ja
tietokoneet tuolin alla.
Q: Missä ovat tietokoneet?
A: Tuolin alla.

P: Tuolien alla.

C: The mugs are on the window and the
computers are under the chair.
Q: Where are the computers?
A: Under the chair. (Genitive Singular)

P: Under the chairs. (Genitive Plural)

Temporal
Slovak

C: Peter a Katarína boli vedcami,
ale Katarína zmenila zamestnanie a teraz je kuchárka.
Q: Čím je Katarína?
A: Kuchárkou.

P: Kuchárka.

C: Peter and Katarína were scientists,
but Katarína changed jobs and is now a cook.
Q: Who is Katarína?
A: Cook. (Instrumental)

P: Cook. (Nominative)

Comparative
Finnish

C: Jos vene olisi uudempi, Ylvä käyttäisi sitä.
Jos pyörä olisi pienempi, Ylvä käyttäisi sitä.
Q: Mitä Ylvä käyttäisi jos se olisi vähemmän vanha?
A: Venettä.

P: Vene.

C: If the boat was newer, Ylvä would use it.
If the bike was smaller, Ylvä would use it.
Q: What would Ylvä use if it was less old?
A: Boat. (Partitive)

P: Boat. (Nominative)

Table 9: Examples of morphological errors in PaLM-L predictions and English glosses for generated tests. Exam-
ples correspond to highlighted cells in Table 6. Each example includes a context (C), question (Q), answer (A),
and the model prediction (P).
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Test type Model EN ES IT FR DE SV FI SK RU ZH SW AR Avg. 0-shot ∆
N

eg
at

io
n

In context

mT5-XXL 99.6 97.3 98 97.7 92.1 98.6 96.6 97.5 98.3 73.1 97.8 63.4 91.9 35.0
PaLM-S 92.2 88.2 91 69.5 85.8 87.7 87.4 83.8 73.6 81.3 92.4 45.6 81.5 46.4
PaLM-M 99.8 99.9 99.4 99.9 99.2 99.5 99.1 99.1 96.4 96.9 88 61.6 94.9 26.7
PaLM-L 99.7 100 99.9 100 100 99.8 100 99.6 100 99.7 99.9 95.1 99.5 2.9
PaLM 2 99.6 100 99.9 100 100 99.4 99.9 98.4 100 100 99.9 98.1 99.6 1.3

In question

mT5-XXL 75.2 78.4 74.4 76.9 74.2 79 74 71.6 77.6 51.7 75.2 60.3 72.1 53.2
PaLM-S 39.9 44.8 33.5 23.1 35.8 38.5 35.5 37.2 44.4 40.8 38.3 33.8 37.1 0.5
PaLM-M 78.2 92.6 93.8 95 92.6 96 94.2 90.9 73.6 75.1 81.3 61.8 85.4 32.5
PaLM-L 97.7 99.8 99.9 99.4 99.4 99.3 99.9 99.7 99.7 97.8 98.5 93.6 98.8 10.4
PaLM 2 96.2 100 98.5 99.8 99.9 90.6 86.9 99.4 99.9 98.2 99.5 96.9 97.2 0.0

N
um

er
al

s

Addition

mT5-XXL 8.4 7.1 0.8 5.5 2.1 8.5 7.3 0.6 10.4 12.4 1.9 58 10.4 5.0
PaLM-S 20.1 13.3 13.3 10.7 21 22.4 7.1 4.6 9.2 10.6 5.9 9.2 12.3 -11.5
PaLM-M 95.7 71.8 69.7 89.3 90.7 61.2 50.3 47.5 81.7 87.2 10.8 18.9 64.6 32.8
PaLM-L 99.3 100 96.7 100 99.5 96.9 80.7 79.2 83.8 97.2 72.1 71.3 88.9 11.2
PaLM 2 100 100 100 100 100 100 99.9 98.3 99.8 100 89.6 95.1 98.4 7.3

Subtraction

mT5-XXL 29.6 27 8.2 26.7 22.7 25.5 20.7 0.6 9.1 19.4 1.3 42.1 18.5 -4.5
PaLM-S 25 23.4 18.6 23.9 25.4 21.7 13.8 16.3 16.7 16.1 10.8 14.5 18.9 2.6
PaLM-M 56.7 64.1 61.3 58.8 49.7 29.8 34.7 26.7 40.6 38.8 11.7 38.2 42.6 6.2
PaLM-L 92.5 94.3 94.8 97 79.2 96.2 95.4 85.8 86.4 89.9 39.2 64.2 83.9 7.5
PaLM 2 99.9 99.8 100 99.9 96.1 100 98.6 99.8 99 88.1 60.9 98.9 94.6 6.9

Sp
at

ia
l

Prepositions

mT5-XXL 91.1 90.6 66.8 93.4 22.7 84.7 73.8 2.6 41 85.8 9.1 81.2 59.2 3.5
PaLM-S 79.9 50 52.8 54.6 67.8 48.5 52 45.8 53.7 97 42.4 41.2 57.1 -1.0
PaLM-M 99.6 97 97.5 99.2 94.6 92.5 83.7 93.8 93.7 97.9 77.2 78.1 92.1 9.6
PaLM-L 100 100 100 100 100 100 99.2 100 100 100 99.3 97.7 99.7 2.6
PaLM 2 100 100 100 98.4 100 100 100 100 100 100 100 100 99.9 0.5

Position

mT5-XXL 98.1 100 95.8 99.9 98.5 97.4 99.9 100 100 96.1 72.6 73.1 93.9 36.3
PaLM-S 85.5 67.2 66.4 59.1 68.7 66.7 88 75 38.3 99 53.6 36.7 67.0 27.4
PaLM-M 99.9 93.5 99.6 100 99.6 91 98.6 98.7 93.1 99.6 97 81.6 96.0 46.4
PaLM-L 100 99.9 99.9 99.9 100 99.9 99.8 100 99.5 99.9 85.9 81.2 96.9 31.4
PaLM 2 100 100 100 99.9 100 100 100 100 100 100 99.9 99.9 100 5.7

Te
m

po
ra

l

Past

mT5-XXL 90.4 99.1 90.9 96.4 93.8 87.7 87 97.7 91.5 90.9 86.5 75.7 90.7 28.8
PaLM-S 95.1 75.1 84.2 94.4 44.6 84 57.7 32.6 96.8 78 77.7 54.9 72.9 20.3
PaLM-M 94.5 91.8 61.7 75 79.7 53.2 41.5 60.5 34.3 84.5 84.4 74.8 69.7 -18.7
PaLM-L 99.8 98.6 97.2 97 99.6 99.8 99.9 96.1 99 99.9 100 99.4 98.8 2.7
PaLM 2 100 99.9 100 100 100 100 100 100 99.9 100 100 99.4 99.9 7.9

Future

mT5-XXL 90.7 96.4 98 92.7 93.4 91 84.5 91.3 89.5 86.5 89.6 61.2 88.6 30.4
PaLM-S 98.6 54.9 57.4 90.3 45 71.1 44.7 13.5 98.7 72.8 79.2 59.3 65.5 5.9
PaLM-M 92.4 93.5 93.2 69.8 90.2 58.4 55.5 61.4 47.8 62.1 42.2 78.2 70.4 -12.0
PaLM-L 100 97.4 98.8 92.5 99.3 100 100 93.2 99.2 99.7 100 98.4 98.0 2.5
PaLM 2 100 100 100 100 100 100 100 100 100 100 100 100 100 0.6

C
om

pa
ra

tiv
e Standard

mT5-XXL 86 90.3 92.3 81.7 82.7 83.7 92.3 85 89.3 85.3 81 71.2 85.0 47.1
PaLM-S 90.3 97.7 90 87.3 94 77 76 89.3 89.3 56.3 98 47.2 82.7 20.4
PaLM-M 88 90.3 97.7 84 91 93.3 80.7 83 91.7 88.7 97 87.1 89.4 19.0
PaLM-L 100 100 100 99.7 100 100 100 99.7 100 99.7 100 94.9 99.5 3.0
PaLM 2 100 100 100 100 100 99.3 100 100 100 100 100 100 99.9 0.2

Conditional

mT5-XXL 47.4 72.2 73.9 64.5 61.7 74.4 72.7 62.6 42.4 69.1 73.5 74.5 66.7 43.2
PaLM-S 86.2 74.9 60.5 70.1 38.5 70.6 88.6 43.8 36.7 78.5 77.2 55.3 65.1 44.7
PaLM-M 72.5 82.9 76 67.3 76.3 60.1 61.3 52.6 39.9 73.8 78.6 71.3 67.7 22.8
PaLM-L 75.7 70.4 83.2 70.8 53.1 47.2 48.9 35.6 30.6 63 50.3 82.8 57.8 8.0
PaLM 2 93.7 96.1 97.2 93.9 83.5 82.3 86.9 22.5 47.8 93.1 77.4 85.1 78.7 14.6

Table 10: Accuracy (in %) of mT5-XXL, PaLM-S, PaLM-M, PaLM-L, and PaLM 2 on generated tests in a one-shot
setting. The right-most column shows the relative change compared to the zero-shot setting for each model.

EN ES IT FR DE SV FI SK RU ZH SW AR Avg

mT5-XXL 20.3% 136.8% 59.2% 77.5% 27.8% 85.9% 58.1% 114.2% 66.0% 67.7% 92.1% 22.1% 69.0%
PaLM-S 7.3% 51.7% 55.3% 21.8% 11.8% 10.4% 38.5% 85.2% 64.5% 40.9% 145.6% 35.1% 47.3%
PaLM-M 3.9% 23.8% 41.3% 7.2% 20.2% 11.0% 30.9% 41.3% 28.2% 46.0% 90.4% 33.4% 31.5%
PaLM-L 4.3% 7.3% 8.8% 3.9% 7.3% 3.6% 5.7% 15.8% 11.6% 15.5% 19.7% 12.5% 9.7%
PaLM 2 0.9% 1.4% 6.4% 0.9% 3.1% 0.2% 9.7% 3.8% 1.7% 10.9% 10.6% 6.7% 4.7%

Table 11: Average relative improvement of the one-shot vs the zero-shot setting for all models across all languages.
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