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Abstract

Multilingual pre-trained language models have
demonstrated impressive (zero-shot) cross-
lingual transfer abilities, however, their per-
formance is hindered when the target lan-
guage has distant typology from source lan-
guages or when pre-training data is limited
in size. In this paper, we propose XLM-P,
which contextually retrieves prompts as flexible
guidance for encoding instances conditionally.
Our XLM-P enables (1) lightweight model-
ing of language-invariant and language-specific
knowledge across languages, and (2) easy in-
tegration with other multilingual pre-training
methods. On the tasks of XTREME including
text classification, sequence labeling, question
answering, and sentence retrieval, both base-
and large-size language models pre-trained
with our proposed method exhibit consistent
performance improvement. Furthermore, it pro-
vides substantial advantages for low-resource
languages in unsupervised sentence retrieval
and for target languages that differ greatly from
the source language in cross-lingual transfer1.

1 Introduction

Multilingual pre-trained language models
(mPLMs) such as mBERT (Devlin et al., 2019),
mBART (Liu et al., 2020), XLM-R (Conneau
et al., 2020) and mT5 (Xue et al., 2021) have
lately produced notable advancements in a number
of downstream NLP tasks. In particular, the
use of mPLMs significantly enhances few-shot
fine-tuning and makes possible efficient zero-shot
cross-lingual transfer (Hu et al., 2020). Essentially,
an ideal mPLM should satisfy two properties:
alignment between language pairs, which has been
widely studied in the literature (Chi et al., 2022;
Ouyang et al., 2021; Chi et al., 2021a); and a good
trade-off between high-resource and low-resource

∗Corresponding author.
1Code and model are available at

https://github.com/lemon0830/XLMP.git

languages, which remains largely unexplored
despite the success of mPLMs.

In this paper, we focus on the second property,
specially the potential for model performance to
suffer when a large number of languages are added.
This can occur due to restricted model capacity or
computational limitations, resulting in underrep-
resented languages being allocated less capacity
(Conneau et al., 2020). Furthermore, the model’s
coverage of world’s languages remains inadequate,
limiting the range of language technology applica-
tions it can support (Ansell et al., 2021). A typical
solution for the coverage-performance trade-off in
multilingual learning is to assign additional model
parameters to specific languages, such as language
identity embeddings (Conneau and Lample, 2019),
adaptors (Houlsby et al., 2019; Üstün et al., 2022;
Ansell et al., 2021), and language-aware layers
(Zhang et al., 2021). However, it is impractical
for multilingual pre-training to maintain a separate
component for each language, which can lead to
more complicated and challenging optimization,
especially for low-resource languages.

We propose to approach the above language-
aware components from a different perspective.
In linguistic typology, some patterns such as
nominative-accusative alignment have broad global
distributions, whereas others like morphology are
more specific and detailed (Donohue and Wich-
mann, 2008). To take advantage of this, we intro-
duce XLM-P, which uses a set of compact embed-
dings to represent soft clustering of the language
patterns beyond language identity. We refer these
embeddings as prompts, due to their similarity to
prompt tuning (Lester et al., 2021). Concretely, we
build a key-value prompt pool and use the attention
mechanism to look up the prompts for each input.
The retrieved prompts are then prepended to the
input embeddings, and serve as categorization in-
formation to adapt the model weights conditionally.
This allows for more efficient and effective mul-
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tilingual learning by leveraging the patterns and
similarities across languages rather than maintain-
ing separate components for each language.

We evaluate the proposed XLM-P on Cross-
Lingual Natural Language Understanding tasks
and Cross-Lingual Sentence Retrieval tasks of the
XTREME benchmark, and the consistent improve-
ment in performance demonstrates its effectiveness.
In addition, we conduct empirical analyses to inves-
tigate the underlying reasons of the improvement of
XLM-P. The advantages of XLM-P can be summed
up as follows:

• The prompt pool and instance-wise prompt
retrieval are lightweight and only result in
0.35% and 0.23% increase in parameters for
the base and large models, respectively. When
fine-tuning on downstream tasks, the prompt
module can be easily added or removed as
needed.

• Our XLM-P divides the prompts into general
and specific ones without any explicit supervi-
sion. The dynamically retrieved instance-wise
prompts tame the sentence encoding, thus
enhancing the capability of multilingual pre-
trained models.

• The prompt module is model-agnostic and can
be outfitted with the other frameworks (e.g.,
encoder-decoder style PLMs) and multilin-
gual pre-training objectives (e.g., contrastive
learning used in this paper).

Overall, XLM-P is a versatile and efficient ap-
proach for improving multilingual pre-training.

2 Related Work

2.1 Cross-lingual LM pre-training
Trained by the masked language modeling (MLM)
loss with a shared multilingual vocabulary, multi-
lingual BERT (Devlin et al., 2019) achieves promis-
ing results in cross-lingual natural language under-
standing tasks (Hu et al., 2020), which has attracted
increasing attention to improve the cross-lingual
transferability. XLM-R (Conneau et al., 2020)
increase the model capacity and use large-scale
monolingual training data. In addition to mono-
lingual data, XLM (Conneau and Lample, 2019)
performs MLM on bilingual parallel corpus, while
ALM (Yang et al., 2020) constructs code-switched
sequences. In respect of training objectives, a se-
ries of studies have explored various pre-training

tasks to enhance the models’ transferability (Huang
et al., 2019; Ouyang et al., 2021; Chi et al., 2021b,
2022, 2021a; Luo et al., 2021).

Compared to the above methods, our XLM-P
exploits a small number of compact prompt vec-
tors to tame the sentence encoding. Moreover, the
prompt module is model-agnostic, and can be com-
bined with the above methods to achieve further
improvement.

2.2 Language-aware Components

To alleviate the issue of the ‘curse of multilin-
guality’, various language-aware components have
been proposed, which can allocate additional ca-
pacity for individual languages especially under-
represented languages. Conneau and Lample
(2019) use language identity embeddings to explic-
itly guide the model. Ansell et al. (2021) present
MAD-G, which contextually generates language
adapters from language representations. Üstün et al.
(2022) propose a single hypernet-work that unifies
multi-task and multilingual learning with efficient
adaptation. On multilingual neural machine trans-
lation, Philip et al. (2020) trained language-specific
adapters. Zhang et al. (2021) use conditional rout-
ing to select shared and language-specific parame-
ters. Stickland et al. (2021) use language-agnostic
task adapters for fine-tuning BART and mBART to
bilingual and multilingual MT.

We differ from them in that we do not use any
language indicators, and regard the prompts as a
bottleneck for storing a small number of discrimina-
tive features. The prompts are encoded by the large
language model along with the input, which learns
language-invariant and language-specific features
via the deep modular interaction.

2.3 Prompt-based Tuning

Our work builds upon the recent results showing
the effectiveness of adapting PLMs to downstream
tasks conditioning on lightweight prompt vectors
(Brown et al., 2020; Lester et al., 2021; Schick and
Schütze, 2021; Sanh et al., 2021). Differentiable
prompts (Li and Liang, 2021; Lester et al., 2021;
Gu et al., 2022) show the power of adapting pre-
trained language model to multiple downstream
tasks by simply prepending a few learnable param-
eters to the input. More recently, the effectiveness
of prompting has been investigated in multilingual
(or cross-lingual) tasks, which is largely unexplored
despite the success of prompting in English (Zhao
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and Schütze, 2021; Zhou et al., 2022; Huang et al.,
2022a).

Instead of exploring prompting in fine-tuning,
we propose to adopt dynamic retrieval of prompts,
which jointly optimized with the mPLM, as a
method of soft language clustering to enhance mul-
tilingual pre-training.

3 Method

Figure 1 depicts the addition of a Prompt Pool
to the transformer-based language model. Before
feeding an input to the model, we perform Instance-
wise Prompt Retrieval and convert the input to a
prompt-wrapped one. Both the prompts and the
model are jointly optimized on multilingual data
using Masked Language Modeling, which trains
the model to make predictions based on both con-
text and clustering information. At the fine-tuning
stage, we experiment with two strategies: standard
fine-tuning and prompt-based fine-tuning.

3.1 Prompt Pool

In our proposed framework, we use a prompt pool
to store fine-grained patterns sharing across lan-
guages as well as language-specific knowledge.
Formally, the prompt pool is defined as:

P = {P1, P2, ..., PM}, (1)

where M is the total number of prompts in the
prompt pool, and Pj ∈ RLp×D is a single prompt
with Lp vectors, whose dimension is the same
as the embedding size D of the mPLM. We as-
sociate each prompt as value to a learnable key:
{(k1, P1), (k2, P2), ..., (kM , PM )}, where ki ∈
RDk . And we denote the set of all keys K={kj}Mj=1.

3.2 Instance-wise Prompt Retrieval

Ideally, we would like to let the input itself to
decide which prompts to choose through query-
key matching. Formally, given an input sen-
tence X={x0, ..., xn}, we first map each token
xi to a real-valued vector ei by an embedding
layer. The sequence of embeddings is then con-
catenated with the embedding of “[CLS]” token
E={ecls, e0, ..., en}. Next, we operate a pooling
strategy2 on the embedding sequence to obtain the
input representation:

r = Pool(E). (2)

2In this paper, we use max pooling.
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Figure 1: Model architecture of XLM-P. For each
input, we look up the prompts in the key-value prompt
pool {(kj , Pj)}, where Pj ∈ RLp×D and Lp is the num-
ber of vectors for each prompt. The retrieved prompts
are prepended to the input embeddings E, and serve as
soft categorization information across languages.

Next, we obtain the prompts for the input using the
attention mechanism:

P̂ =
∑

αjPj , (3)

αj = softmax((rW )kTj ), (4)

where W is a trainable parameter. Finally, we
prepend the retrieved prompt P̂ to the input embed-
dings Ê=[P̂ , E], and feed the extended sequence Ê
to the model to get the contextualized sentence rep-
resentations H={hP0 , .., hPLp

, hcls, h0, ..., hn}.
Notably, unlike language identity embeddings

used by Conneau and Lample (2019), this soft
manner allows the model to capture fine-grained
language-invariant and language-specific features
from massive monolingual data without explicitly
assigning a cue to each input.

3.3 Prompt-based Masked Language
Modeling for Pre-training

Our XLM-P is trained to predict the masked to-
kens using the prompt-augmented contextualized
representations. Following Devlin et al. (2019), we
randomly mask 15% of the tokens in a monolingual
sentence. With probabilities of 0.8, 0.1, and 0.1,

7023



we replace each masked token with a special token
“[MASK]”, a random token, or the unchanged to-
ken, respectively. The monolingual MLM loss is
defined as:

LMLM = −
∑

j∈Mx

logp(xi|H,X\Mx
) (5)

where X\Mx
is the masked version of input X.

Since the prompt module is agnostic to training ob-
jectives, we can enhance the model with additional
objectives, as demonstrated in Section 4.2.

3.4 XLM-P for Downstream Applications
Benefiting from the plug-and-play property of the
proposed prompt module, we can choose either
plug in or plug out it on demand. We explore two
fine-tuning strategies to use our XLM-P on down-
stream applications, i.e., Standard Fine-tuning and
Prompt-based Fine-tuning, and the detail is pre-
sented as follows.

Standard Fine-tuning. In this setting, we un-
plug the prompt module from the pre-trained model.
Concretely, we simply feed the embedding features
E = {ecls, e0, ..., en} excluding the prompt embed-
dings to the model, which is identical to XLM-R.

Prompt-based Fine-tuning. We can keep the
prompt module and conduct the retrieval during
fine-tuning, as we do in training. For token-
level prediction tasks (e.g., structured prediction
and question answering), we remove the hidden
states of the prompt after encoding and take the
rest H\P̂={hcls, h1, ..., hn} as the input of task-
specific classifiers. For sentence-level classifica-
tion tasks, we apply a pooling operation on all
of the hidden states H\X={hP0 , .., hPLp

, hcls} to
obtain the sentence-level representation used for
classification.

4 Experiments

4.1 Settings
Pre-training. To train XLM-P, we extract a sub-
set from CC-100 (Conneau et al., 2020) which in-
volves monolingual data in 50 languages. We use
XLM-R (Conneau et al., 2020) as the backbone.
The XLM-Pbase model has 12 layers with 768 hid-
den units and 12 attention heads, and the XLM-
Plarge model has 24 layers with 1024 hidden units
and 16 attention heads. We set M=256 and Lp=4
for both base model and large model, and XLM-P
introduces 983,040 and 1,310,720 parameters to

the original pre-trained model, merely accounting
for 0.35% and 0.23% of the total parameters, re-
spectively. The detail of the pre-training settings
can be found in Appendix A.

Evaluation. We evaluate our model on
XTREME (Hu et al., 2020), which is designed
to assess the the cross-lingual generalization
capabilities of pre-trained language models, with a
specific focus on Cross-lingual Natural Language
Understanding and Cross-lingual Sentence
Retrieval. There are seven tasks for cross-lingual
natural language understanding, which can be
grouped into three categories: 1) Structured
prediction: part-of-speech tagging (POS) on the
Universal Dependencies v2.5 (Daniel Zeman
and et al., 2019), and named entity recognition
(NER) on the WikiAnn (Pan et al., 2017) dataset;
2) Question answering: cross-lingual question
answering on MLQA (Lewis et al., 2020) and
XQuAD (Artetxe et al., 2020), and gold passage
of typologically diverse question answering
(TyDiQA-GoldP, Clark et al. (2020)); 3) Sentence
classification: cross-lingual natural language
inference (XNLI, Conneau et al. (2018)), and
cross-lingual paraphrase adversaries from word
scrambling (PAWS-X, Yang et al. (2019)). The
aim of the cross-lingual sentence retrieval task is to
retrieve relevant sentences across languages, and
we use the Tatoeba (Artetxe and Schwenk, 2019)
dataset.

Baselines. As baselines, we employ the multilin-
gual pre-trained language models listed below: 1)
MBERT (Devlin et al., 2019) is pre-trained with
MLM and next sentence prediction on Wikipedia
in 104 languages; 2) XLM (Conneau and Lample,
2019) is pre-trained with MLM on 100 languages
and translation language modeling (TLM) on 14
language pairs; 3) MT5 (Xue et al., 2021) is the
multilingual version of T5 pre-trained with text-to-
text tasks; 4) XLM-E (Chi et al., 2022) is trained
with two pre-training tasks: namely multilingual
replaced token detection (MRTD) and translation
replaced token detection (TRTD). We report XLM-
E (-TRTD) for fair comparison, which does not
use parallel data during pre-training; and 5) VECO
(Luo et al., 2021) is a unified cross-lingual language
model for both NLU and NLG. 6) InfoXLM (Chi
et al., 2021a) is jointly pre-trained with a cross-
lingual contrastive learning task.
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Task
Structured Prediction Question Answering Classification
POS NER XQuAD MLQA TyDiQA XNLI PAWS-X

#Languages 33 40 11 7 9 15 7
Metrics F1 F1 F1/EM F1/EM F1/EM Acc Acc

MBERTbase † 70.3 62.2 64.5/49.4 61.4/44.2 59.7/43.9 65.4 81.9
XLMbase † 71.3 61.2 59.8/44.3 48.5/32.6 43.6/29.1 69.1 80.9
MT5base † - 55.7 67.0/49.0 64.6/45.0 57.2/41.2 75.4 86.4
XLM-E (-TRTD)base † 74.2 62.7 74.3/58.2 67.8/49.7 57.8/40.6 75.1 87.1
VECOlarge † 75.1 65.7 77.3/61.8 71.7/53.2 67.6/49.1 79.9 88.7
InfoXLMlarge † - - - 73.6/55.2 - 81.4 -

Backbones
XLM-Rbase † 75.6 61.8 71.9/56.4 65.1/47.2 55.4/38.3 75.0 84.9
XLM-Rlarge † 72.6 65.4 76.6/60.8 71.6/53.2 65.1/45.0 79.2 86.4
Standard Fine-tuning
XLM-Pbase 74.3 63.8 75.3/60.4 67.4/49.4 58.5/41.6 75.4 86.6
XLM-Plarge 76.9 68.1 79.0/63.9 72.4/53.5 72.1/55.0 81.1 88.7
Prompt-based Fine-tuning
XLM-Pbase 73.9 63.6 75.8/61.5 68.7/50.1 59.3/42.8 75.1 86.0
XLM-Plarge 77.0 68.5 79.2/64.4 73.7/56.4 72.7/55.7 81.2 88.9

Table 1: Experimental results on XTREME cross-lingual natural language understanding tasks. The methods
with † denote that we directly report scores from the corresponding work. We run 5 times with different random
seeds and report the averaged results.

4.2 Main Results

Cross-Lingual Natural Language Understand-
ing. Following Hu et al. (2020), we adopt the
zero-shot transfer setting for evaluation, in which
the models are fine-tuned on English training data
but evaluated on all the target languages. Rather
than selecting a single model for each language,
we use only one model for evaluation. The detail
of the hyper-parameters used for fine-tuning can be
found in Appendix B.

The results, which are averaged across all the
target languages and five runs with different ran-
dom seeds, are illustrated in Table 1. Compared
to the XLM-R based models, the XLM-P based
models achieve significantly better performances.
Besides, our XLM-Pbase consistently outperforms
the baselines MBERTbase, MT5base, and XLM-
E (-TRTD)base, which are pre-trained without any
parallel corpora. Moreover, XLM-Plarge brings no-
table improvements over all the baselines on most
of the tasks. Concretely, XLM-P models perform
better on the structure prediction and the question
answering tasks, while preserving competitive re-
sults on the sentence classification tasks. The over-
all experimental results demonstrate that multilin-
gual pre-training can benefit from the guidance of
our proposed prompt module.

Surprisingly, there appears to be minimal differ-

ence in performance between standard fine-tuning
and prompt-based fine-tuning. This can be ex-
plained by the fact that only English training data
was used during fine-tuning, and the prompt embed-
dings were not specifically optimized for the task at
hand. Furthermore, recent studies have highlighted
the challenges of prompt tuning in cross-lingual
natural language understanding and have shown
that this area is gaining more attention (Qi et al.,
2022; Huang et al., 2022b). We plan to explore this
further in future work. Finally, we compare our
model with XLM-R under the translate-train-all
setting and the results are reported in Appendix C.
These results further support the effectiveness of
our model.

Cross-Lingual Sentence Retrieval. Following
Chi et al. (2021a) and Hu et al. (2020), we use
14 and 36 languages of the parallel corpora for
evaluation, respectively. For sentence representa-
tions, we take the average of hidden states in a
specific layer, and we use the 10-th layer for XLM-
P. Then, we induce translation pairs using a nearest
neighbor search with cosine similarity. As illus-
trated in Table 2, XLM-P achieves 64.0 and 61.7
accuracy scores on Tatoeba-14, and 63.8 and 61.0
accuracy scores on Tatoeba-36 in the directions of
en → xx and xx → en, respectively, which out-
performs XLM-R significantly. The improvement
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Model Tatoeba-14 Tatoeba-36
en → xx xx → en en → xx xx → en

XLM-R † 59.5 57.6 55.6 53.4
XLM-E † 74.4 72.3 65.0 62.3

-TRTD † 55.8 55.1 46.4 44.6
InfoXLM † 80.6 77.8 68.6 67.3

-XLCO † 64.6 65.3 50.9 53.5

XLM-P 64.0 61.7 63.8 61.0
XLM-P+ 73.2 77.2 76.4 69.0

Table 2: Experimental results on cross-lingual sen-
tence retrieval task Tatoeba in terms of accuracy
(%). Methods with † denote that we directly report the
scores from (Chi et al., 2022).

possibly due to that the sentence representations ob-
tained from XLM-P encoding extra shared features
across languages learned by our prompts. More-
over, under the setting of pre-training on multilin-
gual monolingual corpus, XLM-P performs greatly
better than XLM-E (-TRTD) and competes with
InfoXLM (-XLCO).

Notably, InfoXLM outperforms our XLM-P
due to the benefit of the additional cross-lingual
contrastive objective. Our prompt module is de-
signed to be compatible with other multilingual
pre-training techniques, and to validate this, we
added a simple dropout-based InfoNCE objective
(van den Oord et al., 2018; He et al., 2020) to
our XLM-P model. More detailed is introduced
in Appendix D. We post-train XLM-P on mono-
lingual corpora in 50 languages with both MLM
loss and InfoNCE loss. The resulting model, XLM-
P+, gives a significant improvement over XLM-P
and performs better than XLM-E and InfoXLM
on Tatoeba-36, but slightly worse on Tatoeba-14
against InfoXLM. This is due to the fact that we
did not use the parallel training data utilized by
InfoXLM and XLM-E3. In a nutshell, the results
show that our proposed method can be effectively
integrated with other pre-training objectives.

Finally, in Figure 2, we illustrate the effect of
layer selection on sentence representations. The ac-
curacy score is calculated by taking the average of
all the 36 language pairs in xx → en directions. The
figure shows that all the models exhibit a parabolic
trend across layers. Different from XLM-R that
achieves the highest accuracy of 56.5 at the 7-th

3There are promising training strategies for pre-training
mPLM using parallel corpus with our XLM-P, such as the
interaction between retrieved prompts of sentence pairs. This
is an intriguing research question that merits further investiga-
tion in future studies.
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Figure 2: Evaluation results on Tatoeba cross-lingual
sentence retrieval over different layers. For each layer,
the accuracy score is averaged over all the 36 language
pairs in the xx → en direction.
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Figure 3: Effects of Prompt Capacity. Left: Average
score w.r.t prompt pool size M given Lp = 4. Right:
Average score w.r.t. prompt length Lp given M = 256.
Dashed lines indicate the results of XLM-Rsmall under
standard fine-tuning.

layer, the curve of XLM-P rises more steadily until
it peaks at the 10-th layer. It can be observed that
XLM-P outperforms XLM-R on the top layers, and
XLM-P+ achieves notably higher average scores
than XLM-R at all layers.

5 Analysis

We carry out a number of analyses in order to com-
prehend the design of our proposed XLM-P better.

5.1 Effect of Prompt Capacity
In XLM-P, the length of a simple prompt Lp and the
size of the prompt pool M are two critical hyper-
parameters that determine the total capacity of the
learnable prompt embeddings. M determines the
granularity of prompt selection and Lp decides the
expressiveness of a single prompt. To investigate
the effects of the two hyper-parameters, we train
small-size XLM-R and XLM-P from scratch and
keep the other setting unchanged (see Appendix
A for more details). We evaluate the pre-trained
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(a) Prompt selection histograms for MLQA in different languages (b) Prompt selection histograms for different tasks in English

Figure 4: Prompt selection histograms. We only display the top 16 selected prompts. The prompts retrieved can be
grouped into language-shared and -specific prompts. Similar tasks tend to have similar patterns of prompt selection
across different datasets, whereas tasks that are more irrelevant to each other prefer selecting more diverse prompts.

models on TydiQA and report the average of F1
and EM scores in Figure 3.

We can see that removing the prompt pool and
only using a single prompt (i.e., pool size M = 1)
results in a significant performance drop, suggest-
ing that it is not sufficient to maintain a single
shared prompt for all languages. Increasing the
size of prompt pool shows a positive effect on per-
formance, but excessive prompts degrade the per-
formance. The result verifies our motivation, that
the prompts are used to capture abstract clustering
information. Too many prompts can dilute the ef-
fect, and thus negatively affect the generalization
and transferability of representations.

5.2 Patterns of Retrieved Prompts

As depicted in the left portion of Figure 4, we
present the prompt selection histograms for XLM-
P on test sets of MLQA in different languages.
The prompts retrieved can be easily distinguished
into two categories: language-shared prompts (e.g.,
prompt 207, 42, 23 and 2) and language-specific
prompts (e.g., prompt 14, 66, 221, 120). In ad-
dition, we display the histograms on test sets of
different tasks in English in the right portion of
Figure 4. In particular, the similar tasks tend to
have similar patterns of prompt selection across
different datasets (e.g., xquad and mlqa, both of
which are question answering tasks), whereas the
tasks that are more irrelevant to each other (e.g.,
xquad and pawsx, pawsx is a sentence classifica-
tion task) prefer selecting more diverse prompts.
This phenomenon echos the effectiveness of our

XLM-P. Even without any explicit supervision, our
model can learn to group the prompts into general
and specific ones.

5.3 Visualization of Retrieved Prompts
Based on the observation in Section 5.2, we fur-
ther plot t-SNE visualizations (van der Maaten and
Hinton, 2008) of prompts retrieved by sentences
in 15 languages on XNLI test set4 in Figure 5 to
support our hypothesis that prompts can serve as a
representation of soft clustering for language.

We can find that the prompt representations re-
trieved by the sentences in different languages are
evidently distinct, while the prompt representations
retrieved by the sentences in similar languages (e.g.,
ar and ur, bg and ru) are closer. It implies that the
prompts are able to capture the shared patterns
across languages as well as language-specific pat-
terns during multilingual pre-training.

5.4 Trade-off on High and Low Resource
Languages

In Section 4.2, we display the average performance
across all of the languages, and we present more
details about the performance in this section. First,
we choose the PAWS-X task with 7 languages in-
cluding English (i.e., the language of the train-
ing set), three European languages (i.e., German,
Spanish, French), and three Asian languages (i.e.,
Japanese, Korea, and Chinese). As shown in Table
4, compared with XLM-R, XLM-P achieves better
or more competitive performance on the test sets in

4We sampled 200 sentences from each language.
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Lang Example
ar .ىرخأ ةرم ھعم ثدحتأ مل
ur یک یھن تاب ارابود یسا ین ںیم
bg Повече не съм говорил с него.
ru Я больше с ним не разговаривал.
de Ich habe nicht wieder mit ihm gesprochen.
en I havent spoken to him again.
es No he vuelto a hablar con él.
fr Je ne lui ai pas parlé de nouveau
tr Onunla bir daha konuşmadım.
sw Sijaongea na yeye tena.
hi म"ने उससे दोबारा बात नह/ं क2 है।
th ฉันไม่ได้คุยกับเขาอีกเลย

vi Tôi đã không nói chuyện với anh ta nữa.
el Δεν του μίλησα ξανά.
zh 我还没有和他再次谈论。

Figure 5: Visualization of prompts retrieved by sentences in different languages. We shows one sentence in each
language for a clearer understanding. The representations of prompts retrieved by sentences in various languages
are distinct, while the representations of prompts retrieved by sentences in similar languages are more alike.

Model High Resource Low Resource
Avg. Std.(↓)

Direction de pt nl fr es ru vi eu te tl bn ta sw jv

XLM-R † xx → en 89.9 80.6 79.5 74.1 74.0 72.5 68.4 33.5 32.5 31.2 29.3 25.7 18.7 15.1 51.79 27.04
InfoXLM † xx → en 93.9 84.7 80.8 79.4 88.2 83.8 89.6 36.7 53.0 42.1 49.6 53.7 39.5 13.2 63.44 25.28
XLM-P+ xx → en 93.3 87.3 88.9 82.8 87.4 82.0 82.8 60.4 58.5 59.1 47.8 49.2 39.3 35.2 68.14 20.28

XLM-R † en → xx 89.4 80.6 79.5 74.1 74.0 72.5 68.4 33.5 32.5 31.2 29.3 25.7 18.7 15.1 51.75 26.98
InfoXLM † en → xx 95.1 86.5 81.8 84.0 87.2 85.7 92.0 28.6 53.0 35.5 49.1 63.5 40.8 7.8 63.61 27.85
XLM-P+ en → xx 91.3 87.9 87.6 81.1 84.7 83.2 84.5 73.8 82.9 71.0 62.1 73.3 45.9 50.2 75.68 14.10

Table 3: Experimental results on cross-lingual sentence retrieval task Tatoeba in terms of accuracy (%).
Methods with † denote that we directly report the scores from (Chi et al., 2022). XLM-P+ yields similar benefits
across different data scales, and greatly benefits low-resource languages (e.g., eu, te, and jv).

Model Train European Langs Asian Langs
Avg.

en de es fr ja ko zh

XLM-R 87.8 94.3 88.6 88.8 77.1 75.1 80.4 84.59
XLM-P 89.0 95.1 90.0 90.6 79.4 80.1 81.9 86.59

Table 4: Experimental results on PAWS-X in terms of
accuracy (%). We adopt the zero-shot transfer setting
for evaluation, in which the models are fine-tuned on
English training data but evaluated on all the target
languages.

European languages, while obtaining huge gains on
the test sets in Asian languages, which are different
from English.

Then, we illustrate the results on Tatoeba in both
the xx → en and en → xx directions in Table 3.
Due to the limited space, we only select the seven
languages with the highest scores and the seven
languages with the lowest scores based on the per-
formance of XLM-R on Tatoeba-36 in xx → en
direction, which can be grouped as High resource

language and Low resource language pairs, respec-
tively. We compare our XLM-P+ with XLM-R and
InfoXLM, and report the mean and the standard de-
viation of accuracy. Both XLM-P+ and InfoXLM
provide advantages in both directions. Specifically,
XLM-P+ yields similar benefits across different
data scales, and greatly benefits low-resource lan-
guages (e.g., eu, te, and jv). By contrast, InfoXLM
performs well on high-resource languages but has
a marginal impact on low-resource languages.

We argue that mPLMs still suffer from insuf-
ficient modeling capacity, and adding more lan-
guages can result in a decline in representation
quality. Our proposed XLM-P can indeed alleviate
this issue, especially for languages with limited
data or languages that differ from the training data.
Intuitively, the dynamically retrieved instance-wise
prompts in XLM-P make the sentence encoding
specific to the soft clustering information, thereby
enhancing the model capability of multilingual pre-
trained models.
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6 Conclusion

This paper presents XLM-P, a new multilingual
pre-trained language model equipped with contex-
tually retrieved prompts. In particular, we prepend
prompts-like learnable vectors to the input for mod-
eling language interdependence and other poten-
tial sharing information. Compared with other
language-aware components, the retrieved prompts
are parameter-efficient and more flexible without
the requirement of language detection. Experi-
ments and analyses validate the effectiveness and
robustness of XLM-P. In addition, our method is
compatible with various existing multilingual pre-
training objectives.

Limitations

In this paper, we simply prepend the retrieved
prompt to the input embeddings before encoding.
A well-designed method of combining prompts
with the input embeddings, such as Prefix Tuning
(Li and Liang, 2021), may result in additional en-
hancements. Finally, as observed in Section 4.2,
prompt-based fine-tuning does not present obvi-
ous superiority over standard fine-tuning. Explor-
ing the prompt tuning on cross-lingual natural lan-
guage understanding is a challenging task that has
recently gained attention (Qi et al., 2022; Huang
et al., 2022b), and we leave it as future work.
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Language
af ar bg bn cs
de el en es et
eu fr fa fi fy
gu gd he hi hu
id it ja jv ka
kk ko lt lv ms
ml my mr pl pt
ne nl ru ro si
sw ta te tr th
tl vi ur yo zh

Table 5: The language code of monolingual pre-
training corpus. Among them, the bolded 15 languages
are the languages included in the pre-training data of
small-sized XLM-P and small-sized XLM-R.

Mengjie Zhao and Hinrich Schütze. 2021. Discrete and
soft prompting for multilingual models. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pages 8547–8555,
Online and Punta Cana, Dominican Republic. Asso-
ciation for Computational Linguistics.

Meng Zhou, Xin Li, Yue Jiang, and Lidong Bing. 2022.
Enhancing cross-lingual prompting with mask token
augmentation. arXiv preprint arXiv:2202.07255.

A Pre-training Details

For monolingual data, following XLM-R (Conneau
et al., 2020) and Veco (Luo et al., 2021), we build a
clean CommonCrawl Corpus using an open-source
tool CCNet (Wenzek et al., 2020). We use mono-
lingual data in 50 languages for base-sized and
large-sized XLM-P and monolingual data in 15
languages for small-sized XLM-R and XLM-P. Ta-
ble 5 reports the language codes for pre-training.
Please ref (Luo et al., 2021) for the detailed data
statistic of the monolingual pre-training corpus.
Following Chi et al. (2021a) and Luo et al. (2021),
we initialize the parameters of XLM-P with XLM-
R (Conneau et al., 2020). We use the Adam op-
timizer (Kingma and Ba, 2015) with the learning
rate 3e-4 for the base model and 1e-4 for the large
model, respectively. The full set of pre-training
hyperparameters for small-sized, base-sized and
large-sized XLM-P are listed in Table 6. We con-
duct the pre-training experiments using 64 Nvidia
A100-40GB GPUs with 8,192 batch size for base
and large XLM-P.

B Hyperparameters for Fine-tuning

In Table 7, we present the hyperparameters for fine-
tuning baselines and our XLM-P on the XTREME
end tasks. For each task, the hyperparameters are
searched on the joint validation set of all languages.

C Translate-Train-All Setting

In this section, we investigate another fine-tuning
setting, Translate-Train-All, in which we fine tune
a PLM on a mixed corpus consisting of golden
training data in English and translated training data
in other languages.

Table 8 presents the results on NER, TyDiQA,
and PAWS-X. XLM-Plarge outperforms XLM-
Rlarge across all the tasks, confirming our model’s
effective capacity for cross-lingual transfer.

D Detailed of Dropout-based InfoNCE

Specifically, we construct the “positive pairs” by
passing the same sentence to the model twice, and
take other sentences in the same mini-batch as
“nagatives”. We use the average of prompt hidden
states and “CLS” hidden states of the latest layer as
the sentence representation. The model is trained
to predict the positive one among the samples as
follows:

li = − log
esim(vi,v

+
i )/τ

∑N
k=1 e

sim(vi,v
+
k )/τ

(6)

We post-train our XLM-P in monolingual corpora
in 50 languages with the MLM loss and InfoNCE
loss. The learning rate is 5e-5, the total number of
training step is 100k, and the warmup steps is 10k.
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Pre-training Hyperparameters Large Base Small

Number of layers 24 12 4
Hidden Size 1024 768 768
FFN inner hidden size 4096 3072 3072
Attention heads 16 12 12
Attention head size 64 64 64
Embedding Size 1024 768 768
Mask percent 15% 15% 15%
Warmup steps 10k 10k 10k
Learning Rate 1e-4 5e-4 3e-4
Adam ϵ 1e-6 1e-6 1e-6
Adam β1 0.9 0.9 0.9
Adam β2 0.98 0.98 0.98
Attention Dropout 0.1 0.1 0.1
Dropout 0.1 0.1 0.1
Weight Decay 0.01 0.01 0.01
Max Sequence Length 512 512 512
Batch Size 8,192 8,192 2,048
Train Steps 240k 240k 125k
Total Parameters 561M 279M 222M

Table 6: The pre-training hyperparameters.

POS NER XQuAD MLQA TyDiQA XNLI PAWS-X

Batch size {8, 16, 32} 8 32 32 32 32 32
Learning rate {1,2,3}e-5 {5,..,9}e-6 {2,3,4}e-5 {2,3,4}e-5 {2,3,4}e-5 {5,...,8}e-6 {10,20}e-6
Warmup 10% 10% 10% 10% 10% 12,500 steps 10%
Epochs 10 10 4 {2,3,4} {10,20,40} 10 10

Table 7: Hyperparameters used for fine-tuning on the XTREME end tasks.

Model NER TyDiQA PAWS-X Avg.

XLM-Rlarge 87.8∗ 72.2/54.8 90.5 80.60
XLM-Plarge 91.1∗ 74.2/58.1 91.2 82.82

Table 8: Experimental results of using pseudo-
parallel data. Since Hu et al. (2020) do not release
the translation data of NER task, we use the golden
NER training data of XTREME for reproduction.
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