
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 6981–7004

July 9-14, 2023 ©2023 Association for Computational Linguistics

Fact-Checking Complex Claims with Program-Guided Reasoning
Liangming Pan1,2 Xiaobao Wu3 Xinyuan Lu4 Anh Tuan Luu3

William Yang Wang1 Min-Yen Kan4 Preslav Nakov2

1 University of California, Santa Barbara 2 MBZUAI
3 Nanyang Technological University 4 National University of Singapore

liangmingpan@ucsb.edu xiaobao002@e.ntu.edu.sg luxinyuan@u.nus.edu
anhtuan.luu@ntu.edu.sg william@cs.ucsb.edu

kanmy@comp.nus.edu.sg preslav.nakov@mbzuai.ac.ae

Abstract

Fact-checking real-world claims often re-
quires collecting multiple pieces of evidence
and applying complex multi-step reasoning.
In this paper, we present Program-Guided
Fact-Checking (PROGRAMFC), a novel fact-
checking model that decomposes complex
claims into simpler sub-tasks that can be solved
using a shared library of specialized functions.
We first leverage the in-context learning ability
of large language models to generate reason-
ing programs to guide the verification process.
Afterward, we execute the program by delegat-
ing each sub-task to the corresponding sub-task
handler. This process makes our model both
explanatory and data-efficient, providing clear
explanations of its reasoning process and requir-
ing minimal training data. We evaluate PRO-
GRAMFC on two challenging fact-checking
datasets and show that it outperforms seven
fact-checking baselines across different settings
of evidence availability, with explicit output
programs that benefit human debugging.1

1 Introduction

The proliferation of disinformation, e.g., in social
media, has made automated fact-checking a crucial
application of natural language processing (NLP).
Given a claim, the goal is to find evidence and
then to make a verdict about the claim’s veracity
based on that evidence (Thorne and Vlachos, 2018;
Glockner et al., 2022; Guo et al., 2022).

Evaluating the veracity of real-world claims of-
ten involves collecting multiple pieces of evidence
and applying complex reasoning (Jiang et al., 2020;
Nguyen et al., 2020; Aly and Vlachos, 2022; Chen
et al., 2022a). For instance, consider the claim
“Both James Cameron and the director of the film
Interstellar were born in Canada”. It may be chal-
lenging to find direct evidence on the web that
refutes or supports this claim.

1The program code and the data are publicly available at
https://github.com/mbzuai-nlp/ProgramFC

Instead, a human fact-checker needs to decom-
pose the claim, gather multiple pieces of evidence,
and perform step-by-step reasoning (Nakov et al.,
2021a), as illustrated in Figure 1. This makes veri-
fying complex claims much more challenging than
the typical setting explored in previous work, where
information from a single article is sufficient to sup-
port/refute the claim (Thorne et al., 2018; Saakyan
et al., 2021; Schuster et al., 2021; Pan et al., 2021;
Wadden et al., 2022a; Krishna et al., 2022).

Besides multi-step reasoning, we still need to
consider two key aspects for developing a reliable
fact-checking system: (i) Explanability: The model
should not only predict the veracity of the claim,
but it should also provide a clear explanation of its
reasoning process to help users understand and trust
the results. (ii) Data efficiency: Human annotation
is often time-consuming, costly, and potentially
biased, making it difficult to collect sufficient high-
quality labeled data for model training, particularly
for complex claims. Therefore, it is desirable to
build a model that can perform well with minimal
or no training data. Despite a few models (Zhou
et al., 2019; Zhong et al., 2020; Aly and Vlachos,
2022) being proposed to facilitate multi-step rea-
soning in fact-checking, they either lack explain-
ability in their reasoning process or require a large
number of task-specific training examples.

In this paper, we present Program-Guided Fact-
Checking (PROGRAMFC), a novel fact-checking
framework that is both explanatory and data-
efficient. Figure 1 illustrates our approach. To
verify complex claims, PROGRAMFC decomposes
them into simpler sub-tasks that can be solved us-
ing a shared library of specialized sub-task func-
tions. To be specific, PROGRAMFC begins by gen-
erating a reasoning program for the input claim,
which is a sequence of sub-tasks (e.g., S1-S4 in
Figure 1) in the form of ACTION[ARGUMENT],
where ACTION and ARGUMENT define the type
and the content of the sub-task, respectively.

6981

https://github.com/mbzuai-nlp/ProgramFC

Claim: Both James Cameron and the director of the film Interstellar were born in Canada.

Gold Evidence

Open-book

Closed-book

Question [Who is the director of the film Interstellar?]

Verify [James Cameron was born in Canada.]

Verify [{ANSWER_1} was born in Canada.]

Predict [{FACT_1} AND {FACT_2}]

Reasoning Program

S1

S2

S3

S4

Functions
Knowledge

Source

Fact
CheckerFACT_1 = TRUE

FACT_2 = FALSE

ANSWER_1 = Christopher Nolan
QA

Model

Fact
Checker

Logical
Reasoner

REFUTESPREDICTED_LABEL =

Language
Models

(Codex, GPT3, …)

Claim: ⋯
Program: ⋯Claim: ⋯

Program: ⋯Claim: ⋯
Program: ⋯

Exemplars

Figure 1: Overview of our PROGRAMFC model, which consists of two modules: (i) Program Generation generates
a reasoning program for the input claim using Codex with in-context learning, and then (ii) Program Execution
sequentially interprets the program by delegating each step to the corresponding sub-task function.

The generated reasoning program serves as a
step-by-step guide for verifying the claim. We
then execute the program by sequentially delegat-
ing each sub-task to the corresponding sub-task
handler, as shown in the functions columns in Fig-
ure 1. These sub-tasks may include answering
questions, verifying simple claims, or conducting
logical reasoning.

PROGRAMFC combines explainability with data
efficiency. It uses reasoning programs to provide
clear explanations of its reasoning process. For
data efficiency, Large Language Models (LLMs)
can solve various tasks given only a few exam-
ples as prompts, e.g., in-context learning (Brown
et al., 2020). We leverage this ability of LLMs to
generate reasoning programs for a given claim by
showing the model just a few dozen of (claim, pro-
gram) pairs as demonstrations. PROGRAMFC is
also flexible as it allows for easy swapping of sub-
task function implementations to work under dif-
ferent settings of fact-checking, without affecting
the rest of the system. We can allow the functions
to retrieve information from external sources (in
an open-book setting) or we can ask them to gen-
erate answers based solely on the LLM’s internal
parametric knowledge (in a closed-book setting).

We evaluate PROGRAMFC on two challeng-
ing datasets designed for fact-checking complex
claims: HOVER (Jiang et al., 2020) and FEVER-
OUS (Aly et al., 2021), and we show that it outper-
forms seven few-shot fact-checking baselines on
both datasets (§ 4.1).

The strategy of program-guided reasoning be-
comes increasingly effective as the required reason-
ing depth increases (§ 4.1). In the open-domain set-
ting, we find that reasoning programs can enhance
the retrieval of relevant evidence from knowledge
sources (§ 4.2). Moreover, PROGRAMFC is robust
even when we use weak models as sub-task solvers
(§ 4.2). We also evaluate the interpretability of the
reasoning programs through human evaluation and
error analysis (§ 4.3).

2 Related Work

Fact-Checking. Automated fact-checking has
gained significant attention in the NLP research
community in recent years as a means of combat-
ing misinformation and disinformation. Various
datasets have been proposed that enable the devel-
opment and the evaluation of systems for automatic
fact-checking, the most popular ones being based
on human-crafted claims from Wikipedia con-
tent (Thorne et al., 2018; Sathe et al., 2020; Schus-
ter et al., 2021) and naturally occurring claims
in the political or in the scientific domain (Wang,
2017; Nakov et al., 2021b, 2022; Augenstein et al.,
2019; Saakyan et al., 2021; Gupta and Srikumar,
2021; Wadden et al., 2020, 2022a). Notably, most
of these datasets are constructed in a way that
the evidence to support or to refute a claim can
be found in a single document. For example, in
FEVER (Thorne et al., 2018), more than 87% of
the claims only require information from a single
Wikipedia article (Jiang et al., 2020).

6982

To bridge this gap, datasets have been proposed
to study fact-checking complex claims that require
multi-step reasoning (Jiang et al., 2020; Aly et al.,
2021). Graph-based models (Zhou et al., 2019;
Liu et al., 2020; Zhong et al., 2020; Nguyen et al.,
2020; Barnabò et al., 2022, 2023) are used to fa-
cilitate the reasoning over multiple pieces of evi-
dence. Although such models achieve sizable per-
formance gains, they lack explanability and thet
rely on large amounts of training data. To address
the above problems, we propose an explainable,
flexible, and data-efficient model that generates
reasoning graphs as explanations and utilizes in-
context learning to enable few-shot learning.

Explanation Generation. Facing the complex-
ities of real-world claims, simply giving a final
veracity to a claim often fails to be persuasive (Guo
et al., 2022). Previous research has proposed
various approaches to provide post-hoc explana-
tions for model predictions, such as using atten-
tion weights to highlight relevant parts of the ev-
idence (Popat et al., 2017; Cui et al., 2019; Yang
et al., 2019; Lu and Li, 2020), generating justifi-
cations with logic-based systems based on knowl-
edge graphs (Gad-Elrab et al., 2019; Ahmadi et al.,
2019), and generating a summary of the retrieved
relevant evidence (Atanasova et al., 2020; Kotonya
and Toni, 2020; Jolly et al., 2022). In contrast, we
propose to use reasoning programs to provide ex-
planations that consist of sub-tasks described in a
program-like natural language. This offers several
advantages: it allows for explanations that are not
confined to the evidence, like attention weights, it
is more flexible than logic-based explanations, and
it is more concise than free-form summarization.

Chain-of-Thought Reasoning. Moreover, un-
like previous work that generates post-hoc explana-
tions, we also use reasoning programs as guidance
for predicting the veracity of the claim. This is mo-
tivated by the recent success of chain-of-thought
prompting (CoT) (Wei et al., 2022; Kojima et al.,
2022; Wang et al., 2022), which generates step-by-
step natural language reasoning steps to guide the
model in answering complex questions. We adopt
this idea to fact-checking complex claims. Unlike
the original CoT, which uses a single LLM for both
decomposition and question answering, we use the
language model only to generate reasoning pro-
grams as the blueprint for problem-solving, and we
delegate each sub-task to specialized functions.

This approach reduces the burden on the lan-
guage model and allows for more flexibility
in incorporating necessary components for fact-
checking such as an evidence retriever. The strat-
egy of program-guided reasoning is also in line
with the recent trend of tool-augmented language
models (Mialon et al., 2023; Schick et al., 2023),
i.e., augmenting language models with access to
external tools and resources.

3 PROGRAMFC

We first formulate the problem of fact-checking and
then we introduce our proposed model for Program-
Guided Fact-Checking (PROGRAMFC).

3.1 Problem Formulation
Given a claim C, a fact-checking model F aims to
predict a label Y to evaluate the claim as TRUE or
FALSE, based on a knowledge source K. The model
is also required to output an explanation E to jus-
tify the predicted veracity label. We summarize
three different settings of fact-checking depending
on the type of knowledge source K.
• Gold evidence: For each claim, K is the set
of gold evidence documents that can support or
refute the claim. This setting is also called claim
verification (Pan et al., 2021; Wright et al., 2022).
• Open-book setting: K is a large textual corpus
such as Wikipedia. The model first retrieves rele-
vant evidence from the corpus and then predicts the
veracity label based on the evidence (Jiang et al.,
2021; Wadden et al., 2022b).
• Closed-book setting: The model does not have
access to any external knowledge source (K = ∅).
It needs to leverage the knowledge stored in its
parameters (acquired during pre-training and fine-
tuning) to verify the claim. This setting was ex-
plored in work that applies large language models
for fact-checking (Lee et al., 2020, 2021).

3.2 Program-Guided Reasoning
Our goal is to fact-check a complex claim C that
requires multi-step reasoning. We focus on the few-
shot setting, where only a small set of in-domain
examples are available to teach the model. To solve
this, PROGRAMFC follows a program generation-
and-execution paradigm, as shown in Figure 1.

Program Generation. At this stage, given the
input claim C, a planner P generates a reasoning
program P = [S1, · · · , Sn] for it, which consists
of n sequentially ordered reasoning steps Si.

6983

Each reasoning step Si ∈ P is an instruction
in controlled natural language that directs Si to
a function in an auxiliary set of sub-task func-
tions F available to the system. To be specific,
we define Si = (fi, Ai, Vi), where fi specifies
the sub-task function fi ∈ F , Ai is the argument
passed to the function fi, and Vi is the variable
that stores the returned result from the function call
fi(Ai). For a valid reasoning program, the return
value of the last reasoning step must be a Boolean
value indicating the veracity label of the claim C,
i.e., Vn ∈ {TRUE, FALSE}.

Program Execution. In the execution stage, the
reasoning program P is run by an interpreter to
derive the veracity label of the claim C. The in-
terpreter sequentially parses the reasoning steps in
P . For each step Si = (fi, Ai, Vi), it calls the cor-
responding off-the-shelf sub-task function fi and
passes the argument Ai to it. The argument Ai is ei-
ther a logical expression or a natural language sen-
tence, e.g., a question or a simple claim. The result
of the function call is then stored in the variable Vi.
As it is common for a subsequent step to depend
on the results from previous steps, we allow the
argument Ai to refer to variables V1, · · · , Vi−1 in
previous steps. For example, in Figure 1, the argu-
ment in S3 is “{ANSWER_1} was born in Canada.”,
which refers to the return variable {ANSWER_1}
from S2. When executing S3, the variable is re-
placed by its actual value, and the argument be-
comes “Christopher Nolan was born in Canada”.
After executing the last step, the return value is the
predicted veracity of the claim C.

Aggregating Reasoning Paths. Note that there
might be multiple reasoning paths that can reach
the final veracity label. Therefore, we generate
a diverse set of N candidate reasoning programs
P = {P1, · · · , PN} for the input claim. After exe-
cuting all programs in P , we take the majority vote
over all N predicted labels as the final label. This
approach is similar to how humans rely on multiple
methods of validation to increase their confidence
in fact-checking. It also makes the model less sus-
ceptible to errors in individual reasoning programs.

3.3 Reasoning Program Generation
We base our program generator on Codex (Chen
et al., 2021), a code-pretrained LLM, which can
parse natural language into symbolic representa-
tions such as SQL (Cheng et al., 2022) or Python
programs (Gao et al., 2022; Chen et al., 2022b).

However, the grammar of a reasoning program
is different from the grammar of a programming
language. We take advantage of Codex’s few-shot
generalization ability and we find that it can learn
effectively from only a small number of in-context
examples D = {d1, · · · , d|D|}. Each example di
consists of a claim and a program. The program has
a Python-like grammar, where each reasoning step
is written in the format Vi = fi(Ai). At inference
time, we prompt Codex with an instruction of the
task, K in-context examples, and the input claim
C. Codex then attempts to complete the follow-
ing texts, and thereby generates a program for C.
The prompt template is shown in Figure 2. We use
K = 20 to maintain a tradeoff between the diver-
sity of reasoning types and the model’s maximum
input capacity. We use sampling-based decoding
(temperature of 0.7) to generate different reasoning
programs for multiple runs.

3.4 Sub-Task Functions
We implement three sub-task functions for the
model to call during the program execution.
• QUESTION: This sub-task function is a question-
answering module that takes a question Q as the
input argument and returns the answer A to the
question. We use FLAN-T5 (Chung et al., 2022), an
improved T5 model (Raffel et al., 2020) pretrained
on more than 1.8K tasks with instruction tuning,
which has achieved state-of-the-art zero/few-shot
performance on many QA benchmarks. As shown
in Figure 3, we prompt the model differently de-
pending on the settings defined in Section 3.1. For
the closed-book setting, the input prompt is

Q: QUESTION ? The answer is:

For the other two settings, the input prompt is

EVIDENCE Q: QUESTION ?
The answer is:

• VERIFY: This is a fact verification module that
takes a claim C as the input argument and returns
a label of either TRUE or FALSE. We also use
FLAN-T5 for this module, by prompting the model
with the following question-answering format.

EVIDENCE
Q: Is it true that CLAIM ?
True or False? The answer is:

• PREDICT: This module takes as input a logical
expression that performs AND, OR, NOT operations
over the variables in the previous steps. Its output
is returned as the predicted veracity label.

6984

'''Generate a python -like program that describes the reasoning steps
required to verify the claim step -by-step. You can call three functions
in the program: 1. Question () to answer a question; 2. Verify () to
verify a simple claim; 3. Predict () to predict the veracity label.'''

The claim is that Both James Cameron and the director of the film
Interstellar were born in Canada.

def program ():
fact_1 = Verify("James Cameron was born in Canada.")
Answer_1 = Question("Who is the director of the film Interstellar?")
fact_2 = Verify("{Answer_1} was born in Canada.")
label = Predict(fact_1 and fact_2)

(· · · more in-context examples here · · ·)

The claim is that <input_claim>
def program ():

Figure 2: The Codex prompt template used to generate reasoning programs, consisting of a task instruction,
in-context examples, and a prompt for the <input_claim>. The full templates are given in Appendix D.

1

FLAN-T5

Q: <Question>
The answer is:

<Retrieved Evidence>
Q: <Question>
The answer is:

<Question> Ans

<Gold Evidence>
Q: <Question>
The answer is:

Retriever

Gold Evidence

Open-book

Closed-book

Figure 3: Implementation of the question-answering
sub-task function for three different settings.

4 Experiments

Datasets. Most fact-checking datasets consist pri-
marily of simple claims that can be substantiated
through a single piece of evidence. However, here
we focus on complex claims that need multi-step
reasoning. Given this context, we opt to evalu-
ate our model on the only two datasets that, to
the best of our knowledge, fulfill these criteria:
HOVER (Jiang et al., 2020) and FEVEROUS (Aly
et al., 2021). We use the validation sets for evalu-
ation since the test sets are not publicly released.
HOVER contains claims that require integration
and reasoning over multiple Wikipedia articles. We
divide its validation set into three subsets based on
the number of “hops” required to verify the claim:
1,126 two-hop claims, 1,835 three-hop claims, and
1,039 four-hop claims. FEVEROUS focuses on
fact-checking complex claims over unstructured
and structured data, where each claim is annotated
with evidence in the form of sentences and/or cells
from tables in Wikipedia. Since we focus on textual
fact-checking, we only selected claims that require
exclusively sentence evidence, constituting 2,962
claims. We call this subset FEVEROUS-S.

For evaluation in the open-book setting, we use
the corresponding Wikipedia corpus constructed
for these two datasets as the knowledge sources.
HOVER uses the October 2017 Wikipedia dump
processed by Yang et al. (2018), consisting of
the introductory sections of 5.2 million Wikipedia
pages. FEVEROUS uses the December 2020 dump,
including 5.4 million full Wikipedia articles.

Baselines. We compare PROGRAMFC to seven
baselines, categorized into three groups. (i) Pre-
trained models: BERT-FC (Soleimani et al., 2020)
and LisT5 (Jiang et al., 2021) are two models
that leverage BERT and T5 for fact verification,
respectively. (ii) FC/NLI fine-tuned models: we
choose three pretrained models that are fine-tuned
on other fact-checking datasets or natural language
inference (NLI) datasets. RoBERTa-NLI (Nie et al.,
2020) uses fine-tuned RoBERTa-large on four NLI
datasets; DeBERTaV3-NLI (He et al., 2021) fine-
tunes the DeBERTaV3 model on 885,242 (claim,
evidence, label) annotations from FEVER and four
NLI datasets. MULTIVERS (Wadden et al., 2022b)
is a LongFormer (Beltagy et al., 2020) model fine-
tuned on FEVER. (iii) In-context learning models:
one baseline is that we directly use the FLAN-T5
model in our VERIFY module for fact-checking.
The other baseline uses the in-context learning of
Codex for few-shot fact-checking. The implemen-
tation details are given in Appendix A.

Few-Shot Learning. We study few-shot learning
where only a few in-domain examples are available.
Therefore, for a fair comparison, we restrict all
models to have access to only 20 examples from
HOVER or FEVEROUS-S.

6985

Few-shot learning models HOVER (2-hop) HOVER (3-hop) HOVER (4-hop) FEVEROUS-S

Gold Open Gold Open Gold Open Gold Open

I
BERT-FC (Soleimani et al., 2020) 53.40 50.68 50.90 49.86 50.86 48.57 74.71 51.67
LisT5 (Jiang et al., 2021) 56.15 52.56 53.76 51.89 51.67 50.46 77.88 54.15

II
RoBERTa-NLI (Nie et al., 2020) 74.62 63.62 62.23 53.99 57.98 52.40 88.28 57.80
DeBERTaV3-NLI (He et al., 2021) 77.22 68.72 65.98 60.76 60.49 56.00 91.98 58.81
MULTIVERS (Wadden et al., 2022b) 68.86 60.17 59.87 52.55 55.67 51.86 86.03 56.61

III
Codex (Chen et al., 2021) 70.63 65.07 66.46 56.63 63.49 57.27 89.77 62.58
FLAN-T5 (Chung et al., 2022) 73.69 69.02 65.66 60.23 58.08 55.42 90.81 63.73

IV
ProgramFC (N=1) 74.10 69.36 66.13 60.63 65.69 59.16 91.77 67.80
ProgramFC (N=5) 75.65 70.30 68.48 63.43 66.75 57.74 92.69 68.06

Table 1: Macro-F1 scores of PROGRAMFC (IV) and baselines (I-III) on the evaluation set of HOVER and
FEVEROUS-S for few-shot fact-checking. Gold and Open represent the gold evidence setting and the open book
setting, respectively. I: pretrained Transformers; II: FC/NLI fine-tuned models; III: in-context learning models.

We use these examples either for fine-tuning
pre-trained models (BERT-FC and LisT5), for con-
tinuous fine-tuning the FC/NLI fine-tuned models,
or as in-context examples for FLAN-T5 and Codex.
For PROGRAMFC, we use them as in-context ex-
amples for reasoning program generation.

We evaluate both the gold evidence setting and
the open-book setting. The baseline models are the
same for both settings. However, during testing
in the open-book setting, the models are given the
retrieved evidence rather than the ground-truth ev-
idence. We use BM25 (Robertson and Zaragoza,
2009) implemented with the Pyserini toolkit (Lin
et al., 2021) as the retriever for both PROGRAMFC
and the baselines. We use as evidence the top-10
paragraphs retrieved from the knowledge corpus.

4.1 Main Results

We report the overall results for PROGRAMFC and
for the baselines for few-shot fact-checking in Ta-
ble 1. PROGRAMFC achieves the best performance
on 7 out of 8 evaluations, demonstrating its effec-
tiveness. We have three more specific observations.

ProgramFC is more effective on deeper claims.
On the HOVER dataset, ProgramFC (N=5) out-
performs the baselines on average by 10.38%,
11.37%, and 14.77% on two-hop, three-hop, and
four-hop claims, respectively. This suggests that
ProgramFC becomes increasingly effective as the
required reasoning depth increases. Among the
baselines, DeBERTaV3-NLI performs comparably
to ProgramFC on two-hop claims, indicating that
large-scale pre-training on simpler claims can help
the model generalize to more complex claims.

However, this generalization becomes more chal-
lenging as the complexity of the claims increases.
On HOVER, the F1 score of DeBERTaV3-NLI drops
from 77.22 for 2-hop claims to 60.49 for 4-hop
claims, which is a decrease of 21.7%. In contrast,
the performance drop for ProgramFC, which uses
the strategy of program-guided reasoning, is much
smaller: just 11.7%.

Decomposition is more effective than one-step
prediction. The ProgramFC model, which uses
the same FLAN-T5 model as the sub-task func-
tions, outperforms the baseline of directly verify-
ing claims with FLAN-T5 on all four datasets. On
average, there is a 6.0% improvement in the gold
evidence setting and a 4.5% improvement in the
open-book setting. This suggests that decomposing
a complex claim into simpler steps with a program
can facilitate more accurate reasoning. This is es-
pecially evident when the required reasoning is
complex: there is a 14.9% improvement in the gold
evidence setting and a 6.7% improvement in the
open-book setting for 4-hop claims.

Aggregating reasoning programs is helpful.

We find that aggregating the predictions of N = 5
reasoning programs improves the performance over
using a single program by an average of 1.5%.
This aligns with the findings of Wang et al. (2022),
where the idea was applied for question answering:
if multiple different ways of thinking lead to the
same answer, we can have greater confidence that
the final answer is correct. This intuition also ap-
plies to fact-checking, as each program represents
a unique reasoning chain to verify the claim.

6986

1

47.75

68.24
71.69

73.69
77.07

64.35

72.56
76.11 75.65

77.62

40

50

60

70

80

80M 250M 780M 3B 11B

HOVER (2-hop)FLAN-T5 ProgramFC

49.29

63.05
65.07 65.66 66.8962.23

67.88 68.55 68.48 69.56

40

50

60

70

80

80M 250M 780M 3B 11B

HOVER (3-hop)FLAN-T5 ProgramFC

48.59

56.58 58.08
61.36

63.39

62.46

68.37 68.56
66.75 68.18

40

50

60

70

80

80M 250M 780M 3B 11B

HOVER (4-hop)FLAN-T5 ProgramFC

Figure 4: F1 score for fact-checking with gold evidence using FLAN-T5 (blue line) and PROGRAMFC (green line)
for language models of increasing sizes: FLAN-T5-small (80M), FLAN-T5-base (250M), FLAN-large (780M),
FLAN-T5-XL (3B), and FLAN-T5-XXL (11B) on HOVER 2-hop (left), 3-hop (middle), and 4-hop (right).

73.18

51.33

36.43

76.2577.13

59.17

49.93

85.65

20

30

40

50

60

70

80

90

HOVER (2-hop) HOVER (3-hop) HOVER (4-hop) FEVEROUS-S

One-step Retrieval ProgramFC

Figure 5: Retrieval recall@10 for the one-step retrieval
and the iterative retrieval in PROGRAMFC.

4.2 How Does the Reasoning Program Help?

To further understand how reasoning programs
facilitate fact-checking, we compare the perfor-
mance of PROGRAMFC with FLAN-T5 using dif-
ferent language model sizes: small, base, large,
XL, and XXL. The results are shown in Figure 4
and indicate that program-guided reasoning is par-
ticularly effective when the model size is small.
As smaller models have less capacity for com-
plex reasoning, the performance of the end-to-end
FLAN-T5 model decreases significantly with de-
creasing model size. However, this trend is less
notable for PROGRAMFC. The high-level reason-
ing plan offered by reasoning programs substan-
tially alleviates the demands on the subsequent sub-
task solvers. Our results show that the program-
guided model using FLAN-T5-small (80M param-
eters) as sub-task solvers can achieve comparable
performance to the 137x larger FLAN-T5-XXL (11B)
model with end-to-end reasoning for 4-hop claims.

In the open-domain setting, we find that reason-
ing programs can enhance the retrieval of relevant
evidence from the knowledge source. Figure 5
compares the retrieval performance of the one-step
BM25 retriever used in the baselines to the iterative
step-by-step BM25 retriever in PROGRAMFC.

We measure the recall of the gold paragraphs
for the top-10 retrieved paragraphs (recall@10).
For PROGRAMFC, we combine the retrieved para-
graphs of all steps and we consider the top-10 re-
sults. We can see in Figure 5 that PROGRAMFC
outperforms one-step retrieval on all datasets, with
the largest improvement of 37.1% on HOVER 4-
hop. This is because some information may not be
present in the original claim, but is only revealed
during the reasoning process (e.g., “Christopher
Nolan” in Figure 1). Thus, iterative retrieval guided
by the reasoning program yields better results.

4.3 Interpretability of Reasoning Programs

An advantage of PROGRAMFC is that it improves
the interpretability of fact-checking compared to
end-to-end models, as the explicit program can aid
human understanding and debugging. Examples
of generated reasoning programs can be found in
Figure 7 of Appendix B. To assess the quality of
the generated reasoning programs, we sampled 300
claims where PROGRAMFC incorrectly predicted
the final veracity labels from the HOVER 2-hop,
3-hop, and 4-hop datasets, with 100 examples per
dataset. We asked human annotators to analyze the
error types and we classified the results into three
categories: (i) Syntactic errors, where the program
does not conform to the defined grammar and can-
not be parsed, (ii) Semantic errors, which include
incorrect or missing arguments/variables (Token),
incorrect program structure (Structure), and incor-
rect sub-task calls (Subtask), and (iii) Incorrect
execution, where the program is correct, but where
the incorrect prediction is a result of its execution.

We show the error analysis in Table 2. First,
no syntax errors were found in our samples, indi-
cating that Codex effectively generates executable
programs through few-shot in-context learning.

6987

1

Predicted Program:
answer_1 = Question("Which state is Emery located in?")
answer_2 = Question("Which state is Edison Local School District located in?")
fact_1 = Verify("{answer_1} and {answer_2} are the same state.")
fact_2 = Verify("Emery is a ghost town.")
answer_3 = Question("Which city is near Emery?")
answer_4 = Question("Which city lies close to the Ohio Turnpike, a 241.26 mi highway?")
fact_3 = Verify("{answer_3} is near {answer_4}.") fact_3 = Verify(“Emery is near {answer_4}.”)
label = Predict(fact_1 and fact_2 and fact_3)

Claim:
Emery, located in the same state as Edison Local School District, is a ghost town. It is near the
city that lies close to the Ohio Turnpike, a 241.26 mi highway.

Figure 6: An error case from the HOVER 4-hop dataset where the generated reasoning program has an incorrect
program structure. The incorrect segment(s) are marked in red, and the correct revisions are marked in green.

Error Type Proportion (%)
2-hop 3-hop 4-hop

Syntax error 0% 0% 0%
Semantic error 29% 38% 77%

Token 8% 20% 18%
Structure 19% 13% 57%
Subtask 2% 5% 2%

Incorrect execution 71% 62% 23%

Table 2: Reasoning program evaluation for incorrectly-
predicted examples from each hop length in HOVER.

Second, for 2-hop claims, we find that 71% of
the programs are correct. The majority of the er-
rors are the result of incorrect program execution,
where the question answering or the fact-checking
modules failed to return the correct answer.

Third, as the complexity of the claims increases,
the proportion of semantic errors in the programs
also increases, with structural errors becoming par-
ticularly prevalent. This highlights the difficulty of
generating the appropriate step-by-step reasoning
strategies for claims that require long-chain rea-
soning. An example structural error is shown in
Figure 6, where the model fails to parse the second
sentence of the claim into correct program instruc-
tions. Additional error examples can be found in
Appendix C.

4.4 Closed-Book Fact-Checking
Finally, we evaluate the closed-book setting, where
the model does not have access to any knowledge
source and needs to rely on its parametric knowl-
edge only. The baseline models from groups I and
II in Table 1 are trained with (evidence, claim)
pairs and thus are not applicable in this setting.
We compare our method to the baselines that use
large language models for in-context learning, in-
cluding Codex (code-davinci-002) and FLAN-T5
from Table 1.

Model
HOVER

FEVEROUS
2-hop 3-hop 4-hop

InstructGPT

- Direct 56.51 51.75 49.68 60.13
- ZS-CoT 50.30 52.30 51.58 54.78
- CoT 57.20 53.66 51.83 61.05
- Self-Ask 51.54 51.47 52.45 56.82

Codex 55.57 53.42 45.59 57.85
FLAN-T5 48.27 52.11 51.13 55.16

ProgramFC 54.27 54.18 52.88 59.66

Table 3: Closed-book setting: macro-F1 scores for PRO-
GRAMFC and for the baselines.

We also include the 175B-parameter Instruct-
GPT (text-davinci-002) (Ouyang et al., 2022)
with four different prompts: (i) direct prompt-
ing with the claim, (ii) CoT (Wei et al., 2022) or
chain-of-thought prompting with demonstrations,
(iii) ZS-CoT (Kojima et al., 2022) or zero-shot
chain-of-thought with the prompt “let’s think step
by step”, and (iv) Self-Ask (Press et al., 2022),
which is a variant of CoT that guides the model rea-
soning by asking a series of questions. The detailed
prompting templates are given in Appendix E.

Our results, presented in Table 3, show that most
models achieve a Macro-F1 score only slightly
above random guessing on the HOVER dataset,
indicating the difficulty of solely relying on para-
metric knowledge of large language models for
fact-checking complex claims. Similar to the obser-
vations in Section 4.1, we see a trend of improved
performance as the number of the required rea-
soning hops increases. Chain-of-thought prompt-
ing scores an average 2.7 points higher than direct
prompting, highlighting the importance of step-
by-step reasoning for complex fact-checking. It
outperforms our PROGRAMFC on HOVER 2-hop
and FEVEROUS but performs worse on HOVER

6988

3-hop and 4-hop.
This can be due to CoT generating free-form ex-

planations, which can lead to unpredictable errors
in long reasoning chains. In contrast, our program
generation-and-execution strategy is more stable
for longer reasoning chains.

5 Conclusion and Future Work

We proposed PROGRAMFC, a few-shot neuro-
symbolic model for fact-checking that learns to
map input claims to a reasoning program consisting
of a sequence of sub-task function calls for answer-
ing a question, for fact-checking a simple claim,
and for computing a logical expression. Then fact-
checking is performed by executing that program.
PROGRAMFC combines the advantages of sym-
bolic programs, such as explainability, with the
flexibility of end-to-end neural models. Using
Codex as the program generator, PROGRAMFC
demonstrates promising performance on HOVER
and FEVEROUS with only a small number of in-
context demonstrations and no additional training.
We also investigated the impact of model size and
the benefits of programs for retrieval, and we an-
alyzed the errors. The results indicated that PRO-
GRAMFC effectively balances model capability,
learning efficiency, and interpretability.

In future work, we want to adapt PROGRAMFC
to more real-world fact-checking scenarios, such as
fake news detection and multi-modal fact-checking,
with advanced reasoning program design and sub-
task functionalities.

Limitations

We identify two main limitations of PROGRAMFC.
First, despite being complex in their surface form,
the claims in the HOVER and FEVEROUS datasets
mostly require only explicit multi-step reasoning,
i.e., the decomposition can be derived from the
claim’s syntactic structure or how the claim is
framed. This lowers the difficulty of generating rea-
soning programs. However, for many real-world
complex claims, the reasoning is often implicit.
For example, for the claim “Aristotle couldn’t have
used a laptop”, the reasoning program is:
answer_1 = Question(“When did Aristotle live?”);

answer_2 = Question(“When was the laptop in-
vented?”);

fact_1 = Verify(“answer_1 is before answer_2.”);

label = Predict(fact_1)

Generating reasoning programs for such implicit
complex claims requires a deeper understanding
of the claim and also access to world and com-
monsense knowledge. We conducted preliminary
experiments on these types of claims, but we found
that our Codex-based generator struggled to pro-
duce a correct reasoning program. This highlights
the gap in applying our PROGRAMFC to fact-check
real-world claims. Addressing these challenges is
an important direction for future work.

Second, PROGRAMFC incurs a higher computa-
tional cost than baseline end-to-end fact-checking
models. It requires calling large language models
for program generation and further calling multiple
sub-task models. This results in the actual compu-
tational time that is ∼4–5× higher than for an end-
to-end FLAN-T5 model. Developing more efficient
methods for program generation and execution is
an important direction for future work.

Ethics Statement

Biases. We note that there might be some biases
in the data used to train the LLMs, as well as in
factuality judgments. Both are beyond our control.

Intended Use and Misuse Potential. Our mod-
els can be of interest to the general public and
could also save a lot of time to human fact-checkers.
However, they could also be misused by malicious
actors. We ask researchers to exercise caution.

Environmental Impact. The use of large lan-
guage models requires a significant amount of
energy for computation for training, which con-
tributes to global warming. Our work performs few-
shot in-context learning instead of training models
from scratch, so the energy footprint of our work is
less. The large language model (Codex) whose API
we use for inference consumes significant energy.

Acknowledgements

This work was supported in part by the National
Science Foundation award #2048122 and by Sin-
gapore’s Ministry of Education Tier 3 grant “Dig-
ital Information Resilience: Restoring Trust and
Nudging Behaviours in Digitalisation”. The views
expressed are those of the authors and do not reflect
the official policy or position of the US government.
We thank Alex Mei, Xinyi Wang, Danqing Wang,
Sharon Levy, Gyuwan Kim, and other members of
the UCSB NLP group for their valuable feedback.

6989

References
Naser Ahmadi, Joohyung Lee, Paolo Papotti, and Mo-

hammed Saeed. 2019. Explainable fact checking
with probabilistic answer set programming. In Pro-
ceedings of the Truth and Trust Online Conference
(TTO), London, UK.

Rami Aly, Zhijiang Guo, Michael Sejr Schlichtkrull,
James Thorne, Andreas Vlachos, Christos
Christodoulopoulos, Oana Cocarascu, and Arpit
Mittal. 2021. FEVEROUS: Fact Extraction and
VERification Over Unstructured and Structured in-
formation. In Proceedings of the Neural Information
Processing Systems (NeurIPS) Track on Datasets
and Benchmarks, Online.

Rami Aly and Andreas Vlachos. 2022. Natural logic-
guided autoregressive multi-hop document retrieval
for fact verification. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 6123–6135, Abu Dhabi,
United Arab Emirates.

Pepa Atanasova, Jakob Grue Simonsen, Christina Li-
oma, and Isabelle Augenstein. 2020. Generating fact
checking explanations. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics (ACL), pages 7352–7364, Online.

Isabelle Augenstein, Christina Lioma, Dongsheng
Wang, Lucas Chaves Lima, Casper Hansen, Chris-
tian Hansen, and Jakob Grue Simonsen. 2019. Mul-
tiFC: A real-world multi-domain dataset for evidence-
based fact checking of claims. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 4685–4697, Hong Kong,
China.

Giorgio Barnabò, Federico Siciliano, Carlos Castillo,
Stefano Leonardi, Preslav Nakov, Giovanni
Da San Martino, and Fabrizio Silvestri. 2022.
FbMultiLingMisinfo: Challenging large-scale mul-
tilingual benchmark for misinformation detection.
In Proceedings of the 2022 International Joint
Conference on Neural Networks (IJCNN), pages 1–8,
Padova, Italy.

Giorgio Barnabò, Federico Siciliano, Carlos Castillo,
Stefano Leonardi, Preslav Nakov, Giovanni Da San
Martino, and Fabrizio Silvestri. 2023. Deep active
learning for misinformation detection using geomet-
ric deep learning. Online Social Networks and Media,
33:100244.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. 2020.
Longformer: The long-document transformer. ArXiv
preprint, abs/2004.05150.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empirical

Methods in Natural Language Processing (EMNLP),
pages 632–642, Lisbon, Portugal.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
Proceedings of the Annual Conference on Neural
Information Processing Systems (NeurIPS), Online.

Jifan Chen, Aniruddh Sriram, Eunsol Choi, and Greg
Durrett. 2022a. Generating literal and implied sub-
questions to fact-check complex claims. In Proceed-
ings of the 2022 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
3495–3516, Abu Dhabi, United Arab Emirates.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harrison Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing large language models trained on code. ArXiv
preprint, abs/2107.03374.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W. Cohen. 2022b. Program of thoughts
prompting: Disentangling computation from rea-
soning for numerical reasoning tasks. CoRR,
abs/2211.12588.

Zhoujun Cheng, Tianbao Xie, Peng Shi, Chengzu
Li, Rahul Nadkarni, Yushi Hu, Caiming Xiong,
Dragomir Radev, Mari Ostendorf, Luke Zettlemoyer,
Noah A. Smith, and Tao Yu. 2022. Binding
language models in symbolic languages. CoRR,
abs/2210.02875.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang,
Mostafa Dehghani, Siddhartha Brahma, Albert Web-
son, Shixiang Shane Gu, Zhuyun Dai, Mirac Suz-
gun, Xinyun Chen, Aakanksha Chowdhery, Sharan
Narang, Gaurav Mishra, Adams Yu, Vincent Y. Zhao,

6990

https://truthandtrustonline.com/wp-content/uploads/2019/09/paper_15.pdf
https://truthandtrustonline.com/wp-content/uploads/2019/09/paper_15.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/68d30a9594728bc39aa24be94b319d21-Abstract-round1.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/68d30a9594728bc39aa24be94b319d21-Abstract-round1.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/68d30a9594728bc39aa24be94b319d21-Abstract-round1.html
https://aclanthology.org/2022.emnlp-main.411
https://aclanthology.org/2022.emnlp-main.411
https://aclanthology.org/2022.emnlp-main.411
https://doi.org/10.18653/v1/2020.acl-main.656
https://doi.org/10.18653/v1/2020.acl-main.656
https://doi.org/10.18653/v1/D19-1475
https://doi.org/10.18653/v1/D19-1475
https://doi.org/10.18653/v1/D19-1475
https://doi.org/10.1109/IJCNN55064.2022.9892739
https://doi.org/10.1109/IJCNN55064.2022.9892739
https://doi.org/https://doi.org/10.1016/j.osnem.2023.100244
https://doi.org/https://doi.org/10.1016/j.osnem.2023.100244
https://doi.org/https://doi.org/10.1016/j.osnem.2023.100244
https://arxiv.org/abs/2004.05150
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://aclanthology.org/2022.emnlp-main.229
https://aclanthology.org/2022.emnlp-main.229
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://doi.org/10.48550/arXiv.2211.12588
https://doi.org/10.48550/arXiv.2211.12588
https://doi.org/10.48550/arXiv.2211.12588
https://doi.org/10.48550/arXiv.2210.02875
https://doi.org/10.48550/arXiv.2210.02875

Yanping Huang, Andrew M. Dai, Hongkun Yu, Slav
Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam
Roberts, Denny Zhou, Quoc V. Le, and Jason Wei.
2022. Scaling instruction-finetuned language models.
CoRR, abs/2210.11416.

Limeng Cui, Kai Shu, Suhang Wang, Dongwon Lee,
and Huan Liu. 2019. dEFEND: A system for explain-
able fake news detection. In Proceedings of the 28th
ACM International Conference on Information and
Knowledge Management (CIKM), pages 2961–2964,
Beijing, China.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies (NAACL-HLT), pages 4171–4186, Min-
neapolis, Minnesota, USA.

Mohamed H. Gad-Elrab, Daria Stepanova, Jacopo Ur-
bani, and Gerhard Weikum. 2019. Exfakt: A frame-
work for explaining facts over knowledge graphs and
text. In Proceedings of the Twelfth ACM Interna-
tional Conference on Web Search and Data Mining
(WSDM), pages 87–95, Melbourne, Australia.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2022. PAL: program-aided language
models. CoRR, abs/2211.10435.

Max Glockner, Yufang Hou, and Iryna Gurevych. 2022.
Missing counter-evidence renders NLP fact-checking
unrealistic for misinformation. In Proceedings of the
2022 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 5916–5936,
Abu Dhabi, United Arab Emirates.

Zhijiang Guo, Michael Schlichtkrull, and Andreas Vla-
chos. 2022. A survey on automated fact-checking.
Transactions of the Association for Computational
Linguistics, 10:178–206.

Ashim Gupta and Vivek Srikumar. 2021. X-Fact: A new
benchmark dataset for multilingual fact checking. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (ACL-IJCNLP), pages 675–682, Online.

Pengcheng He, Jianfeng Gao, and Weizhu Chen.
2021. DeBERTaV3: Improving DeBERTa us-
ing ELECTRA-style pre-training with gradient-
disentangled embedding sharing. ArXiv preprint,
abs/2111.09543.

Kelvin Jiang, Ronak Pradeep, and Jimmy Lin. 2021. Ex-
ploring listwise evidence reasoning with T5 for fact
verification. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguis-
tics and the 11th International Joint Conference on
Natural Language Processing (ACL-IJCNLP), pages
402–410, Online.

Yichen Jiang, Shikha Bordia, Zheng Zhong, Charles
Dognin, Maneesh Singh, and Mohit Bansal. 2020.
HoVer: A dataset for many-hop fact extraction and
claim verification. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
3441–3460, Online.

Shailza Jolly, Pepa Atanasova, and Isabelle Augen-
stein. 2022. Generating fluent fact checking expla-
nations with unsupervised post-editing. Information,
13(10):500.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large
language models are zero-shot reasoners. CoRR,
abs/2205.11916.

Neema Kotonya and Francesca Toni. 2020. Explainable
automated fact-checking for public health claims. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7740–7754, Online.

Amrith Krishna, Sebastian Riedel, and Andreas Vlachos.
2022. ProoFVer: Natural logic theorem proving for
fact verification. Transactions of the Association for
Computational Linguistics (TACL), 10:1013–1030.

Nayeon Lee, Yejin Bang, Andrea Madotto, and Pascale
Fung. 2021. Towards few-shot fact-checking via per-
plexity. In Proceedings of the 2021 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies (NAACL-HLT), pages 1971–1981, Online.

Nayeon Lee, Belinda Z. Li, Sinong Wang, Wen-tau
Yih, Hao Ma, and Madian Khabsa. 2020. Language
models as fact checkers? In Proceedings of the
Third Workshop on Fact Extraction and VERification
(FEVER), pages 36–41, Online.

Jimmy Lin, Xueguang Ma, Sheng-Chieh Lin, Jheng-
Hong Yang, Ronak Pradeep, and Rodrigo Nogueira.
2021. Pyserini: A Python toolkit for reproducible
information retrieval research with sparse and dense
representations. In Proceedings of the 44th Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR), pages
2356–2362, Online.

Alisa Liu, Swabha Swayamdipta, Noah A. Smith, and
Yejin Choi. 2022. WANLI: Worker and AI collabora-
tion for natural language inference dataset creation.
In Findings of the Association for Computational
Linguistics: EMNLP 2022, pages 6826–6847, Abu
Dhabi, United Arab Emirates.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized BERT pretraining
approach. ArXiv preprint, abs/1907.11692.

Zhenghao Liu, Chenyan Xiong, Maosong Sun, and
Zhiyuan Liu. 2020. Fine-grained fact verification
with kernel graph attention network. In Proceedings

6991

https://doi.org/10.48550/arXiv.2210.11416
https://doi.org/10.1145/3357384.3357862
https://doi.org/10.1145/3357384.3357862
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1145/3289600.3290996
https://doi.org/10.1145/3289600.3290996
https://doi.org/10.1145/3289600.3290996
https://aclanthology.org/2022.emnlp-main.397
https://aclanthology.org/2022.emnlp-main.397
https://doi.org/10.1162/tacl_a_00454
https://doi.org/10.18653/v1/2021.acl-short.86
https://doi.org/10.18653/v1/2021.acl-short.86
https://arxiv.org/abs/2111.09543
https://arxiv.org/abs/2111.09543
https://arxiv.org/abs/2111.09543
https://doi.org/10.18653/v1/2021.acl-short.51
https://doi.org/10.18653/v1/2021.acl-short.51
https://doi.org/10.18653/v1/2021.acl-short.51
https://doi.org/10.18653/v1/2020.findings-emnlp.309
https://doi.org/10.18653/v1/2020.findings-emnlp.309
https://doi.org/10.3390/info13100500
https://doi.org/10.3390/info13100500
https://doi.org/10.48550/arXiv.2205.11916
https://doi.org/10.48550/arXiv.2205.11916
https://doi.org/10.18653/v1/2020.emnlp-main.623
https://doi.org/10.18653/v1/2020.emnlp-main.623
https://transacl.org/ojs/index.php/tacl/article/view/3527
https://transacl.org/ojs/index.php/tacl/article/view/3527
https://doi.org/10.18653/v1/2021.naacl-main.158
https://doi.org/10.18653/v1/2021.naacl-main.158
https://doi.org/10.18653/v1/2020.fever-1.5
https://doi.org/10.18653/v1/2020.fever-1.5
https://arxiv.org/abs/2102.10073
https://arxiv.org/abs/2102.10073
https://arxiv.org/abs/2102.10073
https://aclanthology.org/2022.findings-emnlp.508
https://aclanthology.org/2022.findings-emnlp.508
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/2020.acl-main.655
https://doi.org/10.18653/v1/2020.acl-main.655

of the 58th Annual Meeting of the Association for
Computational Linguistics (ACL), pages 7342–7351,
Online.

Yi-Ju Lu and Cheng-Te Li. 2020. GCAN: Graph-aware
co-attention networks for explainable fake news de-
tection on social media. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics (ACL), pages 505–514, Online.

Grégoire Mialon, Roberto Dessì, Maria Lomeli, Christo-
foros Nalmpantis, Ramakanth Pasunuru, Roberta
Raileanu, Baptiste Rozière, Timo Schick, Jane
Dwivedi-Yu, Asli Celikyilmaz, Edouard Grave, Yann
LeCun, and Thomas Scialom. 2023. Augmented
language models: a survey. CoRR, abs/2302.07842.

Preslav Nakov, Alberto Barrón-Cedeño, Giovanni
Da San Martino, Firoj Alam, Julia Maria
Struß, Thomas Mandl, Rubén Míguez, Tom-
maso Caselli, Mucahid Kutlu, Wajdi Zaghouani,
Chengkai Li, Shaden Shaar, Gautam Kishore Shahi,
Hamdy Mubarak, Alex Nikolov, Nikolay Babulkov,
Yavuz Selim Kartal, and Javier Beltrán. 2022. The
CLEF-2022 CheckThat! lab on fighting the COVID-
19 infodemic and fake news detection. In Proceed-
ings of the 44th European Conference on IR Re-
search: Advances in Information Retrieval (ECIR),
pages 416–428, Berlin, Heidelberg.

Preslav Nakov, David Corney, Maram Hasanain, Firoj
Alam, Tamer Elsayed, Alberto Barrón-Cedeño, Paolo
Papotti, Shaden Shaar, and Giovanni Da San Mar-
tino. 2021a. Automated fact-checking for assisting
human fact-checkers. In Proceedings of the Joint
Conference on Artificial Intelligence (IJCAI), pages
4551–4558, Online.

Preslav Nakov, Giovanni Da San Martino, Tamer
Elsayed, Alberto Barrón-Cedeño, Rubén Míguez,
Shaden Shaar, Firoj Alam, Fatima Haouari, Maram
Hasanain, Nikolay Babulkov, Alex Nikolov, Gau-
tam Kishore Shahi, Julia Maria Struß, and Thomas
Mandl. 2021b. The CLEF-2021 CheckThat! lab
on detecting check-worthy claims, previously fact-
checked claims, and fake news. In Proceedings of the
43rd European Conference on Information Retrieval
(ECIR), pages 639–649, Lucca, Italy.

Van-Hoang Nguyen, Kazunari Sugiyama, Preslav
Nakov, and Min-Yen Kan. 2020. FANG: leveraging
social context for fake news detection using graph
representation. In Proceedings of the 29th ACM Inter-
national Conference on Information and Knowledge
Management (CIKM), pages 1165–1174.

Yixin Nie, Haonan Chen, and Mohit Bansal. 2019.
Combining fact extraction and verification with neu-
ral semantic matching networks. In Proceedings of
the 33rd AAAI Conference on Artificial Intelligence
(AAAI), pages 6859–6866, Honolulu, Hawaii, USA.

Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal,
Jason Weston, and Douwe Kiela. 2020. Adversarial

NLI: A new benchmark for natural language under-
standing. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics
(ACL), pages 4885–4901, Online.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul F. Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. CoRR, abs/2203.02155.

Liangming Pan, Wenhu Chen, Wenhan Xiong, Min-
Yen Kan, and William Yang Wang. 2021. Zero-shot
fact verification by claim generation. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(ACL-IJCNLP), pages 476–483, Online.

Alicia Parrish, William Huang, Omar Agha, Soo-Hwan
Lee, Nikita Nangia, Alexia Warstadt, Karmanya Ag-
garwal, Emily Allaway, Tal Linzen, and Samuel R.
Bowman. 2021. Does putting a linguist in the loop
improve NLU data collection? In Findings of the
Association for Computational Linguistics: EMNLP
2021, pages 4886–4901, Punta Cana, Dominican Re-
public.

Kashyap Popat, Subhabrata Mukherjee, Jannik Ströt-
gen, and Gerhard Weikum. 2017. Where the truth
lies: Explaining the credibility of emerging claims
on the web and social media. In Proceedngs of the
International World Wide Web Conference (WWW),
pages 1003–1012.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt,
Noah A. Smith, and Mike Lewis. 2022. Measuring
and narrowing the compositionality gap in language
models. CoRR, abs/2210.03350.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1–140:67.

Stephen E. Robertson and Hugo Zaragoza. 2009. The
probabilistic relevance framework: BM25 and be-
yond. Foundations and Trends in Information Re-
trieval, 3(4):333–389.

Arkadiy Saakyan, Tuhin Chakrabarty, and Smaranda
Muresan. 2021. COVID-fact: Fact extraction and
verification of real-world claims on COVID-19 pan-
demic. In Proceedings of the 59th Annual Meeting
of the Association for Computational Linguistics and
the 11th International Joint Conference on Natural
Language Processing (ACL-IJCNLP), pages 2116–
2129, Online.

Aalok Sathe, Salar Ather, Tuan Manh Le, Nathan Perry,
and Joonsuk Park. 2020. Automated fact-checking

6992

https://doi.org/10.18653/v1/2020.acl-main.48
https://doi.org/10.18653/v1/2020.acl-main.48
https://doi.org/10.18653/v1/2020.acl-main.48
https://doi.org/10.48550/arXiv.2302.07842
https://doi.org/10.48550/arXiv.2302.07842
https://doi.org/10.1007/978-3-030-99739-7_52
https://doi.org/10.1007/978-3-030-99739-7_52
https://doi.org/10.1007/978-3-030-99739-7_52
https://doi.org/10.24963/ijcai.2021/619
https://doi.org/10.24963/ijcai.2021/619
https://link.springer.com/chapter/10.1007/978-3-030-72240-1_75
https://link.springer.com/chapter/10.1007/978-3-030-72240-1_75
https://link.springer.com/chapter/10.1007/978-3-030-72240-1_75
https://doi.org/10.1145/3340531.3412046
https://doi.org/10.1145/3340531.3412046
https://doi.org/10.1145/3340531.3412046
https://doi.org/10.1609/aaai.v33i01.33016859
https://doi.org/10.1609/aaai.v33i01.33016859
https://doi.org/10.18653/v1/2020.acl-main.441
https://doi.org/10.18653/v1/2020.acl-main.441
https://doi.org/10.18653/v1/2020.acl-main.441
https://doi.org/10.48550/arXiv.2203.02155
https://doi.org/10.48550/arXiv.2203.02155
https://doi.org/10.18653/v1/2021.acl-short.61
https://doi.org/10.18653/v1/2021.acl-short.61
https://doi.org/10.18653/v1/2021.findings-emnlp.421
https://doi.org/10.18653/v1/2021.findings-emnlp.421
https://doi.org/10.1145/3041021.3055133
https://doi.org/10.1145/3041021.3055133
https://doi.org/10.1145/3041021.3055133
https://doi.org/10.48550/arXiv.2210.03350
https://doi.org/10.48550/arXiv.2210.03350
https://doi.org/10.48550/arXiv.2210.03350
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.18653/v1/2021.acl-long.165
https://doi.org/10.18653/v1/2021.acl-long.165
https://doi.org/10.18653/v1/2021.acl-long.165
https://aclanthology.org/2020.lrec-1.849

of claims from Wikipedia. In Proceedings of the
Twelfth Language Resources and Evaluation Confer-
ence (LREC), pages 6874–6882, Marseille, France.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola
Cancedda, and Thomas Scialom. 2023. Toolformer:
Language models can teach themselves to use tools.
CoRR, abs/2302.04761.

Tal Schuster, Adam Fisch, and Regina Barzilay. 2021.
Get your vitamin C! robust fact verification with
contrastive evidence. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies (NAACL-HLT), pages 624–
643, Online.

Amir Soleimani, Christof Monz, and Marcel Worring.
2020. BERT for evidence retrieval and claim verifi-
cation. In Advances in Information Retrieval (ECIR),
volume 12036, pages 359–366.

James Thorne and Andreas Vlachos. 2018. Automated
fact checking: Task formulations, methods and future
directions. In Proceedings of the 27th International
Conference on Computational Linguistics (COLING),
pages 3346–3359, Santa Fe, New Mexico, USA.

James Thorne, Andreas Vlachos, Christos
Christodoulopoulos, and Arpit Mittal. 2018.
FEVER: a large-scale dataset for fact extraction
and VERification. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies (NAACL-HLT), pages
809–819, New Orleans, Louisiana.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems (NeurIPS), pages
5998–6008, Long Beach, California, USA.

David Wadden, Shanchuan Lin, Kyle Lo, Lucy Lu
Wang, Madeleine van Zuylen, Arman Cohan, and
Hannaneh Hajishirzi. 2020. Fact or fiction: Verifying
scientific claims. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 7534–7550, Online.

David Wadden, Kyle Lo, Bailey Kuehl, Arman Cohan,
Iz Beltagy, Lucy Lu Wang, and Hannaneh Hajishirzi.
2022a. SciFact-open: Towards open-domain scien-
tific claim verification. In Findings of the Association
for Computational Linguistics: EMNLP 2022, pages
4719–4734, Abu Dhabi, United Arab Emirates.

David Wadden, Kyle Lo, Lucy Wang, Arman Cohan,
Iz Beltagy, and Hannaneh Hajishirzi. 2022b. Mul-
tiVerS: Improving scientific claim verification with
weak supervision and full-document context. In Find-
ings of the Association for Computational Linguis-
tics: NAACL 2022, pages 61–76, Seattle, Washington,
USA.

William Yang Wang. 2017. “Liar, liar pants on fire”: A
new benchmark dataset for fake news detection. In
Proceedings of the 55th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL), pages
422–426, Vancouver, Canada.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V.
Le, Ed H. Chi, and Denny Zhou. 2022. Self-
consistency improves chain of thought reasoning in
language models. CoRR, abs/2203.11171.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ed H. Chi, Quoc Le, and Denny Zhou. 2022.
Chain of thought prompting elicits reasoning in large
language models. ArXiv preprint, abs/2201.11903.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (NAACL-
HLT), pages 1112–1122, New Orleans, Louisiana,
USA.

Dustin Wright, David Wadden, Kyle Lo, Bailey Kuehl,
Arman Cohan, Isabelle Augenstein, and Lucy Wang.
2022. Generating scientific claims for zero-shot sci-
entific fact checking. In Proceedings of the 60th An-
nual Meeting of the Association for Computational
Linguistics (ACL), pages 2448–2460, Dublin, Ireland.

Fan Yang, Shiva K. Pentyala, Sina Mohseni, Meng-
nan Du, Hao Yuan, Rhema Linder, Eric D. Ragan,
Shuiwang Ji, and Xia (Ben) Hu. 2019. XFake: Ex-
plainable fake news detector with visualizations. In
Proceedings of the The World Wide Web Conference
(WWW), pages 3600–3604, San Francisco, California,
USA.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D. Manning. 2018. HotpotQA: A dataset for
diverse, explainable multi-hop question answering.
In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 2369–2380, Brussels, Belgium.

Wanjun Zhong, Jingjing Xu, Duyu Tang, Zenan Xu,
Nan Duan, Ming Zhou, Jiahai Wang, and Jian Yin.
2020. Reasoning over semantic-level graph for fact
checking. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics
(ACL), pages 6170–6180, Online.

Jie Zhou, Xu Han, Cheng Yang, Zhiyuan Liu, Lifeng
Wang, Changcheng Li, and Maosong Sun. 2019.
GEAR: Graph-based evidence aggregating and rea-
soning for fact verification. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics (ACL), pages 892–901, Florence,
Italy.

6993

https://aclanthology.org/2020.lrec-1.849
https://doi.org/10.48550/arXiv.2302.04761
https://doi.org/10.48550/arXiv.2302.04761
https://doi.org/10.18653/v1/2021.naacl-main.52
https://doi.org/10.18653/v1/2021.naacl-main.52
https://doi.org/10.1007/978-3-030-45442-5_45
https://doi.org/10.1007/978-3-030-45442-5_45
https://aclanthology.org/C18-1283
https://aclanthology.org/C18-1283
https://aclanthology.org/C18-1283
https://doi.org/10.18653/v1/N18-1074
https://doi.org/10.18653/v1/N18-1074
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.18653/v1/2020.emnlp-main.609
https://doi.org/10.18653/v1/2020.emnlp-main.609
https://aclanthology.org/2022.findings-emnlp.347
https://aclanthology.org/2022.findings-emnlp.347
https://doi.org/10.18653/v1/2022.findings-naacl.6
https://doi.org/10.18653/v1/2022.findings-naacl.6
https://doi.org/10.18653/v1/2022.findings-naacl.6
https://doi.org/10.18653/v1/P17-2067
https://doi.org/10.18653/v1/P17-2067
https://doi.org/10.48550/arXiv.2203.11171
https://doi.org/10.48550/arXiv.2203.11171
https://doi.org/10.48550/arXiv.2203.11171
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/2022.acl-long.175
https://doi.org/10.18653/v1/2022.acl-long.175
https://doi.org/10.1145/3308558.3314119
https://doi.org/10.1145/3308558.3314119
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/2020.acl-main.549
https://doi.org/10.18653/v1/2020.acl-main.549
https://doi.org/10.18653/v1/P19-1085
https://doi.org/10.18653/v1/P19-1085

A Implementation Details about the
Baselines

In this section, we give the implementation details
for the seven baselines we used in our work. Typ-
ical ways to perform few-shot fact-checking us-
ing large language models are fine-tuning and in-
context learning. Thus, we categorize the baselines
into three categories.

A.1 Pre-trained Models
Pre-trained models use pretrained Transform-
ers (Vaswani et al., 2017) such as BERT (Devlin
et al., 2019) and T5 (Raffel et al., 2020) for fact-
checking. For few-shot learning, we fine-tune them
using 20 randomly sampled training examples from
HOVER or FEVEROUS. We ran the training 10
times with different random seeds and report the av-
erage performance on the validation set. We chose
two models:

• BERT-FC (Soleimani et al., 2020): It uses
BERT for claim verification. The claim
and the evidence are concatenated ([CLS]
claim [SEP] evidence) and used as in-
put for a binary classification task to pre-
dict the veracity label of the claim. We use
the bert-large-uncased (345M parameters)
model provided in HuggingFace.2

• LisT5 (Jiang et al., 2021): This is a fact-
checking framework built with a pretrained
sequence-to-sequence transformer, namely
T5 (Raffel et al., 2020), as its backbone. We
adopt the “listwise concatenation” proposed in
the paper for label prediction, which concate-
nates all candidate evidence sentences into a
single input and we train the t5-large model
to directly classify the claim as Supported or
Refuted. We use the original implementation
of this model.3

A.2 FC/NLI Fine-Tuned Models
These models are pretrained Transformer models
that have been specifically fine-tuned on single-
hop fact-checking datasets (e.g., FEVER) or nat-
ural language inference (NLI) datasets. This ad-
ditional training allows these models to excel at
fact-checking simple claims, and thus they can gen-
eralize better to complex claims that require multi-
hop reasoning during further few-shot fine-tuning.

2https://huggingface.co/
3https://github.com/castorini/pygaggle/tree/

master/experiments/list5

In this category, we selected the following three
fine-tuned models:

• RoBERTa-NLI (Nie et al., 2020) fine-tunes
RoBERTa-large (Liu et al., 2019) on a com-
bination of four well-known NLI datasets:
SNLI (Bowman et al., 2015), MNLI (Williams
et al., 2018), FEVER-NLI (Nie et al., 2019),
ANLI (R1, R2, R3) (Nie et al., 2020). We used
the public model checkpoint available at Hug-
gingFace4 and we further fine-tuned it with
20 random examples from HOVER/FEVER-
OUS.

• DeBERTaV3-NLI (He et al., 2021) fine-
tunes the DeBERTaV3-large model on
885,242 NLI hypothesis–premise pairs from
FEVER and on four NLI datasets: MNLI,
ANLI, LingNLI (Parrish et al., 2021), and
WANLI (Liu et al., 2022). This is the best-
performing NLI model on HuggingFace as of
06/06/2022.5

• MULTIVERS (Wadden et al., 2022b), formerly
known as LongChecker, uses the Long-
Former (Beltagy et al., 2020) for claim ver-
ification to address the long input evidence
problem. We use a model checkpoint fine-
tuned on FEVER.6

A.3 In-Context Learning Models
These models have recently shown strong few-shot
learning ability in various NLP tasks. By prompt-
ing a large language model with a few in-context
examples, the model can quickly learn a task from
demonstrations. To make a fair comparison to our
model, we choose two in-context learning baselines
as follows.

• Codex (Chen et al., 2021) is used in
our model to generate reasoning programs.
One straightforward baseline directly uses
it for fact-checking. To this end, we
prompt Codex (code-davinci-002) as fol-
lows: “<Evidence> Based on the above
information, is it true that <Claim>?
True or False? The answer is:”. We pre-
fix the same 20 in-context examples for our
model before the prompt as demonstrations.

4https://huggingface.co/ynie/
roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli

5https://huggingface.co/MoritzLaurer/
DeBERTa-v3-large-mnli-fever-anli-ling-wanli

6https://github.com/dwadden/multivers

6994

https://huggingface.co/
https://github.com/castorini/pygaggle/tree/master/experiments/list5
https://github.com/castorini/pygaggle/tree/master/experiments/list5
https://huggingface.co/ynie/roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli
https://huggingface.co/ynie/roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-large-mnli-fever-anli-ling-wanli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-large-mnli-fever-anli-ling-wanli
https://github.com/dwadden/multivers

• FLAN-T5 (Chung et al., 2022) is an improved
version of T5, which is fine-tuned on 1.8K
tasks phrased as instructions, with and without
exemplars, i.e., zero-shot and few-shot. The
model has shown strong performance in var-
ious in-context few-shot learning NLP tasks,
such as reasoning, and question-answering.
We prompt the model with the same format
as we used in Section 3.4: “<Evidence> Q:
<Claim> Is it true that <Claim>? True
or False? The answer is:”, prefixing with
the same 20 in-context examples. We also use
the same model size (FLAN-T5-XXL 3B) with
our model for fair comparison.

B Examples of Generated Reasoning
Programs

Figure 7 shows six examples of generated reason-
ing programs by PROGRAMFC that cover diverse
reasoning chains.

C Error Analysis for Reasoning
Programs

Figure 8 shows five examples of erroneous cases
where the generated reasoning programs are incor-
rect. We provide explanations for each of the error
cases below:

Example 1 It generates a wrong logical reason-
ing operator for the final step. The correct logic
should be “not (fact_1 and fact_2)” instead
of “fact_1 and fact_2”.

Example 2 It fails to perform co-reference reso-
lution for the arguments in the third and the fourth
reasoning steps. “This album” should be replaced
with “The bluegrass” to make the sub-task context-
independent. “This musical” should be replaced
with the variable “answer_1” from the first step.

Example 3 It fails to create a meaningful prob-
lem decomposition for the claim. It generates a triv-
ial program that simply repeats the original claim.

Example 4 It fails to generate a fine-grained rea-
soning structure for the input claim. It also gen-
erates a trivial program that simply separates the
claim into sentences.

Example 5 It generates a redundant reason-
ing step “Question("When was the musician
born?")”, which does not add any new informa-
tion to the reasoning chain.

D Program Generation Prompts

Our manually written prompts for the HOVER and
the FEVEROUS-S datasets are given in Listings 1
and 2, respectively.

E Prompts for Closed-Book
Fact-Checking

Below we show the templates for the four prompt-
ing methods used for InstructGPT for the closed-
book fact-checking setting in Section 4.4.

Direct Prompting
Answer the following true/false questions:

Is it true that The woman the story behind Girl Crazy
is credited to is older than Ted Kotcheff?
The answer is: False

(· · · more in-context examples here · · ·)

Is it true that <input_claim>?
The answer is:

ZS-CoT Prompting
Answer the following true/false question:

Is it true that <input_claim>? True or False?
Let us think step -by -step. The answer is:

CoT Prompting
Answer the following true/false questions:

Is it true that The woman the story behind Girl Crazy
is credited to is older than Ted Kotcheff?
Let's think step by step.
Girl Crazy's story is credited to Hampton Del Ruth.
Hampton Del Ruth was born on September 7, 1879.
Ted Kotcheff was born on April 7, 1931.
Therefore , the answer is: False.

(· · · more in-context examples here · · ·)

Is it true that <input_claim>?
Let's think step by step.

Self-Ask Prompting
Answer the following true/false questions:

Is it true that The woman the story behind Girl Crazy
is credited to is older than Ted Kotcheff?
Q: The story behind Girl Crazy is credited to whom?
A: Hampton Del Ruth
Q: Is Hampton Del Ruth older than Ted Kotcheff?
A: No
So the final answer is: False.

(· · · more in-context examples here · · ·)

Is it true that <input_claim>?

6995

1

Predicted Program:
answer_1 = Question("Which country is Fujairah College located in?")
fact_1 = Verify("{answer_1} had a 2013 population of 9.2 million.")
fact_2 = Verify("{answer_1} was hit by the plague in 1483.")
fact_3 = Verify("The population of {answer_1} was halved in 1483.")
label = Predict(fact_1 and fact_2 and fact_3)

Claim:
The country that Fujairah College is located in had a 2013 population of 9.2 million until it was
hit by the plague in 1483 when the population was halved.

Predicted Program:
answer_1 = Question("Who was the first female board member for the Liberal Party?")
fact_1 = Verify("{answer_1} was born in Vestfold county in Norway.")
label = Predict(fact_1)

Claim:
The first female board member for the Liberal Party, she was born in Vestfold county in Norway.

Predicted Program:
answer_1 = Question("Which solicitor won the show Back to Reality ahead of Maureen Rees and Craig
Phillips?")
answer_2 = Question("Which solicitor was a chair of Global Witness?")
fact_1 = Verify("{answer_1} is English.")
fact_2 = Verify("{answer_2} is English.")
label = Predict(fact_1 and fact_2)

Claim:
The solicitor who won the show Back to Reality ahead of Maureen Rees and Craig Phillips is
English. The solicitor that was a chair of Global Witness is also English.

Predicted Program:
answer_1 = Question("Which critically acclaimed film did Buddy Baker score in 1975?")
fact_1 = Verify("{answer_1} is a Walt Disney film.")
answer_2 = Question("Which film featured Bruce M. Fischer as Mr. Coogar?")
fact_2 = Verify("{answer_1} was produced first before {answer_2}.")
label = Predict(fact_1 and fact_2)

Claim:
The critically acclaimed film, that Buddy Baker scored in 1975, is a Walt Disney film. It was
produced first before the film that featured Bruce M. Fischer as Mr. Coogar.

Predicted Program:
fact_1 = Verify("Tritonia is a name for a plant genus.")
fact_2 = Verify("Phyteuma is a name for a plant genus.")
label = Predict(fact_1 and fact_2)

Claim:
Tritonia and Phyteuma are both names for a plant genus.

Predicted Program:
answer_1 = Question("Which novelist and essayist did Anthony Burgess address in a lengthy love
letter?")
fact_1 = Verify("{answer_1} is the author of Grimus.")
answer_2 = Question("What is the nationality of Raj Koothrappali?")
fact_2 = Verify("{answer_1} is of the same nationality as {answer_2}.")
label = Predict(fact_1 and fact_2)

Claim:
Anthony Burgess addressed the novelist and essayist, the author of Grimus, in a lengthy love
letter. The author is of the same nationality as Raj Koothrappali.

Figure 7: Examples of generated reasoning programs by PROGRAMFC.

6996

1

Predicted Program:
fact_1 = Verify("Bitter Jester is a documentary about food.")
fact_2 = Verify("The Future of Food is a documentary about food.")
label = Predict(fact_1 and fact_2) label = Predict(not (fact_1 and fact_2))

Example 1:
Bitter Jester and The Future of Food are not both documentaries about food.

Predicted Program:
fact_1 = Verify("Richard Strauss, German composer of Die Nacht, composed another well-established

opera called Der Rosenkavalier.")
label = Predict(fact_1)

fact_1 = Verify("Richard Strauss is a German composer of Die Nacht.”)
fact_2 = Verify("Richard Strauss composed a well-established opera called Der Rosenkavalier.")
label = Predict(fact_1 and fact_2)

Example 3:
Richard Strauss, German composer of Die Nacht, composed another well-established opera called Der
Rosenkavalier.

Semantic Error — Token: incorrect or missing arguments/variables

Semantic Error — Structure: incorrect program structure

Predicted Program:
fact_1 = Verify("The film Deanna Oliver produced in 1999 grossed $36.8 million domestically.")
fact_2 = Verify("The musical film based on coach Herman Boone, did not.")
label = Predict(fact_1 and fact_2)

answer_1 = Question("What film did Deanna Oliver produce in 1999?")
fact_1 = Verify("{answer_1} grossed $36.8 million domestically.")
answer_2 = Question("What musical film was based on coach Herman Boone?")
fact_2 = Verify("{answer_2} grossed less than $36.8 million domestically.")
label = Predict(fact_1 and fact_2)

Example 4:
The film Deanna Oliver produced in 1999 grossed $36.8 million domestically. The musical film
based on coach Herman Boone, did not.

Semantic Error — Subtask: missing / redundant / incorrect sub-task calls

Predicted Program:
answer_1 = Question("Which record producer produced the bluegrass album?")
fact_1 = Verify("{answer_1} was born on 22 June, 1944.")
fact_2 = Verify("This album inspired a Tony award winning musical.")
fact_3 = Verify("This musical had a character that was originated by Carmen Cusack.")
label = Predict(fact_1 and fact_2 and fact_3)

answer_1 = Question("Which record producer produced the bluegrass album?")
fact_1 = Verify("{answer_1} was born on 22 June, 1944.")
fact_2 = Verify("The bluegrass album inspired a Tony award winning musical.")
fact_3 = Verify("{answer_1} had a character that was originated by Carmen Cusack.")
label = Predict(fact_1 and fact_2 and fact_3)

Example 2:
The record producer that produced the bluegrass album was born on 22 June, 1944. This album
inspired a Tony award winning musical. This musical had a character that was originated by Carmen
Cusack.

Predicted Program:
answer_1 = Question("Who founded Morningwood with Max Green?")
answer_2 = Question("When was Max Green born?")
answer_3 = Question("When was the musician born?")
fact_1 = Verify("{answer_3} is older than {answer_2}.") {answer_1} is older than {answer_2}.
label = Verify(fact_1)

Example 5:
The musician, who founded Morningwood with Max Green, is older than Max Green.

Figure 8: Example error cases where the generated reasoning programs are incorrect. The incorrect segment(s) are
marked in red, and the correct revisions are marked in green.

6997

'''Generate a python -like program that describes the reasoning steps required to
verify the claim step -by-step. You can call three functions in the program: 1.
Question () to answer a question; 2. Verify () to verify a simple claim; 3.
Predict () to predict the veracity label.'''

The claim is that Howard University Hospital and Providence Hospital are both
located in Washington , D.C.

def program ():
fact_1 = Verify("Howard University Hospital is located in Washington , D.C.")
fact_2 = Verify("Providence Hospital is located in Washington , D.C.")
label = Predict(fact_1 and fact_2)

The claim is that WWE Super Tuesday took place at an arena that currently goes by
the name TD Garden.

def program ():
answer_1 = Question("Which arena the WWE Super Tuesday took place?")
fact_1 = Verify(f"{answer_1} currently goes by the name TD Garden.")
label = Predict(fact_1)

The claim is that Talking Heads , an American rock band that was "one of the most
critically acclaimed bands of the 80's" is featured in KSPN's AAA format.

def program ():
fact_1 = Verify("Talking Heads is an American rock band that was 'one of the
most critically acclaimed bands of the 80's'.")
fact_2 = Verify("Talking Heads is featured in KSPN's AAA format.")
label = Predict(fact_1 and fact_2)

The claim is that An IndyCar race driver drove a Formula 1 car designed by Peter
McCool during the 2007 Formula One season.

def program ():
answer_1 = Question("Which Formula 1 car was designed by Peter McCool during the
2007 Formula One season?")
fact_1 = Verify(f"An IndyCar race driver drove the car {answer_1 }.")
label = Predict(fact_1)

The claim is that Gina Bramhill was born in a village. The 2011 population of the
area that includes this village was 167 ,446.

def program ():
answer_1 = Question("Which village was Gina Bramhill born in?")
fact_1 = Verify(f"The 2011 population of the area that includes {answer_1} was
167 ,446.")
label = Predict(fact_1)

The claim is that Don Ashley Turlington graduated from Saint Joseph 's College , a
private Catholic liberal arts college in Standish.

def program ():
fact_1 = Verify("Saint Joseph 's College is a private Catholic liberal arts
college is located in Standish.")
fact_2 = Verify(f"Don Ashley Turlington graduated from Saint Joseph 's College.")
label = Predict(fact_1 and fact_2)

The claim is that Gael and Fitness are not published in the same country.
def program ():

answer_1 = Question("Which country was Gael published in?")
answer_2 = Question("Which country was Fitness published in?")
fact_1 = Verify(f"{answer_1} and {answer_2} are not the same country.")
label = Predict(fact_1)

The claim is that Blackstar is the name of the album released by David Bowie that
was recorded in secret.

def program ():
fact_1 = Verify("David Bowie released an album called Blackstar.")
fact_2 = Verify("David Bowie recorded an album in secret.")
label = Predict(fact_1 and fact_2)

The claim is that In the 2004 Hockey film produced by a former major league
baseball pitcher Kurt Russell played the USA coach.

def program ():
answer_1 = Question("Which 2004 Hockey film was produced a former major league

6998

baseball pitcher?")
fact_1 = Verify("Kurt Russell played the USA coach in the film {answer_1 }.")
label = Predict(fact_1)

The claim is that Along with the New York Islanders and the New York Rangers , the
New Jersey Devils NFL franchise is popular in the New York metropolitan area.

def program ():
fact_1 = Verify("The New York Islanders and the New York Rangers are popular in
the New York metropolitan area.")
fact_2 = Verify("The New Jersey Devils NFL franchise is popular in the New York
metropolitan area.")
label = Predict(fact_1 and fact_2)

The claim is that Jack McFarland is the best known role of the host of the 64th
Annual Tony Awards.

def program ():
answer_1 = Question("Who is the host of the 64th Annual Tony Awards?")
fact_1 = Verify(f\"Jack McFarland is the best known role of {answer_1 }.")
label = Predict(fact_1)

The claim is that The song recorded by Fergie that was produced by Polow da Don
and was followed by Life Goes On was M.I.L.F.$.

def program ():
fact_1 = Verify("M.I.L.F.$ was recorded by Fergie that was produced by Polow da
Don.")
fact_2 = Verify("M.I.L.F.$ was was followed by Life Goes On.")
label = Predict(fact_1 and fact_2)

The claim is that Eatza Pizza and Your Pie were not founded in the same state.
def program ():

answer_1 = Question("Which state was Eatza Pizza founded in?")
answer_2 = Question("Which state was Your Pie founded in?")
fact_1 = Verify(f"{answer_1} and {answer_2} are not the same state.")
label = Predict(fact_1)

The claim is that Gregg Rolie and Rob Tyner , are not a keyboardist.
def program ():

fact_1 = Verify("Gregg Rolie is not a keyboardist.")
fact_2 = Verify("Rob Tyner is not a keyboardist.")
label = Predict(fact_1 and fact_2)

The claim is that Maria Esther Andion Bueno , not Jimmy Connors , is the player that
is from Brazil.

def program ():
fact_1 = Verify("Maria Esther Andion Bueno is from Brazil.")
fact_2 = Verify("Jimmy Connors is not from Brazil.")
label = Predict(fact_1 and fact_2)

The claim is that Vladimir Igorevich Arnold died after Georg Cantor.
def program ():

answer_1 = Question("When did Vladimir Igorevich Arnold die?")
answer_2 = Question("When did Georg Cantor die?")
fact_1 = Verify(f"{answer_1} is after {answer_2 }.")
label = Predict(fact_1)

The claim is that Barton Mine was halted by a natural disaster not Camlaren Mine.
def program ():

fact_1 = Verify("Barton Mine was halted by a natural disaster.")
fact_2 = Verify("Camlaren Mine was not halted by a natural disaster.")
label = Predict(fact_1 and fact_2)

The claim is that John O'Hara and Rabindranath Tagore are not the same nationality
.

def program ():
answer_1 = Question("What is the nationality of John O'Hara?")
answer_2 = Question("What is the nationality of Rabindranath Tagore?")
fact_1 = Verify(f"{answer_1} and {answer_2} are not the same nationality.")
label = Predict(fact_1)

6999

The claim is that Thomas Loren Friedman has won more Pulitzer Prizes than Colson
Whitehead.

def program ():
answer_1 = Question("How many Pulitzer Prizes has Thomas Loren Friedman won?")
answer_2 = Question("How many Pulitzer Prizes has Colson Whitehead won?")
fact_1 = Verify(f"{answer_1} is more than {answer_2 }.")
label = Predict(fact_1)

The claim is that The model of car Trevor Bayne drives was introduced for model
year 2006. The Rookie of The Year in the 1997 CART season drives it in the
NASCAR Sprint Cup.

def program ():
answer_1 = Question("Which model of car is drived by Trevor Bayne?")
fact_1 = Verify(f"{answer_1} was introduced for model year 2006.")
answer_2 = Question("Who is the Rookie of The Year in the 1997 CART season?")
fact_2 = Verify(f"{answer_2} drives the model of car Trevor Bayne drives in the
NASCAR Sprint Cup.")
label = predict(fact_1 and fact_2)

The claim is that <input_claim>
def program ():

Listing 1: The prompt used for Program Generation for HOVER.

7000

'''Generate a python -like program that describes the reasoning steps required to
verify the claim step -by-step. You can call three functions in the program: 1.
Question () to answer a question; 2. Verify () to verify a simple claim; 3.
Predict () to predict the veracity label.'''

The claim is that In 1959, former Chilean boxer Alfredo Cornejo Cuevas (born June
6, 1933) won the gold medal in the welterweight division at the Pan American
Games (held in Chicago , United States , from August 27 to September 7) in Chicago
, United States , and the world amateur welterweight title in Mexico City.

def program ():
fact_1 = Verify("Alfredo Cornejo Cuevas was born in June 6, 1933.")
fact_2 = Verify("Alfredo Cornejo Cuevas won the gold medal in the welterweight
division at the Pan American Games in 1959.")
fact_3 = Verify("The Pan American Games in 1959 was held in Chicago , United
States , from August 27 to September 7.")
fact_4 = Verify("Alfredo Cornejo Cuevas won the world amateur welterweight title
in Mexico City.")
label = Predict(fact_1 and fact_2 and fact_3 and fact_4)

The claim is that The Footwork FA12 , which was intended to start the season ,
finally debuted at the San Marino Grand Prix , a Formula One motor race held at
Imola on 28 April 1991.

def program ():
fact_1 = Verify("The Footwork FA12 , which was intended to start the season.")
fact_2 = Verify("The Footwork FA12 finally debuted at the San Marino Grand Prix.
")
fact_3 = Verify("The San Marino Grand Prix was a Formula One motor race held at
Imola on 28 April 1991.")
label = Predict(fact_1 and fact_2 and fact_3)

The claim is that SkyHigh Mount Dandenong (formerly Mount Dandenong Observatory)
is a restaurant located on top of Mount Dandenong , Victoria , Australia.

def program ():
fact_1 = Verify("SkyHigh Mount Dandenong is a restaurant located on top of Mount
Dandenong , Victoria , Australia.")
fact_2 = Verify("SkyHigh Mount Dandenong is formerly known as Mount Dandenong
Observatory.")
label = Predict(fact_1 and fact_2)

The claim is that Before the first Europeans arrived or copra companies leased it,
Maupihaa was home to Inca's in ancient times.

def program ():
fact_1 = Verify("Maupihaa was home to Inca's in ancient times.")
fact_2 = Verify("Maupihaa was home to Inca's before the first Europeans arrived
or copra companies leased it.")
label = Predict(fact_1 and fact_2)

The claim is that Shulin , a 33.1288 km (12.7911 sq mi) land located in New Taipei
City , China , a country in East Asia , has a total population of 183 ,946 in
December 2018.

def program ():
fact_1 = Verify("Shulin is a 33.1288 km (12.7911 sq mi) land located in New
Taipei City , China.")
fact_2 = Verify("Shulin has a total population of 183 ,946 in December 2018.")
label = Predict(fact_1 and fact_2)

The claim is that Sumo wrestler Toyozakura Toshiaki committed match -fixing , ending
his career in 2011 that started in 1989.

def program ():
fact_1 = Verify("Toyozakura Toshiaki ended his career in 2011 that started in
1989.")
fact_2 = Verify("Toyozakura Toshiaki is a Sumo wrestler.")
fact_3 = Verify("Toyozakura Toshiaki committed match -fixing.")
label = Predict(fact_1 and fact_2 and fact_3)

The claim is that In 1959, former Chilean boxer Alfredo Cornejo Cuevas (born June
6, 1933) won the gold medal in the welterweight division at the Pan American
Games (held in Chicago , United States , from August 27 to September 7) in Chicago

7001

, United States , and the world amateur welterweight title in Mexico City.
def program ():

fact_1 = Verify("Alfredo Cornejo Cuevas is a former Chilean boxer.")
fact_2 = Verify("Alfredo Cornejo won the gold medal in the welterweight division
at the Pan American Games.")
fact_3 = Verify("The Pan American Games was held in Chicago , United States , from
August 27 to September 7.")
fact_4 = Verify("Alfredo Cornejo won the world amateur welterweight title in
Mexico City.")
label = Predict(fact_1 and fact_2 and fact_3 and fact_4)

The claim is that Adductor hiatus is associated with nine structures , seven of
which enter and leave through hiatus.

def program ():
fact_1 = Verify("Adductor hiatus is associated with nine structures.")
fact_2 = Verify("Seven of the nine structures associated with Adductor hiatus
enter and leave through hiatus.")
label = Predict(fact_1 and fact_2)

The claim is that Ifor Bowen Lloyd was educated at Winchester (an independent
boarding school for boys in the British public school tradition) and Exeter
College , Oxford where he was a member of the Library Committee of the Oxford
Union Society , as well as, received a BA in Modern History in 1924.

def program ():
fact_1 = Verify("Ifor Bowen Lloyd was educated at Winchester and Exeter College ,
Oxford.")
fact_2 = Verify("Winchester is an independent boarding school for boys in the
British public school tradition.")
fact_3 = Verify("While at Oxford , Ifor Bowen Lloyd was a member of the Library
Committee of the Oxford Union Society.")
fact_4 = Verify("Ifor Bowen Lloyd received a BA in Modern History in 1924 at
Oxford.")
label = Predict(fact_1 and fact_2 and fact_3 and fact_4)

The claim is that In the 2001 Stanley Cup playoffs Eastern Conference Semifinals
Devils ' Elias scored and Maple Leafs ' left Devils player Scott Neidermayer hurt.

def program ():
fact_1 = Verify("In the 2001 Stanley Cup playoffs Eastern Conference Semifinals
Devils ' Elias scored.")
fact_2 = Verify("Maple Leafs ' left Devils player Scott Neidermayer hurt.")
label = Predict(fact_1 and fact_2)

The claim is that Teldenia helena is a moth first described in 1967 by Wilkinson.
def program ():

fact_1 = Verify("Teldenia helena is a moth.")
fact_2 = Verify("Teldenia helena was first described by Wilkinson in 1967.")
label = Predict(fact_1 and fact_2)

The claim is that Born December 30, 1974, William Frick was a dark horse candidate
in the Maryland House of Delegates appointment process.

def program ():
fact_1 = Verify("William Frick was born in December 30, 1974.")
fact_2 = Verify("William Frick was a dark horse candidate in the Maryland House
of Delegates appointment process.")
label = Predict(fact_1 and fact_2)

The claim is that <input_claim>
def program ():

Listing 2: The prompt used for Program Generation for FEVEROUS-S.

7002

ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

Line 587 - 620

�3 A2. Did you discuss any potential risks of your work?
Line 626 - 630

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Line 67 - 86

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
Line 327 - 352

�3 B1. Did you cite the creators of artifacts you used?
Line 328 - 329

� B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Not applicable. The datasets used in this paper are publicly available datasets from existing works.

�3 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Line 327 - 344

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Not applicable. Left blank.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Not applicable. Left blank.

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Line 327 - 344

C �3 Did you run computational experiments?
Section 4

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Figure 4; Appendix A

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

7003

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Appendix A

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Appendix A

� C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Not applicable. Left blank.

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Not applicable. Left blank.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
Not applicable. Left blank.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
Not applicable. Left blank.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Not applicable. Left blank.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Not applicable. Left blank.

7004

