
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 6966–6980

July 9-14, 2023 ©2023 Association for Computational Linguistics

Few-shot In-context Learning for Knowledge Base Question Answering

♠Tianle Li, ♠Xueguang Ma, ♠Alex Zhuang, ♥Yu Gu, ♥Yu Su, ♠,♣Wenhu Chen
♠University of Waterloo

♥The Ohio State University
♣Vector Institute, Toronto

{t29li,x93ma,a5zhuang,wenhuchen}@uwaterloo.ca, {gu.826,su.809}@osu.edu

Abstract

Question answering over knowledge bases is
considered a difficult problem due to the chal-
lenge of generalizing to a wide variety of
possible natural language questions. Addi-
tionally, the heterogeneity of knowledge base
schema items between different knowledge
bases often necessitates specialized training for
different knowledge base question-answering
(KBQA) datasets. To handle questions over
diverse KBQA datasets with a unified training-
free framework, we propose KB-BINDER,
which for the first time enables few-shot in-
context learning over KBQA tasks. Firstly, KB-
BINDER leverages large language models like
Codex to generate logical forms as the draft for
a specific question by imitating a few demon-
strations. Secondly, KB-BINDER grounds
on the knowledge base to bind the generated
draft to an executable one with BM25 score
matching. The experimental results on four
public heterogeneous KBQA datasets show
that KB-BINDER can achieve a strong per-
formance with only a few in-context demon-
strations. Especially on GraphQA and 3-hop
MetaQA, KB-BINDER can even outperform
the state-of-the-art trained models. On GrailQA
and WebQSP, our model is also on par with
other fully-trained models. We believe KB-
BINDER can serve as an important baseline
for future research. Our code is available at
https://github.com/ltl3A87/KB-BINDER

1 Introduction

Question answering over knowledge bases
(KBQA) (Berant et al., 2013; Yih et al., 2015)
has been a long-standing research problem in the
AI community. It has attracted wide attention
from the community with its significant role in
making large-scale knowledge bases accessible to
non-expert users (Wu et al., 2019; Lan et al., 2021;
Gu et al., 2022). However, despite the fact that the
increasing scale of knowledge bases can enable the
retrieval with higher coverage on miscellaneous

Exemplars
Question: ---

Logical Form: ---

Question: ---
Logical Form:

Question: How many game expansions
 has john elliott released?

Generated Drafts

Entity Binder

Relation Binder

Candidates

KB

Answer: 1

LLM

Execute

Figure 1: Overview of KB-BINDER pipeline. There
are two primary stages in our method: 1) Generate the
drafts as preliminary logical forms; 2) Bind the drafts
to the executable ones with entity and relation binders
grounded on the knowledge base. The final answer can
be obtained after the execution of the final candidates.

topics, it poses a great challenge for suppliers
with limited resources, who rely on the models
trained on certain knowledge bases or benchmarks.
Concretely, the difficulties primarily lie in the
following aspects: 1) Data intensiveness: larger
knowledge bases require ever larger quantities
of annotated data to allow fine-tuned models
to generalize well over them. (Yih et al., 2016;
Talmor and Berant, 2018; Gu et al., 2020). 2)
Dataset specificity: For relatively small-scale
KBQA datasets, the fully-trained models tend
to overfit to a specific schema, and can hardly
generalize to knowledge base questions in unseen
domains (Su et al., 2016; Zhang et al., 2017; Sun
et al., 2019). These challenges make it crucial to
devise a new framework that can work in both
low-resource and training-free settings in KBQA.

Recently, large language models (LLMs) like
GPT-3 and Codex (Brown et al., 2020a; Chen et al.,

6966

https://github.com/ltl3A87/KB-BINDER

2021a) have demonstrated their strong generaliz-
ability (Wang et al., 2022a; Wei et al., 2022b; Zhou
et al., 2022b; Cheng et al., 2022; Zhou et al., 2022a;
Suzgun et al., 2022) on a wide range of text, table,
commonsense and even math QA tasks with few-
shot in-context learning. Other works also validate
that Codex (Chen et al., 2021a) can parse and trans-
form unstructured instructions to structured and
executable code with only a few dozen demonstra-
tions (Gao et al., 2022; Chen et al., 2022). These
works inspire us to tackle KBQA with LLMs, an
under-explored area in the literature that is par-
ticularly challenging compared to other QA tasks
because of the massive scale of modern KBs.

However, it is still unclear how to address
KBQA with in-context learning. Unlike many other
question-answering tasks, where the evidence is
provided with a reasonable length limit, KBQA
needs to condition on a massive graph containing
millions of nodes and billions of edges. Evidently,
it is impossible to feed the whole graph as-is to
the language model. Even feeding a subgraph is
extremely challenging as it requires splitting the
monolithic graph into self-consistent and query-
relevant chunks, which is itself an unaddressed
research problem. Without feeding the knowledge
graph as an additional input, language models be-
come unaware of the schema of the KB. This prob-
lem makes it difficult to associate surface forms in
the questions with the corresponding entities and
relation types in a specific KB, not to mention gen-
erate executable logical forms with these linked
entities and relations. These challenges make it
hard to build in-context KBQA systems.

In this work, we propose KB-BINDER, which,
for the first time, enables training-free few-shot
in-context learning on KBQA. Our framework
consists of two stages as shown in Figure 1. In
the first stage, we demonstrate a few KBQA
questions and their corresponding logical forms
as the exemplary pairs for Codex to generate
a draft of an unseen question. The draft is
a ‘preliminary’ logical form likely to contain
mistakes in both entities and relations. For
example, due to a lack of information about
the KB schema, Codex might generate a draft
containing ‘medicine.manufactured_drug.shape’
while the true relation in the KB should be
‘medicine.manufactured_drug_form.shape’. In the
second stage, KB-BINDER binds the ‘preliminary’
entities to the true entity by using a lexicon-based

similarity search over the whole KB. Once the en-
tities are bound, we search through the vicinity of
the bound entities to bind the ‘preliminary’ rela-
tions. We fill the bound entities and relations into
the draft to generate a set of ‘refined’ logical forms.
We execute these logical forms against the KB and
return the executed results as the answer. To en-
hance KB-BINDER with more pertinent exemplars,
we also propose a KB-BINDER-R with retrieved
exemplars from the training set.

In general, previous works rely heavily on pre-
defined heuristics for a target knowledge base to
find the potential candidates (Ye et al., 2021; Gu
and Su, 2022; Shu et al., 2022). KB-BINDER, how-
ever, does not need heuristics customized to spe-
cific KB schema due to the inherent generalizability
of LLMs. We test the performance of our models
under few-shot setting on four public datasets, We-
bQSP (Yih et al., 2016), GrailQA (Gu et al., 2020),
GraphQA (Su et al., 2016) and MetaQA (Zhang
et al., 2017). On GraphQA and 3-hop MetaQA,
KB-BINDER achieves 39.5 F1 and 99.5% Hits@1
scores respectively, surpassing the previous SoTA
by 7.7 on F1 score and 0.6% on Hits@1 correspond-
ingly. On WebQSP, KB-BINDER-R can achieve
74.4% F1 score, only 4.4% lower than the SoTA
model (Yu et al., 2022). These experimental results
demonstrate the effectiveness of our approach.

Given the simplicity and generality of KB-
BINDER, we believe it could serve as an important
baseline for future KB research, especially in the
low-resource setting.

2 Related Work

Knoweldge Base Question Answering. Most
state-of-the-art KBQA models are based on
semantic parsing (Lan et al., 2021; Gu et al.,
2022), where a question is mapped onto a logical
form over the KB. Locating the target logical
form over the KB entails a massive search space
(e.g., FREEBASE (Bollacker et al., 2008) contains
45 million entities and 3 billion facts). Recent
methods capitalize on the strong generalizability of
LMs to generalize to the massive space unexplored
during training (Chen et al., 2021b; Gu and
Su, 2022; Ye et al., 2021; Shu et al., 2022).
These methods are more data-efficient and can
better handle the massive search space compared
with earlier methods operating with an i.i.d.
assumption (Yih et al., 2015; Dong and Lapata,
2016), however, they still require thousands of

6967

labeled examples to fine-tune LMs. Despite being
an appealing idea, few-shot KBQA has not been
touched by existing work. It has been deemed
highly non-trivial, if not impossible, to learn to
handle the large search space in KBQA only with a
handful of training data. One of the relevant works
is Hua et al. (2020), which trains a meta-model to
quickly adapt to a new question with a few training
examples. However, they need 2,000 labeled
questions to train the meta-model first, thus not a
true few-shot setting. Finally, a concurrent work
Gu et al. (2023) approaches to few-shot KBQA in
a different way. They leverage the discriminative
ability of LLMs instead of their generative ability.
In this paper, we present the first effort to enable
true few-shot learning for KBQA with LLMs in
a generate-then-bind way, which may point to
interesting opportunities for practical KBQA under
low-data settings.

In-Context Learning with LLMs. In-context
learning with large language models (Brown et al.,
2020a) has shown strong few-shot performance
in many NLP tasks, such as question answering
(Cheng et al., 2022), information extraction (Dunn
et al., 2022), and numerical reasoning (Lewkowycz
et al., 2022). Analyses into the mechanisms
behind this behavior are undertaken by Olsson
et al. (2022); Xie et al. (2021). Empirically,
Min et al. (2022) shows the effectiveness of
constructing prompts using an input-label pairing
format, and Liu et al. (2021) experiment with
the number of examples provided, as well the
idea of retrieving relevant examples to a test
input to construct the prompt with. These results
inform the prompt-construction methods used in
our work. Lampinen et al. (2022) suggests that
incorporating explanatory task instructions in
context can improve performance, however, we
leave a deeper exploration of this to future works.

Reasoning with LLMs. A number of methods
have recently emerged to extend the reasoning ca-
pabilities of LLMs (Brown et al., 2020a; Kojima
et al., 2022). Chain of Thought Prompting (CoT)
(Wei et al., 2022a) showed that encouraging inter-
mediate steps in model output can improve rea-
soning accuracy. Developing this idea, methods
that involve a direct synthesis of formal programs
that solve these tasks have shown further improve-
ment (Chen et al., 2022; Nye et al., 2021; Gao
et al., 2022; Cheng et al., 2022). The most rele-
vant work to the QA setting is Binder (Cheng et al.,

2022), where the LLM is prompted to conduct text-
to-SQL generation and further answer questions
using information retrieved from an SQL database.
However, while SQL table headers demonstrated
in examples can help an LLM generate reasonable
SQL commands, the thousands of relations and
millions of entities in a KB represent a much larger
search space that cannot be captured as easily by
the prompting an LLM. KB-BINDER solves this
challenge using a draft generation and schema bind-
ing pipeline.

3 Methodology

Given a new question, KB-BINDER leverages an
LLM to generate a preliminary logical form as a
draft. A draft is not guaranteed to be executable, as
it is generated by the LLM without being explicitly
restricted to the candidates’ vocabulary and knowl-
edge graph structure. However, with the demon-
stration of in-context prompting, drafts can reveal
the structural relationships among mentioned enti-
ties in a semantically reasonable way. As a result,
the generated drafts can simplify the search space
needed to retrieve real entities and schema terms.
These entities and terms are then used to revise the
draft to a real executable logical form for a given
question. This process is illustrated in Figure 2.

3.1 Drafts Generator

We leverage the in-context learning capability of
Codex to generate logical form drafts for unseen
questions. Specifically, we randomly sample N
examples from the training set as the exemplars,
which are shown to the LLM in the form of <Qus-
tion, Logical form> pairs. However, it is worth
noting that the MIDs (i.e., machine identifier) in
the original logical form are not easy to interpret
and imitate. For instance, the raw logical form
of the question “data compression is the genre of
which file format?" is:

(AND computer.file_format (JOIN
computer.file_format.genre m.0279m))

where m.0279m is the MID of the entity “data com-
pression" from FreeBase. The raw format of MIDs
with no semantic meaning can hardly assist the
large language model to understand and imply the
latent relationships among schema items. There-
fore, naturally, we substitute the MIDs in the orig-
inal logical forms with their surface names in the
prompting demonstrations. Consequently, the final

6968

medicine.manufactured_drug_form.shape,
medicine.drug_form_shape.drugs_with_this_shape,
medicine.manufactured_drug_form.generic_drug,
...medicine.manufactured_drug_form.available_in,
medicine.drug_legal_status.country,
medicine.drug_pregnancy_category.country,
...medicine.manufactured_drug_form.available_in,

medicine.drug_pregnancy_category.country,
medicine.drug_legal_status.country,
...

2-hop Constrained Relation:]

medicine.manufactured_drug_form.shape,
medicine.drug_form_shape.drugs_with_this_shape,
medicine.manufactured_drug_form.generic_drug,
...medicine.manufactured_drug_form.available_in,
medicine.drug_legal_status.country,
medicine.drug_pregnancy_category.country,
...medicine.manufactured_drug_form.available_in,

medicine.drug_pregnancy_category.country,
medicine.drug_legal_status.country,
...

2-hop Constrained Relation: Domain-range Constrained Class:

Surface Name: Octagon
Corresponding mids:

m.01tnyl,

m.0491sxs,

m.04c1n1w,
...

Question: The 2014 moonlit matinee film festival
 is what instance?
Logical Form: (AND time.recurring_event
 (JOIN time.recurring_event.instances
 2014 Moonlit Matinee Film Festival))
. . .
Question: What manufactured drug have an
 octagons shape?
Logical Form: ((AND medicine.manufactured_
 drug (JOIN medicine.manufactured_drug.shape
 Octagon)))

((AND medicine.manufactured_drug (JOIN
medicine.manufactured_drug.shape Octagon)))

Draft

Surface Name: Octagon
Corresponding mids:

m.01tnyl,

m.0491sxs,

m.04c1n1w,
...

medicine.manufactured_drug_form.shape,
medicine.drug_form_shape.drugs_with_this_shape,
medicine.manufactured_drug_form.generic_drug,
...
medicine.manufactured_drug_form.available_in,
medicine.drug_legal_status.country,
medicine.drug_pregnancy_category.country,
...
medicine.manufactured_drug_form.available_in,
medicine.drug_pregnancy_category.country,
medicine.drug_legal_status.country,
...

Relation Binder

2-hop Constrained Relation: Domain-range
Constrained Class:

medicine.manufactured_drug_form,
location.country,
medicine.drug_legal_status,
medicine.drug_pregnancy_category,
medicine.medical_trial,
...

(AND medicine.manufactured_drug_form (JOIN medicine.manufactured_drug_form.shape m.01tnyl)),
(AND medicine.manufactured_drug_form (JOIN (R medicine.manufactured_drug_form.shape) m.01tnyl)),
(AND location.country (JOIN medicine.manufactured_drug_form.available_in m.0491sxs)),
(AND location.country (JOIN (R medicine.manufactured_drug_form.available_in) m.0491sxs)),
...

Entity Binder

Final Candidates

Prompts

Figure 2: KB-BINDER framework: Given a question, the LLM will first generate its corresponding preliminary
logical forms as the drafts, imitating the exemplary demonstration. Then the entity and relation binders will operate
on the drafts to ground the entities and relations on KB respectively, which produces the final candidates.

processed logical form fed to Codex for the above
example will become:
(AND computer.file_format (JOIN
computer.file_format.genre Data Compression))

the surface names of the entities mentioned in a new
target question will appear in the generated prelim-
inary logical forms as shown in the demonstration.
Through in-context learning, LLM is tasked with
generating such friendly logical forms for a new
question by following the demonstrations.

3.2 Knowledge Base Binder
The preliminary logical forms generated by the
large language model provide us with a macro-
scopic view of the question from the perspective
of semantics and structure relationships. Starting
from the generated drafts, we separately perform
the entity and relation binding over the KB.

Entity Binder To identify the exact MIDs of the
entities mentioned in the questions, we directly ex-
tract their surface names from the generated drafts.
If the extracted surface names consistently match
the friendly names of some MIDs from the knowl-
edge base, we retrieve all the MIDs corresponding
to the matched friendly names and select the most
popular n of them based on FACC1. If the sur-
face names match no friendly name of any entity
from the knowledge base, we then utilize BM25 to
retrieve the most similar existing one in KB and ex-
ploit it as the anchor to extract the MID candidates.
If we detect multiple surface names from the drafts,
we bind their potential MIDs independently first.
And all the permutations of their combinations will
be considered in the final execution.

Relation Binder In spite of the fact that the gen-
erated preliminary relations in the drafts are very
likely to not exist in the knowledge base, their
format and semantic meaning are still supposed
to be analogical to the real-existed ones, learning
from the demonstration of the prompts. With this
assumption, we utilize each of the related items
together with the original question as the search
query to retrieve the most similar ones with BM25
from the whole knowledge base relation collection.
To enlarge the possibility of successful execution
of the logical form, we only keep the top m among
all the two-hop relation items starting from the
MIDs of the current permutation and filter out the
ones out of this constraint. For each combination
of MIDs, we iterate all the m retrieved relations
candidates accordingly.

Majority Vote Following the above workflow, a
generated draft can be bound to hundreds of poten-
tial logical form candidates. And each of them can
be converted to a SPARQL query to be ultimately
executed on the KB. We record all the answerable
logical form candidates and their corresponding
answers. As self-consistency can improve the ro-
bustness of the predictions of large language model
(Wang et al., 2022b), we repeat the paradigm for K
times and adapt the majority vote strategy to decide
the final consistent answer and its logical form. We
name the model with self-consistency on the top K
drafts as KB-BINDER(K).

Retrieved Exemplars To further boost the per-
formance of our method in a training-free set-
ting, we design another variant of KB-BINDER,

6969

Dataset Train Dev Test

GrialQA 44,337 6,763 13,231
WebQSP 3,098 − 1,639
GraphQA 2,381 − 2,395
MetaQA-1hop 96,106 9,992 9,947
MetaQA-2hop 118,980 14,872 14,872
MetaQA-3hop 114,196 14,274 14,274

Table 1: Dataset statistics.

named KB-BINDER(K)-R. Instead of selecting the
exemplars from the training sets randomly, KB-
BINDER(K)-R leverages BM25 to retrieve the
most similar N questions with the target one as
the demonstrations. So that the logical forms of the
N questions are more likely to cover the schema
items that are related or even exactly the same as
the target one. This setting is supposed to be espe-
cially advantageous over questions of I.I.D. type.

4 Experiment

In this section, we briefly introduce the benchmarks
used to evaluate the performance of our framework.
And we demonstrate the detailed setting of KB-
BINDER and its result on each of the datasets com-
pared with the fully-trained baselines. Ultimately,
we make an analysis of the variation of design
choices and their corresponding potential causes.

4.1 Datasets

We evaluate KB-BINDER on four public KBQA
datasets as follows:
GrailQA (Gu et al., 2020) is a diverse KBQA
dataset built on Freebase, covering 32,585 entities,
3,720 relations across 86 domains. It is designed to
test three levels of generalization of KBQA models:
I.I.D., compositional, and zero-shot.
GraphQA (Su et al., 2016) is also a diverse dataset
that covers a wide range of domains. It builds by
sentence-level paraphrasing from graph queries and
evaluating compositional generalization.
WebQSP (Yih et al., 2016) contains questions from
WebQuestions that are answerable by Freebase. It
tests i.i.d. generalization on simple questions.
MetaQA (Zhang et al., 2017) consists of a movie
ontology derived from the WikiMovies Dataset and
three sets of question-answer pairs written in differ-
ent levels of difficulty. It evaluates the effectiveness
in a specific domain.
Table 1 shows the detail of train/dev/test splits of
the datasets. We evaluate our pipeline on all the
test sets and conduct ablation studies on a subset

of the dev set from GrailQA with 500 randomly
sampled examples.

4.2 Baselines

We compare our method with all the systems that
have a publication on the official leaderboard of
each dataset and record their results from the paper
directly with the same evaluation matrix. Notice
that all the competitive baseline methods utilized
the entire set of training data as supervision.

4.3 Implementation Details

In the draft generation step, we leverage
code-davinci-002 from OpenAI API1 to obtain
the top K drafts for each question, we test the
cases with K = 1 and K = 6, and refer to them
as KB-BINDER (1) and KB-BINDER (6). Specif-
ically, we randomly sample N = 100 exemplary
questions from the training sets of WebQSP and
GraphQA respectively. For GrailQA, we sample
N = 40 exemplars for testing due to the long in-
ference time on more than ten thousands of testing
data. For MetaQA, we only sample 5 questions
for demonstration, as the KB is relatively small in
this benchmark. We run each of the experiment
for three times and averaged the performances as
reported.

In the binding step, we set n = 15 for all the
questions in the entity binder. We deploy BM25
and Contriever (Izacard et al., 2021) provided by
Pyserini2 as a hybrid searcher to retrieve the orig-
inally unmatched friendly names and the top re-
lation items. After obtaining the globally ranked
relations, we focus on the relations bound by 2-
hop relations from the detected entities. We tra-
verse the top 10 (i.e., m = 10) relation candidates
within the 2-hop constraint for GrailQA, WebQSP
and GraphQA, and the top 1 (i.e., m = 1) for
MetaQA. After the drafts are bound to the poten-
tial candidates, they will be translated to SPARQL
and executed on the Virtuoso server following the
instructions3.

4.4 Main Result

We demonstrate the model performance on the test
sets of four public datasets in Table 2, 3, 4 and 5 for
GrailQA, WebQSP, GraphQA and MetaQA respec-
tively. KB-BINDER (1) refers to our method in

1https://openai.com/blog/openai-codex/
2https://github.com/castorini/pyserini
3https://github.com/dki-lab/Freebase-Setup

6970

Overall

Method EM F1

GloVe + Transduction (Gu et al., 2020) 17.6 18.4
QGG (Lan and Jiang, 2020) - 36.7
BERT + Transduction (Gu et al., 2020) 33.3 36.8
GloVe + Ranking (Gu et al., 2020) 39.5 45.1
BERT + Ranking (Gu et al., 2020) 50.6 58.0
ReTraCk (Chen et al., 2021b) 58.1 65.3
S2QL (Zan et al., 2022) 57.5 66.2
ArcaneQA (Gu and Su, 2022) 63.8 73.7
RnG-KBQA (Ye et al., 2021) 68.8 74.4
DecAF (Yu et al., 2022) 68.4 78.7
TIARA (Shu et al., 2022) 73.0 78.5

Few-shot in-context
KB-BINDER (1) 47.0 51.6
KB-BINDER (6) 50.6 56.0
KB-BINDER (6)-R 53.2 58.5

Table 2: 40-shot Results of KB-BINDER/KB-BINDER-
R and baselines on GrailQA.

Method F1

ReTraCk (Chen et al., 2021b) 71.0
QGG (Lan and Jiang, 2020) 74.0
ArcaneQA (Gu and Su, 2022) 75.6
PullNet (Sun et al., 2019) 62.8
RnG-KBQA (Ye et al., 2021) 75.6
TIARA (Shu et al., 2022) 76.7
DecAF (Yu et al., 2022) 78.8

Few-shot in-context
KB-BINDER (1) 52.5
KB-BINDER (6) 53.2
KB-BINDER (6)-R 74.4

Table 3: 100-shot Results of KB-BINDER/KB-
BINDER-R and baselines on WebQSP.

default-setting with top 1 draft, and KB-BINDER
(6) involves mass voting to achieve self-consistency
with top 6 drafts, while KB-BINDER (6)-R refers
to KB-BINDER (6) using retrieved exemplars 3.2.
In general, all the variations of KB-BINDER have
strong performance on all the selected datasets. Ac-
cording to the results from the tables, KB-BINDER
(6) can generally outperform KB-BINDER (1) in
line with our expectations, while KB-BINDER (6)-
R can further boost the performance in most of the
cases. And we observe that our few-shot method
can achieve on par and even better performances
compared to the fully supervised SOTAs on We-
bQSP, GraphQA and MetaQA, and it shows com-
petitive performance with the BERT-ranking base-
line on GrailQA.

KB-BINDER Results Specifically, we show KB-
BINDER (K) few-shot result on GrailQA and com-
pare it with a series of fully-trained baselines in

Method F1

AUDEPLAMBDA (Reddy et al., 2017) 17.7
SPARQA (Sun et al., 2020) 21.5
BERT + Ranking (Gu et al., 2020) 25.0
ArcaneQA (Gu and Su, 2022) 31.8

Few-shot in-context
KB-BINDER (1) 39.3
KB-BINDER (6) 39.5
KB-BINDER (6)-R 38.7

Table 4: 100-shot Results of KB-BINDER/KB-
BINDER-R and baselines on GraphQA.

Method 1-hop 2-hop 3-hop

KV-Mem (Miller et al., 2016) 96.2 82.7 48.9
VRN (Zhang et al., 2017) 97.5 89.9 62.5
GraftNet (Sun et al., 2018) 97.0 94.8 77.7
PullNet (Sun et al., 2019) 97.0 99.9 91.4
Emb (Saxena et al., 2020) 97.5 98.8 94.8
NSM (He et al., 2021) 97.1 99.9 98.9

Few-shot in-context
KB-BINDER (1) 93.5 99.6 96.4
KB-BINDER (1)-R 92.9 99.9 99.5

Table 5: 5-shot Results of KB-BINDER/KB-BINDER-
R and baselines on MetaQA.

Table 2. With merely 40 examples, KB-BINDER
(6) achieves 50.6 EM score, which is the same as
BERT + Ranking setting, finetuned on the whole
training sets with around 45k annotations. Al-
though the overall scores of the two systems are
on par, we notice from Table 6 that our pipeline
has better generalization performance on composi-
tional and zero-shot questions, where the specific
logical form is unseen in the training data. The EM
scores of KB-BINDER (6) for compositional and
zero-shot questions are 5.1 and 1.3 points higher
than BERT+Ranking Table 6. We notice there is
a gap between our method and the state-of-the-art
supervised methods on GrailQA, however, it is still
exciting to see few-shot methods is at the level of
supervised methods.

As shown in Table 4, KB-BINDER (1) and KB-
BINDER (6) achieve 39.3 and 39.5 F1 score on
GraphQA dataset, surpassing the previous sate-of-
the-art models 7.7 in F1 score. In Table 5, KB-
BINDER (1) achieves 99.6 % and 96.4 % Hits@1
scores on 2-hop and 3-hop MataQA dataset corre-
spondingly, which are on par with the state-of-the-
art models. These competitive performances show
the advantage of KB-BINDER on some special sce-
narios. For the case of GraphQA, it has a relatively
small scale of training examples (i.e., 2,381 in to-

6971

tal), however, all the questions in the test set are
of compositional type. Therefore, it is hard for the
fine-tuned models to become generally adapted to
the novel composition of schema items, but rela-
tively easier for LLM to generalize on this situation
(Brown et al., 2020b; Kumar et al., 2022). For the
case of MetaQA, the scale of the knowledge base
(i.e., WikiMovies) involved in the dataset is rela-
tively small with only dozens of unique relations
under the same domain. In this case, the context
and topic of the demonstration match exactly the
target one, so five demonstrations are enough for
LLM to generate highly accurate preliminary rela-
tion candidates.

In addition, the corresponding variances
for KB-BINDER(1) and KB-BINDER(6) on
three runs are 47.0(±3.8) and 50.6(±4.5) for
GrailQA, 52.5(±4.8) and 53.2(±4.5) for We-
bQSP, 39.3(±1.7) and 39.5(±0.6) for GraphQA.

KB-BINDER-R Results As recorded in Table 5,
KB-BINDER (1)-R sets new SoTA Hits@1 score
on 3-hop MetaQA as 99.5 %, and it achieves ex-
actly the same performance with the previous fully-
trained SoTA on 2-hop MetaQA as 99.9 %. From
the recordings on all the tables, we observe that
KB-BINDER (K)-R has a generally better perfor-
mance than KB-BINDER (K). Nevertheless, it is
worth noting that the improvement on GrailQA
is only 2.6 points, while the performance is even
slightly weakened on GraphQA by 0.8 points. But
KB-BINDER (K)-R dramatically increases the F1
score from 53.2 to 74.4 on WebQSP. It can be
rationally explained by the inherent characteris-
tics of the datasets that GrailQA is largely com-
posed of compositional and zero-shot questions and
GraphQA only contains compositional questions,
while all the questions of the test set on WebQSP
are of I.I.D type, which makes the unseen questions
more similar to the retrieved exemplars.

In a nutshell, according to the presented experi-
ment results, few-shot approaches with LLMs, such
as KB-BINDER (K) can at least achieve perfor-
mance on par with previous fully-trained SoTAs
on KBQA tasks in the following two situations: 1)
There is no large-scale annotated training data, but
the inference requires high generalizability of the
model (i.e., GraphQA); 2) The knowledge base and
the corresponding questions are very specific to
one domain, so that the search space of the schema
items is relatively small, but the inference requires
multi-hop reasoning (i.e., MetaQA). And when it

Figure 3: KB-BINDER coverage and EM scores trend
with shot number.

Figure 4: KB-BINDER coverage and EM scores trend
with top K self-consistency.

comes to a totally I.I.D setting (i.e., WebQSP), KB-
BINDER (K)-R can boost the performance to be
on par with the supervised models. However, for
the case of a large amount of training data with a
high requirement for generalizability during infer-
ence (i.e., GrailQA), the previous models may have
advantages over KB-BINDER due to the fact that
the coverage of logical form structures and schema
items is restricted in our method.

4.5 Ablation Study
We conduct ablation studies to understand the in-
fluence of the number of examples demonstrated
during drafts generation on the final EM score. Due
to the long inference time to complete all the test-
ing questions, we evaluate the performance on 500
randomly sampled questions from the dev set of
GrailQA. We set the number of few shot exem-
plars from 1 to 100, and test the coverage and EM
score on each choice. The coverage here refers to
the number of questions that can be grounded to
at least one executable logical form over the total
number of questions in the sampled set. As shown
in Figure 3, there is an apparent trend that both the
coverage and the EM score will increase with a
larger number of examples.

Similarly, we also test KB-BINDER (K) perfor-

6972

IID Compositional Zero-shot

Method EM F1 EM F1 EM F1

GloVe + Transduction (Gu et al., 2020) 50.5 51.6 16.4 18.5 3.0 3.1
BERT + Ranking (Gu et al., 2020) 59.9 67.0 45.5 53.9 48.6 55.7
RnG-KBQA (Ye et al., 2021) 86.2 89.0 63.8 71.2 63.0 69.2
TIARA (Shu et al., 2022) 87.8 90.6 69.2 76.5 68.0 73.9

Few-shot in-context
KB-BINDER (6) 51.9 57.4 50.6 56.6 49.9 55.1
KB-BINDER (6)-R 72.5 77.4 51.8 58.3 45.0 49.9

Table 6: Results of KB-BINDER/KB-BINDER-R and baselines on different question types of GrailQA.

Figure 5: Positive and negative examples generated by KB-BINDER.

mance with respect to the different numbers of top
drafts generated by Codex to perform the majority
voting. With 40 exemplars, the result is plotted
as Figure 4. Generally, increasing the number of
drafts from 1 to 6 can contribute to an improvement
of coverage by 19% and EM score by 5.6%. As if
there are more drafts, more logical form structures
and more formats of preliminary schema items can
be covered in the first place.

However, it is also worth noting that increasing
the number of shots and the number of generated
drafts can also increase the inference time and cost
for KB-BINDER to find the answer. Taking this
reason into account, we only report the results of
40 exemplars with the top 6 drafts on GrailQA, as
there is always a trade-off between accuracy and
the cost of time. And it also implies that there is
still space for improvement for KB-BINDER if we
increase both of the parameters.

Moreover, we also observe from Table 6 that for
all the supervised baselines, there is a relatively big
gap between I.I.D. typed questions and the other
two types (i.e., the decreased EM score ranging
from 10 to 47.5 points). But with KB-BINDER,

the performances are stable among all the types.
This is due to the fact that all the questions may not
come from I.I.D type for few-shot setting, so there
is rarely bias among the three types.

4.6 Case Study

In Figure 5, we show representative correct and
error cases in the KB-BINDER pipeline. For Ques-
tion P1, the generated logical form could exactly
match the target one. While for Question P2, it gen-
erates the draft in correct logic but the hallucinated
entity names and relations need an extra binding
step to locate the executable logical form. Question
N1 is an error case where the draft does not gener-
ate correct logic. On the other hand, Question N2
gets draft logic generated correctly but grounded
into wrong entities or relations.

Error Analysis We analysed the performance
of each component as the recall of correct MIDs
and relations before and after the effect of Entity
Binder and Relation Binder, together with the logi-
cal path frame generated in draft. On 500 randomly
sampled GrailQA dev set, with shot number as 40,

6973

KB-BINDER (1) can achieve 0.9 and 0.78 recall
for entity and relation binding respectively, and the
recall of the logic frame is 0.66 for the top 1 draft,
which account for most error cases. We compare
the results with the ones before passing to the two
proposed binders on the same split dev set and set-
ting. The recall of correct MIDs and relations are
0.78 and 0.0 correspondingly. After the effect of
our entity binder and relation binder, the recalls
increase by 12% and 78%, which verifies the effec-
tiveness of each of the proposed components.

In addition, we also conduct a head-to-head com-
parison for KB-BINDER with one of the baselines
in few-shot setting as described in A.1.

5 Conclusion

KB-BINDER is the first framework that enables the
challenging few-shot learning on KBQA with the
reasoning capability of large language models. It
first generates drafts with LLM as preliminary log-
ical forms, and then binds the entities and schema
items of the drafts to the target knowledge base
iteratively until an executable one can be found.
KB-BINDER (K) adopts majority voting, further
enlarging the proportion of answerable questions
with the help of more diverse formats of top K
drafts. KB-BINDER (K)-R with retrieved exem-
plars is proved to be especially advantageous when
applied to I.I.D questions. In general, KB-BINDER
and its derivatives achieve strong performance on
all the common-used KBQA datasets we select,
and we hope it can set a strong baseline for future
work on KBQA with a low-resource setting.

Limitations

As in-context learning with LLM heavily depends
on the selected exemplars in the prompt, the perfor-
mance of KB-BINDER might vary from different
subsets of randomly sampled examples, especially
in a low-shot setting. But KB-BINDER still shows
strong performance on thousands of data points on
each testing dataset with randomly sampled exem-
plars, which verifies the robustness of our method
to a degree. In the meantime, the performance of
KB-BINDER is restricted with the one-time gen-
erated drafts from the perspective of the imaginary
frame and schema items of the preliminary logical
forms, which can be further improved with interac-
tively generation and retrieval. Moreover, we have
not explored whether the performance can be fur-
ther improved with explanation/instruction during

the stage of draft generation. We will take these
limitations into account and mitigate them in future
work.

References
Jonathan Berant, Andrew Chou, Roy Frostig, and Percy

Liang. 2013. Semantic parsing on freebase from
question-answer pairs. In Proceedings of the 2013
conference on empirical methods in natural language
processing, pages 1533–1544.

Kurt D. Bollacker, Colin Evans, Praveen K. Paritosh,
Tim Sturge, and Jamie Taylor. 2008. Freebase: a
collaboratively created graph database for structuring
human knowledge. In Proceedings of the ACM SIG-
MOD International Conference on Management of
Data, SIGMOD 2008, Vancouver, BC, Canada, June
10-12, 2008, pages 1247–1250. ACM.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, T. J. Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeff Wu, Clemens
Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020a.
Language models are few-shot learners. ArXiv,
abs/2005.14165.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020b. Language models are few-shot learners.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde, Jared Kaplan, Harrison Ed-
wards, Yura Burda, Nicholas Joseph, Greg Brockman,
Alex Ray, Raul Puri, Gretchen Krueger, Michael
Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin,
Brooke Chan, Scott Gray, Nick Ryder, Mikhail
Pavlov, Alethea Power, Lukasz Kaiser, Moham-
mad Bavarian, Clemens Winter, Philippe Tillet, Fe-
lipe Petroski Such, David W. Cummings, Matthias
Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel
Herbert-Voss, William H. Guss, Alex Nichol, Igor
Babuschkin, S. Arun Balaji, Shantanu Jain, Andrew
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew M. Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021a. Evaluat-
ing large language models trained on code. ArXiv,
abs/2107.03374.

6974

https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746
http://arxiv.org/abs/2005.14165

Shuang Chen, Qian Liu, Zhiwei Yu, Chin-Yew Lin,
Jian-Guang Lou, and Feng Jiang. 2021b. Retrack:
A flexible and efficient framework for knowledge
base question answering. In Annual Meeting of the
Association for Computational Linguistics.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W. Cohen. 2022. Program of thoughts
prompting: Disentangling computation from rea-
soning for numerical reasoning tasks. ArXiv,
abs/2211.12588.

Zhoujun Cheng, Tianbao Xie, Peng Shi, Chengzu
Li, R.K. Nadkarni, Yushi Hu, Caiming Xiong,
Dragomir R. Radev, Marilyn Ostendorf, Luke Zettle-
moyer, Noah A. Smith, and Tao Yu. 2022. Bind-
ing language models in symbolic languages. ArXiv,
abs/2210.02875.

Li Dong and Mirella Lapata. 2016. Language to logical
form with neural attention. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
33–43.

Alexander Dunn, John Dagdelen, Nicholas Walker,
Sanghoon Lee, Andrew S. Rosen, Gerbrand Ceder,
Kristin Persson, and Anubhav Jain. 2022. Structured
information extraction from complex scientific text
with fine-tuned large language models.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2022. Pal: Program-aided language
models. ArXiv, abs/2211.10435.

Yu Gu, Xiang Deng, and Yu Su. 2023. Don’t generate,
discriminate: A proposal for grounding language
models to real-world environments.

Yu Gu, Sue E. Kase, Michelle T. Vanni, Brian M. Sadler,
Percy Liang, Xifeng Yan, and Yu Su. 2020. Beyond
i.i.d.: Three levels of generalization for question an-
swering on knowledge bases. Proceedings of the Web
Conference 2021.

Yu Gu, Vardaan Pahuja, Gong Cheng, and Yu Su. 2022.
Knowledge base question answering: A semantic
parsing perspective. In 4th Conference on Automated
Knowledge Base Construction.

Yu Gu and Yu Su. 2022. Arcaneqa: Dynamic program
induction and contextualized encoding for knowledge
base question answering. In International Confer-
ence on Computational Linguistics.

Gaole He, Yunshi Lan, Jing Jiang, Wayne Xin Zhao, and
Ji rong Wen. 2021. Improving multi-hop knowledge
base question answering by learning intermediate
supervision signals. Proceedings of the 14th ACM
International Conference on Web Search and Data
Mining.

Yuncheng Hua, Yuan-Fang Li, Gholamreza Haffari,
Guilin Qi, and Tongtong Wu. 2020. Few-shot com-
plex knowledge base question answering via meta
reinforcement learning. ArXiv, abs/2010.15877.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Se-
bastian Riedel, Piotr Bojanowski, Armand Joulin,
and Edouard Grave. 2021. Unsupervised dense infor-
mation retrieval with contrastive learning.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners.

Ananya Kumar, Aditi Raghunathan, Robbie Jones,
Tengyu Ma, and Percy Liang. 2022. Fine-tuning
can distort pretrained features and underperform out-
of-distribution. ArXiv, abs/2202.10054.

Andrew K. Lampinen, Ishita Dasgupta, Stephanie C. Y.
Chan, Kory Matthewson, Michael Henry Tessler, An-
tonia Creswell, James L. McClelland, Jane X. Wang,
and Felix Hill. 2022. Can language models learn
from explanations in context?

Yunshi Lan, Gaole He, Jinhao Jiang, Jing Jiang,
Wayne Xin Zhao, and Ji rong Wen. 2021. A sur-
vey on complex knowledge base question answering:
Methods, challenges and solutions. In International
Joint Conference on Artificial Intelligence.

Yunshi Lan and Jing Jiang. 2020. Query graph gen-
eration for answering multi-hop complex questions
from knowledge bases. In Annual Meeting of the
Association for Computational Linguistics.

Aitor Lewkowycz, Anders Andreassen, David Dohan,
Ethan Dyer, Henryk Michalewski, Vinay Ramasesh,
Ambrose Slone, Cem Anil, Imanol Schlag, Theo
Gutman-Solo, Yuhuai Wu, Behnam Neyshabur, Guy
Gur-Ari, and Vedant Misra. 2022. Solving quantita-
tive reasoning problems with language models.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2021. What
makes good in-context examples for gpt-3? CoRR,
abs/2101.06804.

Alexander H. Miller, Adam Fisch, Jesse Dodge, Amir-
Hossein Karimi, Antoine Bordes, and Jason Weston.
2016. Key-value memory networks for directly read-
ing documents. ArXiv, abs/1606.03126.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe,
Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle-
moyer. 2022. Rethinking the role of demonstrations:
What makes in-context learning work? In EMNLP.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari,
Henryk Michalewski, Jacob Austin, David Bieber,
David Dohan, Aitor Lewkowycz, Maarten Bosma,
David Luan, Charles Sutton, and Augustus Odena.
2021. Show your work: Scratchpads for intermediate
computation with language models.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas
Joseph, Nova DasSarma, Tom Henighan, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Con-
erly, Dawn Drain, Deep Ganguli, Zac Hatfield-Dodds,
Danny Hernandez, Scott Johnston, Andy Jones, Jack-
son Kernion, Liane Lovitt, Kamal Ndousse, Dario

6975

http://arxiv.org/abs/2212.05238
http://arxiv.org/abs/2212.05238
http://arxiv.org/abs/2212.05238
http://arxiv.org/abs/2212.09736
http://arxiv.org/abs/2212.09736
http://arxiv.org/abs/2212.09736
http://arxiv.org/abs/2205.11916
http://arxiv.org/abs/2205.11916
https://doi.org/10.48550/ARXIV.2204.02329
https://doi.org/10.48550/ARXIV.2204.02329
http://arxiv.org/abs/2206.14858
http://arxiv.org/abs/2206.14858
http://arxiv.org/abs/2101.06804
http://arxiv.org/abs/2101.06804
http://arxiv.org/abs/2112.00114
http://arxiv.org/abs/2112.00114

Amodei, Tom Brown, Jack Clark, Jared Kaplan,
Sam McCandlish, and Chris Olah. 2022. In-context
learning and induction heads. Transformer Circuits
Thread. Https://transformer-circuits.pub/2022/in-
context-learning-and-induction-heads/index.html.

Siva Reddy, Oscar Täckström, Slav Petrov, Mark Steed-
man, and Mirella Lapata. 2017. Universal semantic
parsing. In Conference on Empirical Methods in
Natural Language Processing.

Apoorv Saxena, Aditay Tripathi, and Partha Pratim
Talukdar. 2020. Improving multi-hop question an-
swering over knowledge graphs using knowledge
base embeddings. In Annual Meeting of the Associa-
tion for Computational Linguistics.

Yiheng Shu, Zhiwei Yu, Yuhan Li, Börje F. Karls-
son, Tingting Ma, Yuzhong Qu, and Chin-Yew Lin.
2022. Tiara: Multi-grained retrieval for robust ques-
tion answering over large knowledge bases. ArXiv,
abs/2210.12925.

Yu Su, Huan Sun, Brian M. Sadler, Mudhakar Srivatsa,
Izzeddin Gur, Zenghui Yan, and Xifeng Yan. 2016.
On generating characteristic-rich question sets for qa
evaluation. In Conference on Empirical Methods in
Natural Language Processing.

Haitian Sun, Tania Bedrax-Weiss, and William W. Co-
hen. 2019. Pullnet: Open domain question answering
with iterative retrieval on knowledge bases and text.
ArXiv, abs/1904.09537.

Haitian Sun, Bhuwan Dhingra, Manzil Zaheer, Kathryn
Mazaitis, Ruslan Salakhutdinov, and William W. Co-
hen. 2018. Open domain question answering using
early fusion of knowledge bases and text. In Con-
ference on Empirical Methods in Natural Language
Processing.

Yawei Sun, Lingling Zhang, Gong Cheng, and Yuzhong
Qu. 2020. Sparqa: Skeleton-based semantic parsing
for complex questions over knowledge bases. In
AAAI Conference on Artificial Intelligence.

Mirac Suzgun, Nathan Scales, Nathanael Scharli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V. Le, Ed Huai hsin
Chi, Denny Zhou, and Jason Wei. 2022. Challenging
big-bench tasks and whether chain-of-thought can
solve them. ArXiv, abs/2210.09261.

Alon Talmor and Jonathan Berant. 2018. The web as
a knowledge-base for answering complex questions.
In North American Chapter of the Association for
Computational Linguistics.

Xingyao Wang, Sha Li, and Heng Ji. 2022a.
Code4struct: Code generation for few-shot struc-
tured prediction from natural language. ArXiv,
abs/2210.12810.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, and Denny Zhou. 2022b. Self-consistency
improves chain of thought reasoning in language
models. ArXiv, abs/2203.11171.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ed H. Chi, Quoc Le, and Denny Zhou. 2022a.
Chain of thought prompting elicits reasoning in large
language models. CoRR, abs/2201.11903.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ed Huai hsin Chi, Quoc Le, and Denny Zhou.
2022b. Chain of thought prompting elicits reasoning
in large language models. ArXiv, abs/2201.11903.

Peiyun Wu, Xiaowang Zhang, and Zhiyong Feng. 2019.
A survey of question answering over knowledge base.
In China Conference on Knowledge Graph and Se-
mantic Computing.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and
Tengyu Ma. 2021. An explanation of in-context learn-
ing as implicit bayesian inference. arXiv preprint
arXiv:2111.02080.

Xi Ye, Semih Yavuz, Kazuma Hashimoto, Yingbo Zhou,
and Caiming Xiong. 2021. Rng-kbqa: Generation
augmented iterative ranking for knowledge base ques-
tion answering. ArXiv, abs/2109.08678.

Scott Wen-tau Yih, Ming-Wei Chang, Xiaodong He,
and Jianfeng Gao. 2015. Semantic parsing via staged
query graph generation: Question answering with
knowledge base. In Proceedings of the Joint Con-
ference of the 53rd Annual Meeting of the ACL and
the 7th International Joint Conference on Natural
Language Processing of the AFNLP.

Wen-tau Yih, Matthew Richardson, Christopher Meek,
Ming-Wei Chang, and Jina Suh. 2016. The value of
semantic parse labeling for knowledge base question
answering. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 201–206.

Donghan Yu, Shenmin Zhang, Patrick Ng, Henghui Zhu,
Alexander Hanbo Li, J. Wang, Yiqun Hu, William
Wang, Zhiguo Wang, and Bing Xiang. 2022. De-
caf: Joint decoding of answers and logical forms for
question answering over knowledge bases. ArXiv,
abs/2210.00063.

Daoguang Zan, Sirui Wang, Hongzhi Zhang, Yuanmeng
Yan, Wei Wu, Bei Guan, and Yongji Wang. 2022.
S2ql: Retrieval augmented zero-shot question an-
swering over knowledge graph. In Pacific-Asia Con-
ference on Knowledge Discovery and Data Mining.

Yuyu Zhang, Hanjun Dai, Zornitsa Kozareva, Alex
Smola, and Le Song. 2017. Variational reasoning
for question answering with knowledge graph. In
AAAI Conference on Artificial Intelligence.

Denny Zhou, Nathanael Scharli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Olivier Bousquet, Quoc Le, and Ed Huai hsin
Chi. 2022a. Least-to-most prompting enables com-
plex reasoning in large language models. ArXiv,
abs/2205.10625.

6976

http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903

Hattie Zhou, Azade Nova, H. Larochelle, Aaron C.
Courville, Behnam Neyshabur, and Hanie Sedghi.
2022b. Teaching algorithmic reasoning via in-
context learning. ArXiv, abs/2211.09066.

6977

A Appendix

A.1 Few-shot Comparison
To realize a head-to-head comparison with base-
line on few-shot setting, we select ArcaneQA (Gu
and Su, 2022) as one of the representative base-
lines to conduct few-shot experiment on GrailQA.
We evaluate it on the same 500 dev set we sam-
pled for ablation study of KB-BINDER, and we
obtain its EM score as 16.5, 35.2, and 41.9 under
1-shot, 10-shot and 100-shot respectively. Com-
pared to ArcaneQA under same few-shot setting,
KB-BINDER (Figure 3) outperforms it by 5.5%,
9.4% and 14.5% for shot number of 1, 10 and 100
correspondingly.

6978

ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

4.4, 4.5, Limitation

� A2. Did you discuss any potential risks of your work?
Not applicable. Left blank.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Abstract; Section 1

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
Section 4

�3 B1. Did you cite the creators of artifacts you used?
Section 4

� B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Not applicable. Left blank.

�3 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Section 4

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Not applicable. Left blank.

�3 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Section 4

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Section 4

C �3 Did you run computational experiments?
Section 4

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Section 4

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

6979

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Section 4

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Section 4

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Section 4

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

6980

