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Abstract

Question answering over knowledge bases is
considered a difficult problem due to the chal-
lenge of generalizing to a wide variety of
possible natural language questions. Addi-
tionally, the heterogeneity of knowledge base
schema items between different knowledge
bases often necessitates specialized training for
different knowledge base question-answering
(KBQA) datasets. To handle questions over
diverse KBQA datasets with a unified training-
free framework, we propose KB-BINDER,
which for the first time enables few-shot in-
context learning over KBQA tasks. Firstly, KB-
BINDER leverages large language models like
Codex to generate logical forms as the draft for
a specific question by imitating a few demon-
strations. Secondly, KB-BINDER grounds
on the knowledge base to bind the generated
draft to an executable one with BM25 score
matching. The experimental results on four
public heterogeneous KBQA datasets show
that KB-BINDER can achieve a strong per-
formance with only a few in-context demon-
strations. Especially on GraphQA and 3-hop
MetaQA, KB-BINDER can even outperform
the state-of-the-art trained models. On GrailQA
and WebQSP, our model is also on par with
other fully-trained models. We believe KB-
BINDER can serve as an important baseline
for future research. Our code is available at
https://github.com/ltl3A87/KB-BINDER

1 Introduction

Question answering over knowledge bases
(KBQA) (Berant et al., 2013; Yih et al., 2015)
has been a long-standing research problem in the
AI community. It has attracted wide attention
from the community with its significant role in
making large-scale knowledge bases accessible to
non-expert users (Wu et al., 2019; Lan et al., 2021;
Gu et al., 2022). However, despite the fact that the
increasing scale of knowledge bases can enable the
retrieval with higher coverage on miscellaneous
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Figure 1: Overview of KB-BINDER pipeline. There
are two primary stages in our method: 1) Generate the
drafts as preliminary logical forms; 2) Bind the drafts
to the executable ones with entity and relation binders
grounded on the knowledge base. The final answer can
be obtained after the execution of the final candidates.

topics, it poses a great challenge for suppliers
with limited resources, who rely on the models
trained on certain knowledge bases or benchmarks.
Concretely, the difficulties primarily lie in the
following aspects: 1) Data intensiveness: larger
knowledge bases require ever larger quantities
of annotated data to allow fine-tuned models
to generalize well over them. (Yih et al., 2016;
Talmor and Berant, 2018; Gu et al., 2020). 2)
Dataset specificity: For relatively small-scale
KBQA datasets, the fully-trained models tend
to overfit to a specific schema, and can hardly
generalize to knowledge base questions in unseen
domains (Su et al., 2016; Zhang et al., 2017; Sun
et al., 2019). These challenges make it crucial to
devise a new framework that can work in both
low-resource and training-free settings in KBQA.

Recently, large language models (LLMs) like
GPT-3 and Codex (Brown et al., 2020a; Chen et al.,
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2021a) have demonstrated their strong generaliz-
ability (Wang et al., 2022a; Wei et al., 2022b; Zhou
et al., 2022b; Cheng et al., 2022; Zhou et al., 2022a;
Suzgun et al., 2022) on a wide range of text, table,
commonsense and even math QA tasks with few-
shot in-context learning. Other works also validate
that Codex (Chen et al., 2021a) can parse and trans-
form unstructured instructions to structured and
executable code with only a few dozen demonstra-
tions (Gao et al., 2022; Chen et al., 2022). These
works inspire us to tackle KBQA with LLMs, an
under-explored area in the literature that is par-
ticularly challenging compared to other QA tasks
because of the massive scale of modern KBs.

However, it is still unclear how to address
KBQA with in-context learning. Unlike many other
question-answering tasks, where the evidence is
provided with a reasonable length limit, KBQA
needs to condition on a massive graph containing
millions of nodes and billions of edges. Evidently,
it is impossible to feed the whole graph as-is to
the language model. Even feeding a subgraph is
extremely challenging as it requires splitting the
monolithic graph into self-consistent and query-
relevant chunks, which is itself an unaddressed
research problem. Without feeding the knowledge
graph as an additional input, language models be-
come unaware of the schema of the KB. This prob-
lem makes it difficult to associate surface forms in
the questions with the corresponding entities and
relation types in a specific KB, not to mention gen-
erate executable logical forms with these linked
entities and relations. These challenges make it
hard to build in-context KBQA systems.

In this work, we propose KB-BINDER, which,
for the first time, enables training-free few-shot
in-context learning on KBQA. Our framework
consists of two stages as shown in Figure 1. In
the first stage, we demonstrate a few KBQA
questions and their corresponding logical forms
as the exemplary pairs for Codex to generate
a draft of an unseen question. The draft is
a ‘preliminary’ logical form likely to contain
mistakes in both entities and relations. For
example, due to a lack of information about
the KB schema, Codex might generate a draft
containing ‘medicine.manufactured_drug.shape’
while the true relation in the KB should be
‘medicine.manufactured_drug_form.shape’. In the
second stage, KB-BINDER binds the ‘preliminary’
entities to the true entity by using a lexicon-based

similarity search over the whole KB. Once the en-
tities are bound, we search through the vicinity of
the bound entities to bind the ‘preliminary’ rela-
tions. We fill the bound entities and relations into
the draft to generate a set of ‘refined’ logical forms.
We execute these logical forms against the KB and
return the executed results as the answer. To en-
hance KB-BINDER with more pertinent exemplars,
we also propose a KB-BINDER-R with retrieved
exemplars from the training set.

In general, previous works rely heavily on pre-
defined heuristics for a target knowledge base to
find the potential candidates (Ye et al., 2021; Gu
and Su, 2022; Shu et al., 2022). KB-BINDER, how-
ever, does not need heuristics customized to spe-
cific KB schema due to the inherent generalizability
of LLMs. We test the performance of our models
under few-shot setting on four public datasets, We-
bQSP (Yih et al., 2016), GrailQA (Gu et al., 2020),
GraphQA (Su et al., 2016) and MetaQA (Zhang
et al., 2017). On GraphQA and 3-hop MetaQA,
KB-BINDER achieves 39.5 F1 and 99.5% Hits@1
scores respectively, surpassing the previous SoTA
by 7.7 on F1 score and 0.6% on Hits@1 correspond-
ingly. On WebQSP, KB-BINDER-R can achieve
74.4% F1 score, only 4.4% lower than the SoTA
model (Yu et al., 2022). These experimental results
demonstrate the effectiveness of our approach.

Given the simplicity and generality of KB-
BINDER, we believe it could serve as an important
baseline for future KB research, especially in the
low-resource setting.

2 Related Work

Knoweldge Base Question Answering. Most
state-of-the-art KBQA models are based on
semantic parsing (Lan et al., 2021; Gu et al.,
2022), where a question is mapped onto a logical
form over the KB. Locating the target logical
form over the KB entails a massive search space
(e.g., FREEBASE (Bollacker et al., 2008) contains
45 million entities and 3 billion facts). Recent
methods capitalize on the strong generalizability of
LMs to generalize to the massive space unexplored
during training (Chen et al., 2021b; Gu and
Su, 2022; Ye et al., 2021; Shu et al., 2022).
These methods are more data-efficient and can
better handle the massive search space compared
with earlier methods operating with an i.i.d.
assumption (Yih et al., 2015; Dong and Lapata,
2016), however, they still require thousands of
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labeled examples to fine-tune LMs. Despite being
an appealing idea, few-shot KBQA has not been
touched by existing work. It has been deemed
highly non-trivial, if not impossible, to learn to
handle the large search space in KBQA only with a
handful of training data. One of the relevant works
is Hua et al. (2020), which trains a meta-model to
quickly adapt to a new question with a few training
examples. However, they need 2,000 labeled
questions to train the meta-model first, thus not a
true few-shot setting. Finally, a concurrent work
Gu et al. (2023) approaches to few-shot KBQA in
a different way. They leverage the discriminative
ability of LLMs instead of their generative ability.
In this paper, we present the first effort to enable
true few-shot learning for KBQA with LLMs in
a generate-then-bind way, which may point to
interesting opportunities for practical KBQA under
low-data settings.

In-Context Learning with LLMs. In-context
learning with large language models (Brown et al.,
2020a) has shown strong few-shot performance
in many NLP tasks, such as question answering
(Cheng et al., 2022), information extraction (Dunn
et al., 2022), and numerical reasoning (Lewkowycz
et al., 2022). Analyses into the mechanisms
behind this behavior are undertaken by Olsson
et al. (2022); Xie et al. (2021). Empirically,
Min et al. (2022) shows the effectiveness of
constructing prompts using an input-label pairing
format, and Liu et al. (2021) experiment with
the number of examples provided, as well the
idea of retrieving relevant examples to a test
input to construct the prompt with. These results
inform the prompt-construction methods used in
our work. Lampinen et al. (2022) suggests that
incorporating explanatory task instructions in
context can improve performance, however, we
leave a deeper exploration of this to future works.

Reasoning with LLMs. A number of methods
have recently emerged to extend the reasoning ca-
pabilities of LLMs (Brown et al., 2020a; Kojima
et al., 2022). Chain of Thought Prompting (CoT)
(Wei et al., 2022a) showed that encouraging inter-
mediate steps in model output can improve rea-
soning accuracy. Developing this idea, methods
that involve a direct synthesis of formal programs
that solve these tasks have shown further improve-
ment (Chen et al., 2022; Nye et al., 2021; Gao
et al., 2022; Cheng et al., 2022). The most rele-
vant work to the QA setting is Binder (Cheng et al.,

2022), where the LLM is prompted to conduct text-
to-SQL generation and further answer questions
using information retrieved from an SQL database.
However, while SQL table headers demonstrated
in examples can help an LLM generate reasonable
SQL commands, the thousands of relations and
millions of entities in a KB represent a much larger
search space that cannot be captured as easily by
the prompting an LLM. KB-BINDER solves this
challenge using a draft generation and schema bind-
ing pipeline.

3 Methodology

Given a new question, KB-BINDER leverages an
LLM to generate a preliminary logical form as a
draft. A draft is not guaranteed to be executable, as
it is generated by the LLM without being explicitly
restricted to the candidates’ vocabulary and knowl-
edge graph structure. However, with the demon-
stration of in-context prompting, drafts can reveal
the structural relationships among mentioned enti-
ties in a semantically reasonable way. As a result,
the generated drafts can simplify the search space
needed to retrieve real entities and schema terms.
These entities and terms are then used to revise the
draft to a real executable logical form for a given
question. This process is illustrated in Figure 2.

3.1 Drafts Generator

We leverage the in-context learning capability of
Codex to generate logical form drafts for unseen
questions. Specifically, we randomly sample N
examples from the training set as the exemplars,
which are shown to the LLM in the form of <Qus-
tion, Logical form> pairs. However, it is worth
noting that the MIDs (i.e., machine identifier) in
the original logical form are not easy to interpret
and imitate. For instance, the raw logical form
of the question “data compression is the genre of
which file format?" is:

(AND computer.file_format (JOIN
computer.file_format.genre m.0279m))

where m.0279m is the MID of the entity “data com-
pression" from FreeBase. The raw format of MIDs
with no semantic meaning can hardly assist the
large language model to understand and imply the
latent relationships among schema items. There-
fore, naturally, we substitute the MIDs in the orig-
inal logical forms with their surface names in the
prompting demonstrations. Consequently, the final
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medicine.manufactured_drug_form.shape, 
medicine.drug_form_shape.drugs_with_this_shape,
medicine.manufactured_drug_form.generic_drug,
...medicine.manufactured_drug_form.available_in, 
medicine.drug_legal_status.country, 
medicine.drug_pregnancy_category.country, 
...medicine.manufactured_drug_form.available_in,

medicine.drug_pregnancy_category.country,
medicine.drug_legal_status.country,
...

2-hop Constrained Relation: ]

medicine.manufactured_drug_form.shape, 
medicine.drug_form_shape.drugs_with_this_shape,
medicine.manufactured_drug_form.generic_drug,
...medicine.manufactured_drug_form.available_in, 
medicine.drug_legal_status.country, 
medicine.drug_pregnancy_category.country, 
...medicine.manufactured_drug_form.available_in,

medicine.drug_pregnancy_category.country,
medicine.drug_legal_status.country,
...

2-hop Constrained Relation: Domain-range Constrained Class:

Surface Name: Octagon
Corresponding mids: 

m.01tnyl,
  

m.0491sxs, 
 

m.04c1n1w,
...

Question: The 2014 moonlit matinee film festival 
    is what instance? 
Logical Form: (AND time.recurring_event  
    (JOIN time.recurring_event.instances  
    2014 Moonlit Matinee Film Festival)) 
. . .
Question: What manufactured drug have an  
    octagons shape? 
Logical Form: ((AND medicine.manufactured_ 
    drug (JOIN medicine.manufactured_drug.shape  
    Octagon))) 

((AND medicine.manufactured_drug (JOIN
medicine.manufactured_drug.shape Octagon)))

Draft

Surface Name: Octagon
Corresponding mids: 

m.01tnyl,
  

m.0491sxs, 
 

m.04c1n1w,
...

medicine.manufactured_drug_form.shape, 
medicine.drug_form_shape.drugs_with_this_shape,
medicine.manufactured_drug_form.generic_drug,
...
medicine.manufactured_drug_form.available_in, 
medicine.drug_legal_status.country, 
medicine.drug_pregnancy_category.country, 
...
medicine.manufactured_drug_form.available_in,
medicine.drug_pregnancy_category.country,
medicine.drug_legal_status.country,
...

Relation Binder

2-hop Constrained Relation: Domain-range  
Constrained Class:

medicine.manufactured_drug_form, 
location.country, 
medicine.drug_legal_status, 
medicine.drug_pregnancy_category, 
medicine.medical_trial, 
...

 
(AND medicine.manufactured_drug_form (JOIN medicine.manufactured_drug_form.shape m.01tnyl)),
(AND medicine.manufactured_drug_form (JOIN (R medicine.manufactured_drug_form.shape) m.01tnyl)),
(AND location.country (JOIN medicine.manufactured_drug_form.available_in m.0491sxs)),
(AND location.country (JOIN (R medicine.manufactured_drug_form.available_in) m.0491sxs)),
...

Entity Binder

Final Candidates

Prompts

Figure 2: KB-BINDER framework: Given a question, the LLM will first generate its corresponding preliminary
logical forms as the drafts, imitating the exemplary demonstration. Then the entity and relation binders will operate
on the drafts to ground the entities and relations on KB respectively, which produces the final candidates.

processed logical form fed to Codex for the above
example will become:
(AND computer.file_format (JOIN
computer.file_format.genre Data Compression))

the surface names of the entities mentioned in a new
target question will appear in the generated prelim-
inary logical forms as shown in the demonstration.
Through in-context learning, LLM is tasked with
generating such friendly logical forms for a new
question by following the demonstrations.

3.2 Knowledge Base Binder
The preliminary logical forms generated by the
large language model provide us with a macro-
scopic view of the question from the perspective
of semantics and structure relationships. Starting
from the generated drafts, we separately perform
the entity and relation binding over the KB.

Entity Binder To identify the exact MIDs of the
entities mentioned in the questions, we directly ex-
tract their surface names from the generated drafts.
If the extracted surface names consistently match
the friendly names of some MIDs from the knowl-
edge base, we retrieve all the MIDs corresponding
to the matched friendly names and select the most
popular n of them based on FACC1. If the sur-
face names match no friendly name of any entity
from the knowledge base, we then utilize BM25 to
retrieve the most similar existing one in KB and ex-
ploit it as the anchor to extract the MID candidates.
If we detect multiple surface names from the drafts,
we bind their potential MIDs independently first.
And all the permutations of their combinations will
be considered in the final execution.

Relation Binder In spite of the fact that the gen-
erated preliminary relations in the drafts are very
likely to not exist in the knowledge base, their
format and semantic meaning are still supposed
to be analogical to the real-existed ones, learning
from the demonstration of the prompts. With this
assumption, we utilize each of the related items
together with the original question as the search
query to retrieve the most similar ones with BM25
from the whole knowledge base relation collection.
To enlarge the possibility of successful execution
of the logical form, we only keep the top m among
all the two-hop relation items starting from the
MIDs of the current permutation and filter out the
ones out of this constraint. For each combination
of MIDs, we iterate all the m retrieved relations
candidates accordingly.

Majority Vote Following the above workflow, a
generated draft can be bound to hundreds of poten-
tial logical form candidates. And each of them can
be converted to a SPARQL query to be ultimately
executed on the KB. We record all the answerable
logical form candidates and their corresponding
answers. As self-consistency can improve the ro-
bustness of the predictions of large language model
(Wang et al., 2022b), we repeat the paradigm for K
times and adapt the majority vote strategy to decide
the final consistent answer and its logical form. We
name the model with self-consistency on the top K
drafts as KB-BINDER(K).

Retrieved Exemplars To further boost the per-
formance of our method in a training-free set-
ting, we design another variant of KB-BINDER,
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Dataset Train Dev Test

GrialQA 44,337 6,763 13,231
WebQSP 3,098 − 1,639
GraphQA 2,381 − 2,395
MetaQA-1hop 96,106 9,992 9,947
MetaQA-2hop 118,980 14,872 14,872
MetaQA-3hop 114,196 14,274 14,274

Table 1: Dataset statistics.

named KB-BINDER(K)-R. Instead of selecting the
exemplars from the training sets randomly, KB-
BINDER(K)-R leverages BM25 to retrieve the
most similar N questions with the target one as
the demonstrations. So that the logical forms of the
N questions are more likely to cover the schema
items that are related or even exactly the same as
the target one. This setting is supposed to be espe-
cially advantageous over questions of I.I.D. type.

4 Experiment

In this section, we briefly introduce the benchmarks
used to evaluate the performance of our framework.
And we demonstrate the detailed setting of KB-
BINDER and its result on each of the datasets com-
pared with the fully-trained baselines. Ultimately,
we make an analysis of the variation of design
choices and their corresponding potential causes.

4.1 Datasets

We evaluate KB-BINDER on four public KBQA
datasets as follows:
GrailQA (Gu et al., 2020) is a diverse KBQA
dataset built on Freebase, covering 32,585 entities,
3,720 relations across 86 domains. It is designed to
test three levels of generalization of KBQA models:
I.I.D., compositional, and zero-shot.
GraphQA (Su et al., 2016) is also a diverse dataset
that covers a wide range of domains. It builds by
sentence-level paraphrasing from graph queries and
evaluating compositional generalization.
WebQSP (Yih et al., 2016) contains questions from
WebQuestions that are answerable by Freebase. It
tests i.i.d. generalization on simple questions.
MetaQA (Zhang et al., 2017) consists of a movie
ontology derived from the WikiMovies Dataset and
three sets of question-answer pairs written in differ-
ent levels of difficulty. It evaluates the effectiveness
in a specific domain.
Table 1 shows the detail of train/dev/test splits of
the datasets. We evaluate our pipeline on all the
test sets and conduct ablation studies on a subset

of the dev set from GrailQA with 500 randomly
sampled examples.

4.2 Baselines

We compare our method with all the systems that
have a publication on the official leaderboard of
each dataset and record their results from the paper
directly with the same evaluation matrix. Notice
that all the competitive baseline methods utilized
the entire set of training data as supervision.

4.3 Implementation Details

In the draft generation step, we leverage
code-davinci-002 from OpenAI API1 to obtain
the top K drafts for each question, we test the
cases with K = 1 and K = 6, and refer to them
as KB-BINDER (1) and KB-BINDER (6). Specif-
ically, we randomly sample N = 100 exemplary
questions from the training sets of WebQSP and
GraphQA respectively. For GrailQA, we sample
N = 40 exemplars for testing due to the long in-
ference time on more than ten thousands of testing
data. For MetaQA, we only sample 5 questions
for demonstration, as the KB is relatively small in
this benchmark. We run each of the experiment
for three times and averaged the performances as
reported.

In the binding step, we set n = 15 for all the
questions in the entity binder. We deploy BM25
and Contriever (Izacard et al., 2021) provided by
Pyserini2 as a hybrid searcher to retrieve the orig-
inally unmatched friendly names and the top re-
lation items. After obtaining the globally ranked
relations, we focus on the relations bound by 2-
hop relations from the detected entities. We tra-
verse the top 10 (i.e., m = 10) relation candidates
within the 2-hop constraint for GrailQA, WebQSP
and GraphQA, and the top 1 (i.e., m = 1) for
MetaQA. After the drafts are bound to the poten-
tial candidates, they will be translated to SPARQL
and executed on the Virtuoso server following the
instructions3.

4.4 Main Result

We demonstrate the model performance on the test
sets of four public datasets in Table 2, 3, 4 and 5 for
GrailQA, WebQSP, GraphQA and MetaQA respec-
tively. KB-BINDER (1) refers to our method in

1https://openai.com/blog/openai-codex/
2https://github.com/castorini/pyserini
3https://github.com/dki-lab/Freebase-Setup
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Overall

Method EM F1

GloVe + Transduction (Gu et al., 2020) 17.6 18.4
QGG (Lan and Jiang, 2020) - 36.7
BERT + Transduction (Gu et al., 2020) 33.3 36.8
GloVe + Ranking (Gu et al., 2020) 39.5 45.1
BERT + Ranking (Gu et al., 2020) 50.6 58.0
ReTraCk (Chen et al., 2021b) 58.1 65.3
S2QL (Zan et al., 2022) 57.5 66.2
ArcaneQA (Gu and Su, 2022) 63.8 73.7
RnG-KBQA (Ye et al., 2021) 68.8 74.4
DecAF (Yu et al., 2022) 68.4 78.7
TIARA (Shu et al., 2022) 73.0 78.5

Few-shot in-context
KB-BINDER (1) 47.0 51.6
KB-BINDER (6) 50.6 56.0
KB-BINDER (6)-R 53.2 58.5

Table 2: 40-shot Results of KB-BINDER/KB-BINDER-
R and baselines on GrailQA.

Method F1

ReTraCk (Chen et al., 2021b) 71.0
QGG (Lan and Jiang, 2020) 74.0
ArcaneQA (Gu and Su, 2022) 75.6
PullNet (Sun et al., 2019) 62.8
RnG-KBQA (Ye et al., 2021) 75.6
TIARA (Shu et al., 2022) 76.7
DecAF (Yu et al., 2022) 78.8

Few-shot in-context
KB-BINDER (1) 52.5
KB-BINDER (6) 53.2
KB-BINDER (6)-R 74.4

Table 3: 100-shot Results of KB-BINDER/KB-
BINDER-R and baselines on WebQSP.

default-setting with top 1 draft, and KB-BINDER
(6) involves mass voting to achieve self-consistency
with top 6 drafts, while KB-BINDER (6)-R refers
to KB-BINDER (6) using retrieved exemplars 3.2.
In general, all the variations of KB-BINDER have
strong performance on all the selected datasets. Ac-
cording to the results from the tables, KB-BINDER
(6) can generally outperform KB-BINDER (1) in
line with our expectations, while KB-BINDER (6)-
R can further boost the performance in most of the
cases. And we observe that our few-shot method
can achieve on par and even better performances
compared to the fully supervised SOTAs on We-
bQSP, GraphQA and MetaQA, and it shows com-
petitive performance with the BERT-ranking base-
line on GrailQA.

KB-BINDER Results Specifically, we show KB-
BINDER (K) few-shot result on GrailQA and com-
pare it with a series of fully-trained baselines in

Method F1

AUDEPLAMBDA (Reddy et al., 2017) 17.7
SPARQA (Sun et al., 2020) 21.5
BERT + Ranking (Gu et al., 2020) 25.0
ArcaneQA (Gu and Su, 2022) 31.8

Few-shot in-context
KB-BINDER (1) 39.3
KB-BINDER (6) 39.5
KB-BINDER (6)-R 38.7

Table 4: 100-shot Results of KB-BINDER/KB-
BINDER-R and baselines on GraphQA.

Method 1-hop 2-hop 3-hop

KV-Mem (Miller et al., 2016) 96.2 82.7 48.9
VRN (Zhang et al., 2017) 97.5 89.9 62.5
GraftNet (Sun et al., 2018) 97.0 94.8 77.7
PullNet (Sun et al., 2019) 97.0 99.9 91.4
Emb (Saxena et al., 2020) 97.5 98.8 94.8
NSM (He et al., 2021) 97.1 99.9 98.9

Few-shot in-context
KB-BINDER (1) 93.5 99.6 96.4
KB-BINDER (1)-R 92.9 99.9 99.5

Table 5: 5-shot Results of KB-BINDER/KB-BINDER-
R and baselines on MetaQA.

Table 2. With merely 40 examples, KB-BINDER
(6) achieves 50.6 EM score, which is the same as
BERT + Ranking setting, finetuned on the whole
training sets with around 45k annotations. Al-
though the overall scores of the two systems are
on par, we notice from Table 6 that our pipeline
has better generalization performance on composi-
tional and zero-shot questions, where the specific
logical form is unseen in the training data. The EM
scores of KB-BINDER (6) for compositional and
zero-shot questions are 5.1 and 1.3 points higher
than BERT+Ranking Table 6. We notice there is
a gap between our method and the state-of-the-art
supervised methods on GrailQA, however, it is still
exciting to see few-shot methods is at the level of
supervised methods.

As shown in Table 4, KB-BINDER (1) and KB-
BINDER (6) achieve 39.3 and 39.5 F1 score on
GraphQA dataset, surpassing the previous sate-of-
the-art models 7.7 in F1 score. In Table 5, KB-
BINDER (1) achieves 99.6 % and 96.4 % Hits@1
scores on 2-hop and 3-hop MataQA dataset corre-
spondingly, which are on par with the state-of-the-
art models. These competitive performances show
the advantage of KB-BINDER on some special sce-
narios. For the case of GraphQA, it has a relatively
small scale of training examples (i.e., 2,381 in to-
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tal), however, all the questions in the test set are
of compositional type. Therefore, it is hard for the
fine-tuned models to become generally adapted to
the novel composition of schema items, but rela-
tively easier for LLM to generalize on this situation
(Brown et al., 2020b; Kumar et al., 2022). For the
case of MetaQA, the scale of the knowledge base
(i.e., WikiMovies) involved in the dataset is rela-
tively small with only dozens of unique relations
under the same domain. In this case, the context
and topic of the demonstration match exactly the
target one, so five demonstrations are enough for
LLM to generate highly accurate preliminary rela-
tion candidates.

In addition, the corresponding variances
for KB-BINDER(1) and KB-BINDER(6) on
three runs are 47.0(±3.8) and 50.6(±4.5) for
GrailQA, 52.5(±4.8) and 53.2(±4.5) for We-
bQSP, 39.3(±1.7) and 39.5(±0.6) for GraphQA.

KB-BINDER-R Results As recorded in Table 5,
KB-BINDER (1)-R sets new SoTA Hits@1 score
on 3-hop MetaQA as 99.5 %, and it achieves ex-
actly the same performance with the previous fully-
trained SoTA on 2-hop MetaQA as 99.9 %. From
the recordings on all the tables, we observe that
KB-BINDER (K)-R has a generally better perfor-
mance than KB-BINDER (K). Nevertheless, it is
worth noting that the improvement on GrailQA
is only 2.6 points, while the performance is even
slightly weakened on GraphQA by 0.8 points. But
KB-BINDER (K)-R dramatically increases the F1
score from 53.2 to 74.4 on WebQSP. It can be
rationally explained by the inherent characteris-
tics of the datasets that GrailQA is largely com-
posed of compositional and zero-shot questions and
GraphQA only contains compositional questions,
while all the questions of the test set on WebQSP
are of I.I.D type, which makes the unseen questions
more similar to the retrieved exemplars.

In a nutshell, according to the presented experi-
ment results, few-shot approaches with LLMs, such
as KB-BINDER (K) can at least achieve perfor-
mance on par with previous fully-trained SoTAs
on KBQA tasks in the following two situations: 1)
There is no large-scale annotated training data, but
the inference requires high generalizability of the
model (i.e., GraphQA); 2) The knowledge base and
the corresponding questions are very specific to
one domain, so that the search space of the schema
items is relatively small, but the inference requires
multi-hop reasoning (i.e., MetaQA). And when it

Figure 3: KB-BINDER coverage and EM scores trend
with shot number.

Figure 4: KB-BINDER coverage and EM scores trend
with top K self-consistency.

comes to a totally I.I.D setting (i.e., WebQSP), KB-
BINDER (K)-R can boost the performance to be
on par with the supervised models. However, for
the case of a large amount of training data with a
high requirement for generalizability during infer-
ence (i.e., GrailQA), the previous models may have
advantages over KB-BINDER due to the fact that
the coverage of logical form structures and schema
items is restricted in our method.

4.5 Ablation Study
We conduct ablation studies to understand the in-
fluence of the number of examples demonstrated
during drafts generation on the final EM score. Due
to the long inference time to complete all the test-
ing questions, we evaluate the performance on 500
randomly sampled questions from the dev set of
GrailQA. We set the number of few shot exem-
plars from 1 to 100, and test the coverage and EM
score on each choice. The coverage here refers to
the number of questions that can be grounded to
at least one executable logical form over the total
number of questions in the sampled set. As shown
in Figure 3, there is an apparent trend that both the
coverage and the EM score will increase with a
larger number of examples.

Similarly, we also test KB-BINDER (K) perfor-
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IID Compositional Zero-shot

Method EM F1 EM F1 EM F1

GloVe + Transduction (Gu et al., 2020) 50.5 51.6 16.4 18.5 3.0 3.1
BERT + Ranking (Gu et al., 2020) 59.9 67.0 45.5 53.9 48.6 55.7
RnG-KBQA (Ye et al., 2021) 86.2 89.0 63.8 71.2 63.0 69.2
TIARA (Shu et al., 2022) 87.8 90.6 69.2 76.5 68.0 73.9

Few-shot in-context
KB-BINDER (6) 51.9 57.4 50.6 56.6 49.9 55.1
KB-BINDER (6)-R 72.5 77.4 51.8 58.3 45.0 49.9

Table 6: Results of KB-BINDER/KB-BINDER-R and baselines on different question types of GrailQA.

Figure 5: Positive and negative examples generated by KB-BINDER.

mance with respect to the different numbers of top
drafts generated by Codex to perform the majority
voting. With 40 exemplars, the result is plotted
as Figure 4. Generally, increasing the number of
drafts from 1 to 6 can contribute to an improvement
of coverage by 19% and EM score by 5.6%. As if
there are more drafts, more logical form structures
and more formats of preliminary schema items can
be covered in the first place.

However, it is also worth noting that increasing
the number of shots and the number of generated
drafts can also increase the inference time and cost
for KB-BINDER to find the answer. Taking this
reason into account, we only report the results of
40 exemplars with the top 6 drafts on GrailQA, as
there is always a trade-off between accuracy and
the cost of time. And it also implies that there is
still space for improvement for KB-BINDER if we
increase both of the parameters.

Moreover, we also observe from Table 6 that for
all the supervised baselines, there is a relatively big
gap between I.I.D. typed questions and the other
two types (i.e., the decreased EM score ranging
from 10 to 47.5 points). But with KB-BINDER,

the performances are stable among all the types.
This is due to the fact that all the questions may not
come from I.I.D type for few-shot setting, so there
is rarely bias among the three types.

4.6 Case Study

In Figure 5, we show representative correct and
error cases in the KB-BINDER pipeline. For Ques-
tion P1, the generated logical form could exactly
match the target one. While for Question P2, it gen-
erates the draft in correct logic but the hallucinated
entity names and relations need an extra binding
step to locate the executable logical form. Question
N1 is an error case where the draft does not gener-
ate correct logic. On the other hand, Question N2
gets draft logic generated correctly but grounded
into wrong entities or relations.

Error Analysis We analysed the performance
of each component as the recall of correct MIDs
and relations before and after the effect of Entity
Binder and Relation Binder, together with the logi-
cal path frame generated in draft. On 500 randomly
sampled GrailQA dev set, with shot number as 40,
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KB-BINDER (1) can achieve 0.9 and 0.78 recall
for entity and relation binding respectively, and the
recall of the logic frame is 0.66 for the top 1 draft,
which account for most error cases. We compare
the results with the ones before passing to the two
proposed binders on the same split dev set and set-
ting. The recall of correct MIDs and relations are
0.78 and 0.0 correspondingly. After the effect of
our entity binder and relation binder, the recalls
increase by 12% and 78%, which verifies the effec-
tiveness of each of the proposed components.

In addition, we also conduct a head-to-head com-
parison for KB-BINDER with one of the baselines
in few-shot setting as described in A.1.

5 Conclusion

KB-BINDER is the first framework that enables the
challenging few-shot learning on KBQA with the
reasoning capability of large language models. It
first generates drafts with LLM as preliminary log-
ical forms, and then binds the entities and schema
items of the drafts to the target knowledge base
iteratively until an executable one can be found.
KB-BINDER (K) adopts majority voting, further
enlarging the proportion of answerable questions
with the help of more diverse formats of top K
drafts. KB-BINDER (K)-R with retrieved exem-
plars is proved to be especially advantageous when
applied to I.I.D questions. In general, KB-BINDER
and its derivatives achieve strong performance on
all the common-used KBQA datasets we select,
and we hope it can set a strong baseline for future
work on KBQA with a low-resource setting.

Limitations

As in-context learning with LLM heavily depends
on the selected exemplars in the prompt, the perfor-
mance of KB-BINDER might vary from different
subsets of randomly sampled examples, especially
in a low-shot setting. But KB-BINDER still shows
strong performance on thousands of data points on
each testing dataset with randomly sampled exem-
plars, which verifies the robustness of our method
to a degree. In the meantime, the performance of
KB-BINDER is restricted with the one-time gen-
erated drafts from the perspective of the imaginary
frame and schema items of the preliminary logical
forms, which can be further improved with interac-
tively generation and retrieval. Moreover, we have
not explored whether the performance can be fur-
ther improved with explanation/instruction during

the stage of draft generation. We will take these
limitations into account and mitigate them in future
work.
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A Appendix

A.1 Few-shot Comparison
To realize a head-to-head comparison with base-
line on few-shot setting, we select ArcaneQA (Gu
and Su, 2022) as one of the representative base-
lines to conduct few-shot experiment on GrailQA.
We evaluate it on the same 500 dev set we sam-
pled for ablation study of KB-BINDER, and we
obtain its EM score as 16.5, 35.2, and 41.9 under
1-shot, 10-shot and 100-shot respectively. Com-
pared to ArcaneQA under same few-shot setting,
KB-BINDER (Figure 3) outperforms it by 5.5%,
9.4% and 14.5% for shot number of 1, 10 and 100
correspondingly.
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