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Abstract

Natural language understanding (NLU) tasks
face a non-trivial amount of ambiguous sam-
ples where veracity of their labels is debatable
among annotators. NLU models should thus ac-
count for such ambiguity, but they approximate
the human opinion distributions quite poorly
and tend to produce over-confident predictions.
To address this problem, we must consider how
to exactly capture the degree of relationship
between each sample and its candidate classes.
In this work, we propose a novel method with
deep model compression and show how such
relationship can be accounted for. We see that
more reasonably represented relationships can
be discovered in the lower layers and that vali-
dation accuracies are converging at these layers,
which naturally leads to layer pruning. We also
see that distilling the relationship knowledge
from a lower layer helps models produce better
distribution. Experimental results demonstrate
that our method makes substantial improve-
ment on quantifying ambiguity without gold
distribution labels. As positive side-effects, our
method is found to reduce the model size sig-
nificantly and improve latency, both attractive
aspects of NLU products.1

1 Introduction

Datasets constructed for natural language under-
standing (NLU) tasks, such as natural language
inference (NLI) and text emotion analysis, contain
a large amount of ambiguous samples (Nie et al.,
2020; Uma et al., 2021). As exemplified in Ta-
ble 1, each ambiguous sample is too debatable to
be assigned a single gold label. Recent work has
revealed that these disagreements among annota-
tors are not annotation noise, which could have
simply been resolved by aggregating more anno-
tations, but rather a reproducible signal (Pavlick
and Kwiatkowski, 2019; Nie et al., 2020). This

1Code is available at https://github.com/hancheolp/
compression_for_capturing_ambiguity.

Premise It’s summer time and two
girls play with bubbles
near a boat dock.

Hypothesis It is warm outside.
Label distribution Entailment: 0.52

Neutral: 0.46
Contradiction: 0.02

News headline Amateur rocket scientists
reach for space.

Label distribution Joy: 0.57
Surprise: 0.43
Anger / Disgust / Fear /
Sadness: 0.00

Table 1: Ambiguous samples from datasets for NLI
(ChaosSNLI (Nie et al., 2020)) and emotion analysis
(SemEval-2007 Task 14 dataset (Strapparava and Mihal-
cea, 2007))

suggests that NLU models should predict not only
majority labels, but also label distributions that re-
spect such ambiguity.

Since Transformer-based (Vaswani et al., 2017)
pre-trained language models (PLMs) (Devlin et al.,
2019; Liu et al., 2019) have become popular for
NLU tasks, the accuracies of various NLU models
have been substantially improved. Nevertheless,
they are still not good at approximating the human
opinion distributions (Pavlick and Kwiatkowski,
2019; Nie et al., 2020), or label distributions drawn
from a larger number of annotators, and their pre-
dictions tend to be over-confident (Zhang et al.,
2021). If NLU products frequently produce over-
confident predictions for ambiguous samples, it is
not likely that they would be reliable for users who
have different opinions.

As an attempt to address this problem, previous
work (Zhang et al., 2021; Wang et al., 2022) has
demonstrated that label smoothing (Müller et al.,
2019) helps make the prediction distributions close
to human opinion distributions, simply addressing
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the issue of over-confidence. However, this does
not explicitly address how to exactly capture the
degree of relationship between each sample and its
candidate classes (i.e., how to estimate p(y = c|x)
for each sample x). Some researchers (Zhang et al.,
2018; Meissner et al., 2021; Wang et al., 2022;
Zhou et al., 2022) have tried to use empirically-
gold label distributions for directly learning the
relationship, but these approaches require signifi-
cant additional annotation costs.

In this paper, we propose a novel method that
employs compression techniques for deep learn-
ing models, namely layer pruning (Sajjad et al.,
2023) and knowledge distillation (KD) (Hinton
et al., 2015), and show how these compression
techniques help models capture such a degree of
relationship. We first observe that hidden states
in lower layers more accurately encode the infor-
mation about the sample-classes relationship, and
that validation accuracies from internal classifiers
inserted between adjacent layers are converging.
This indicates that pruning a part of higher layers
can make the models well represent the relation-
ship information with their prediction distribution,
while retaining the accuracy. We also observe that
transferring the distribution knowledge that repre-
sents more accurate information about the relation-
ship from a lower layer into the final classifier at
the top of the pruned network can help the models
produce better distribution.

Experimental results demonstrate that our
method significantly outperforms existing ones that
do not use additional distribution datasets. With-
out using such additional resources, our method
also outperforms, or is comparable with, those
that do use these resources over NLI benchmarks.
Moreover, since our method uses compression tech-
niques for deep learning models, this also reduces
the model size significantly and improves latency
as well. Both are attractive aspects of NLU prod-
ucts because they lead to consequent reduction in
the cloud cost or to deployment on cheaper on-
devices.

Deep model compression aims at eliminating
redundant components of pre-trained deep learn-
ing models (via pruning or low-rank factorization
(Liu et al., 2021)) to improve latency and reduce
the model size. At the same time, maintaining the
performance of the original model (via KD) is es-
sential. While the goal of compression itself is not
directly relevant to capturing ambiguity, we demon-

strate that compression methods can also be used
for accurately capturing ambiguity and suggest that
such an approach presents another novel research
direction for this task.

2 Related Work

Recent work has revealed that the state-of-the-art
PLMs fine-tuned to predict single gold labels with
cross-entropy loss function fail to properly esti-
mate human opinion distributions (Pavlick and
Kwiatkowski, 2019; Nie et al., 2020) and tend to
produce over-confident predictions (Zhang et al.,
2021). This issue of over-confidence is well-known
in modern complex deep neural networks, because
they can easily overfit one-hot labels of a training
dataset. Moreover, this issue arises regardless of
the correctness of predictions (Guo et al., 2017).

In a situation where there exist a large number of
ambiguous samples in an NLU dataset, it does not
make sense to tolerate over-confident predictions.
Naturally, in order to obtain better human opinion
distributions, the use of label smoothing (Müller
et al., 2019) has been proposed (Zhang et al., 2021;
Wang et al., 2022). Label smoothing softens tar-
get training label distributions (i.e., one-hot labels)
by shifting α probability mass from the target la-
bels equally to all the labels. As a result, it pre-
vents models from overfitting one-hot distribution.
Zhang et al. (2021) and Wang et al. (2022) have
shown that label smoothing is effective at better
estimating human opinion distributions. However,
it makes all predictions less-confident, compared
with using one-hot labels, not considering how to
capture the degree of relationship between each
sample and its candidate classes, which is an essen-
tial aspect to address ambiguity.

Monte Carlo dropout (MC dropout) (Gal and
Ghahramani, 2016) addresses the drawback of label
smoothing. For a given sample, this method makes
k stochastic forward passes from a pre-trained neu-
ral network with dropout, where k different pre-
diction distributions are then averaged to form a
final distribution for the sample. Since different
forward passes could produce different plausible
predictions for ambiguous samples, MC dropout
also captures the aforementioned degree of rela-
tionship. Using MC dropout also improves the
quality of output distributions (Zhou et al., 2022),
but this suffers from several drawbacks, such as
its non-deterministic nature and higher latency for
inference.
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Figure 1: Visualization of feature distributions from RoBERTa-base encoder layers using t-SNE

Directly learning from human opinion distribu-
tions has also been studied. Zhang et al. (2018)
and Meissner et al. (2021) trained models with the
empirically-gold label distributions to match pre-
dictions and human opinion distributions. As post-
editing, Zhang et al. (2021), Wang et al. (2022),
and Zhou et al. (2022) used temperature scaling
(Guo et al., 2017), with which output logits from a
fine-tuned model are rescaled with hyperparameter
T , and the softmax distribution becomes accord-
ingly smoother and closer to target distributions. T
is tuned on the distribution labels from a validation
set by minimizing the KL-divergence between the
predicted distributions and human opinion distri-
butions. These additional resources significantly
improve the ability to quantify ambiguity, but are
accompanied with enormous annotation costs.

We propose to address all these limitations, con-
sidering how to exactly capture the degree of re-
lationship between each sample and its candidate
classes without the need for extra resources. In the
next section, we explain how deep model compres-
sion can be made to account for the relationship
without additional human opinion distribution in-
formation.

3 Deep Model Compression for
Capturing Ambiguity

3.1 Three Observations
It is known that an average entropy value, measured
from prediction distributions of an internal classi-
fier inserted on top of each encoder layer, gradually
becomes lower in the higher layers (Zhou et al.,
2020). However, it is not clear whether higher en-
tropy values in the lower layers are attributed to
the ability of those layers to encode ambiguous
samples as high entropy distributions by assigning
probabilities to all relevant classes. Therefore, we

must look closely into how samples are encoded in
each layer.

For this investigation, we use an emotion anal-
ysis dataset. This is because we can intuitively
understand the relationship among emotion labels
and such knowledge facilitates to interpret whether
samples are well represented in accordance with
our intuitions. We first fine-tuned RoBERTa-base
(Liu et al., 2019) with an emotion analysis dataset,
or “tweet emotion intensity dataset” (Mohammad
and Bravo-Marquez, 2017). Each sample in this
dataset was annotated via crowdsourcing with the
intensity of its label (anger, fear, joy, or sadness).
After fine-tuning, we froze all the parameters of the
fine-tuned network and inserted a trainable internal
classifier after every layer, which consists of the
same layers with the original classifiers at the top
layer. Finally, we trained the internal classifiers on
the frozen network. In order to understand how the
fine-tuned model encodes samples in each layer, we
visualized the features of samples in the validation
set, which are extracted from the hidden states for
[CLS] tokens of layers (i.e., inputs of the internal
classifiers), with t-SNE (Maaten and Hinton, 2008).
In each layer, we also measured the validation accu-
racy using predictions from the internal classifiers
and average entropy from predicted distributions on
the same validation sets. The experimental results
are shown in Figure 1.

We first observe that validation accuracy has
already started to converge in lower layers
(observation (1)). This result is identical to that
of the previous work (Peters et al., 2019). Sec-
ond, we observe that the feature representations
from lower layers contain more accurate informa-
tion about the degree of relationship between each
sample and candidate classes (observation (2)).
The relationship information visualized in Figure
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Figure 2: Visualization of feature distributions for am-
biguous samples that are labeled as ‘fear’

1 is considerably more intuitive and reasonable. In
the 10-th layer, a sample from the ‘fear’ class is
closely placed with samples in negative valance
classes (i.e., ‘anger’ and ‘sadness’). In the next
layer, a sample from the ‘fear’ class is distant from
the ‘anger’ class, while close to the ‘sadness’ class
that is highly correlated with the ‘fear’ class (Dem-
szky et al., 2020). The internal classifier of the
11-th layer is usually likely to assign very low prob-
abilities to the ‘anger’ class for samples from the
‘fear’ class. In the final layer, all classes are dis-
tantly located, to which the corresponding classifier
is likely to make over-confident predictions. Intu-
itively, human annotators may recognize samples
from ‘fear’ as ‘sadness’ or ‘anger’ with their sub-
jective judgments, but such relationships disappear
in the higher layers.

We further investigated how the model encodes
ambiguous samples. We categorized samples de-
pending on the emotional intensity scores (i.e., low:
[0, 0.34), middle: [0.34, 0.67), high: [0.67, 1.0])
and assumed that samples that belong to a low
intensity group are ambiguous. The underlying as-
sumption is that an emotional tweet sample with
extremely low intensity for its assigned class may
also be relevant to other classes. As shown Fig-
ure 2, most of the ambiguous samples are closely
placed with samples from their relevant classes,

while non-ambiguous samples tend to be distantly
located in the lower layers (i.e., 9-th and 10-th
layers). However, in the higher layers, they seem
not to be related with other classes anymore. Fi-
nally, we observe that after the most rapid drop of
entropy values, each classifier starts to converge
(observation (3)). These observations are made
over BERT-base (Devlin et al., 2019) as well (see
Figure 4 in Appendix A).

3.2 Layer Pruning

From observations (1) and (2), we hypothesize that
if we prune layers higher than the one where val-
idation accuracy just starts to converge, we could
obtain a model that better estimates the human opin-
ion distributions, while retaining the performance.

Given a fine-tuned PLM for NLU, all parameters
of the model are frozen to maintain the encoded in-
formation about the relationship, and internal clas-
sifiers are then inserted between adjacent layers
except at the top layer. This is the same procedure
as used in our preliminary study in the previous
section. Except for the final layer, which has al-
ready been fine-tuned, the internal classifiers are
trained with the same configurations for training
(e.g., the same training dataset and the same num-
ber of epochs) that are applied to the original fine-
tuned PLM. Because we focus on the multi-class
classification problem in NLU, the cross-entropy
loss between predictions and gold labels (i.e., one-
hot labels) is applied to all internal classifiers and
the total loss function is

∑n−1
i=1 Li where n is the

total number of layers and Li is the cross-entropy
loss function for the i-th internal classifier.

After training all internal classifiers, the valida-
tion accuracies from all classifiers are evaluated.
Based on the evaluated accuracies, the target layer
that will become the final layer after pruning should
be selected. In this work, we simply select the low-
est layer among those whose validation accuracy
is higher than (the original validation accuracy –
1%). We assumed that 1% accuracy drop is tol-
erable in various NLU applications. In the case
where a much higher accuracy is less important
than well-quantified ambiguity, the threshold can
be set higher than 1% to prune more layers. After
pruning layers above the target layer and remov-
ing the internal classifiers except for the last one at
the top of the pruned network, we do not fine-tune
the pruned model again. This is because we have
already obtained the relationship information and
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training all parameters of the pruned model with
one-hot labels turns the prediction from the model
become over-confident again.

3.3 Distilling the Relationship Information
from a Lower Layer

By layer pruning, our model could be made more
accurate in terms of estimating human opinion dis-
tribution, but it should also be noted that when a
model starts to converge, the entropy of prediction
distribution has already decreased substantially (ob-
servation (3)) (i.e., prediction confidences would
be significantly increased). This indicates that the
pruned model may not be sufficient to produce a
well-estimated human opinion distribution. In this
case, pruning only yields improved distributions
compared with models that are fine-tuned with one-
hot labels, but does not let the model outperform
previous methods. Therefore, if we further exploit
the relationship information from much lower lay-
ers before the most rapid drop of entropy value,
the pruned model could capture human opinion
distributions more accurately. In order to transfer
such knowledge to the classifier layer of the pruned
network, we propose a variant of knowledge distil-
lation (KD) (Hinton et al., 2015).

Originally, KD is a training technique to recover
the accuracy of a compressed or smaller model
(i.e., student model) using the knowledge (e.g., out-
put distributions or feature representations) from
the original or a larger model (i.e., teacher model),
which is more accurate than the student model. The
goal of KD is to match the prediction distribution
(or feature representations) from the student with
that from the teacher. In our case, the knowledge
should provide more accurate information about
the relationship between each sample and candi-
date classes. Therefore, in this work, we transfer
the prediction distributions from a lower layer into
the final classifier of the pruned layer, which is an
approach different from the conventional one.

In this work, we set the layer just before the
most rapid drop of entropy on the pruned network
as the source layer that transfers the distribution
information, because the distribution information
from much lower layers can degrade the accuracy.
The entropy can be measured with a validation set
before removing internal classifiers in the previous
pruning step. In order not to change the distribution
information during KD, we froze the parameters by
the source layer and updated the parameters above

the source layer to adjust the prediction distribution
of the last layer. The loss function Lkd for our KD
approach is computed as follows:

Lkd = λLce(ȳt, y) + (1− λ)Lce(ȳt, ȳs) (1)

where y is one-hot labels, ȳt is prediction distri-
butions from the target layer, ȳs is prediction dis-
tributions from the source layer, and Lce is the
cross-entropy loss function. The first term on the
right side is used to avoid the accuracy drop from
incorrect majority label information that exists in
ȳs. The second term is a distillation loss, which
makes output distributions close to the distributions
from the source layer. λ is a hyperparameter that
determines the quantity of the transferred knowl-
edge from the source layer. A smaller value of λ
could lead to a broader incorporation of relation-
ship information, but it may result in a less accurate
model. Therefore, it is important to find an opti-
mal λ for a model that can estimate human opinion
distributions accurately, while retaining the perfor-
mance. However, it is challenging to tune λ since a
validation set that contains gold label distributions
is not available in our setting (i.e., using only single
gold labels). If we have such a dataset, we could
easily find λ by investigating the distance between
predictive distributions and gold label distributions.

To address the issue of hyperparameter tuning,
we propose a sub-optimal solution as follows. First,
λ should be larger than 0.5 to give more weight
to correct learning signals over noisy ones when
ȳs represents incorrect labels. Second, we select λ
in such a way that the validation accuracy of the
model is higher than the original validation accu-
racy minus 1%. Finally, we determine λ with which
the average prediction probability for ground truth
labels in a validation set is maximum when predic-
tions are incorrect. This choice is made because
assigning high probability values to the ground
truth labels, even when the predictions are incor-
rect, helps to minimize the discrepancy between
the model’s outputs and the true human opinion dis-
tributions (e.g., when the ground truth distribution
is [0.6, 0.35, 0.05], the prediction [0.4, 0.55, 0.05]
is closer to the true distribution than predicted [0.2,
0.75, 0.05]). Moreover, since maximizing proba-
bilities to the ground truth labels naturally leads
to decreasing the probabilities to incorrect labels,
we can avoid the risk that strongly favors incorrect
predictions. In our experiments, we tuned λ with
the candidate values {0.6, 0.7, 0.8, 0.9}. We also
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trained models with the same configurations for
training that are applied to the original fine-tuned
PLM.

4 Experiments

In this section, we investigate how exactly our
method of using compression techniques can
capture the ambiguity of each sample without
empirically-gold label distributions. We re-ran
all experiments three times with different random
seeds to identify variance. The standard devia-
tion value of accuracy is smaller than 0.0155 on
all methods and datasets and of Jenson-Shannon
Distance (JSD) (Endres and Schindelin, 2003) is
smaller than 0.0081, both of which are negligible.

4.1 Metrics

In order to examine to what extent models are ca-
pable of capturing ambiguity, we use JSD as a
primary metric, which measures the distance be-
tween the softmax outputs of the models and the
gold human label distributions. Since this metric
is symmetric and bounded with the range [0, 1], it
has been popularly used in the previous work (Nie
et al., 2020; Zhang et al., 2021; Meissner et al.,
2021; Wang et al., 2022; Zhou et al., 2022). We
also use KL divergence to measure the distance as
a complementary metric due to its limitation (i.e.,
non-symmetry).

4.2 Baseline Methods

We first compare our method with baselines that
use the same single gold labels for training, such as
the standard training method (STD) (i.e., training
with one-hot labels and cross-entropy loss func-
tion), MC dropout (MC) (Zhou et al., 2022), and la-
bel smoothing (LS) (Zhang et al., 2021; Wang et al.,
2022). For MC dropout, we set the dropout proba-
bility to 0.1, which is the value for pre-training the
language model used in our experiments and k to
10. α of the label smoothing is set to 0.1 because it
tends to be set as 0.1 over many datasets (Müller
et al., 2019).

We also compare our method with baselines that
use additional human opinion distribution datasets,
such as temperature scaling (TS) (Zhou et al., 2022;
Wang et al., 2022) and label distribution learning
(LDL) (i.e., training with human opinion distribu-
tions and cross-entropy loss function) (Zhang et al.,
2018; Meissner et al., 2021). We also report the
results from the chance baseline. For the chance

baseline, JSD and KL divergence between uniform
distributions and human opinion distributions are
calculated. Accuracy is the proportion of the sam-
ples to the majority label in each test set.

4.3 Datasets

In this work, we use datasets for NLI and text emo-
tion analysis. As test sets of the NLI task, we
used ChaosMNLI (1,599 MNLI-matched develop-
ment set (Williams et al., 2018)) and ChaosSNLI
datasets (1,514 SNLI development set (Bowman
et al., 2015)) (Nie et al., 2020). In these datasets,
each sample was labeled by 100 annotators and
these annotations were normalized to represent hu-
man opinion distributions. As training and vali-
dation sets, we used AmbiSM datasets (Meissner
et al., 2021). AmbiSM provides empirically-gold
label distributions collected by crowd-sourcing
annotation. AmbiSM consists of SNLI develop-
ment/test set and MNLI-matched/mismatched de-
velopment set, in which none of the samples over-
laps with those in ChaosNLI. When models are
evaluated with ChaosMNLI, we used randomly se-
lected 1,805 MNLI-matched development samples
in AmbiSM, as validation set and the rest of Am-
biSM were used as training set (34,395 samples).
For ChaosSNLI, we used 1,815 SNLI development
samples as validation set and the rest of AmbiSM
were used as training set (34,385 samples).

For text emotion analysis, we used SemEval-
2007 Task 14 Affective Text dataset (Strapparava
and Mihalcea, 2007). We used 800 samples for
training, 200 for validation, and 246 for evaluation
(4 “neutral” labels were excluded from evaluation.).
In this dataset, 6 emotion intensities (i.e., anger, dis-
gust, fear, joy, sadness, and surprise) are labeled by
annotators and each intensity value is normalized
to get label distributions using the same procedure
as in the previous work (Zhang et al., 2018).

4.4 Implementation Details

Our proposed method and baselines are applied to
RoBERTa-base (Liu et al., 2019). The implementa-
tion of RoBERTa-base was based on Huggingface
Transformers2. All methods used the same hyper-
parameters for training. Batch size was 32, and
learning rate was 5e-5 with a linear decay. We
fine-tuned over 5, 6, and 7 epochs for ChaosSNLI,
ChaosMNLI, and the emotion dataset, respectively,
based on the validation accuracy. We used AdamW

2https://github.com/huggingface/transformers
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ChaosSNLI ChaosMNLI Emotion
JSD↓ KL↓ Acc.↑ JSD↓ KL↓ Acc.↑ JSD↓ KL↓ Acc.↑

Chance 0.3829 0.5456 0.5370 0.3022 0.3558 0.4634 0.4728 0.8588 0.3211
STD 0.3299 1.3872 0.6935 0.4219 2.3982 0.5722 0.4203 1.2858 0.5528
MC 0.2984 0.9287 0.6849 0.3718 1.6320 0.5710 0.4044 1.0381 0.5203
LS 0.2723 0.5724 0.7173 0.3540 0.8574 0.5591 0.4057 0.9825 0.5610
TS 0.2626 0.5099 0.6935 0.3095 0.6491 0.5722 0.3859 0.7708 0.5528
LDL 0.2185 0.3811 0.7186 0.2991 0.7032 0.5716 0.3338 0.5198 0.5610
Ours 0.2635 0.3642 0.7127 0.2799 0.4707 0.5691 0.3935 0.8703 0.5447

Table 2: Evaluation results for methods on JSD, KL, and Acc. ↓ indicates that a smaller value is better. ↑ indicates
that a larger value is better. The best values among methods are highlighted in bold.

Chaos
SNLI

Chaos
MNLI

Emotion

STD 0.3299 0.4219 0.4203
+ Pruning 0.3197 0.4091 0.4069
+ KD 0.2672 0.2881 0.3981
+ All 0.2635 0.2799 0.3935

Table 3: The results of ablation study (metric: JSD)

optimizer (Loshchilov and Hutter, 2019) for param-
eter update. Weight decay was set to 0.1.

4.5 Results

We describe the experimental results that are mea-
sured on the test sets in Table 2. As researchers
demonstrated in the previous work (Pavlick and
Kwiatkowski, 2019; Nie et al., 2020), the standard
method poorly estimates human opinion distribu-
tions and does not always outperform the chance
baseline. On the other hand, our method signifi-
cantly outperforms all baseline methods that are
trained with single gold labels (STD, MC, and LS).
Moreover, for NLI tasks, our proposed method
outperforms or is comparable with the baseline
method that uses additional human opinion distri-
bution datasets. However, for the emotion dataset,
our method does not outperform the methods that
use the additional resource.

These experimental results suggest that the rela-
tionship information encoded in the lower layers is
also a useful source for estimating human opinion
distributions. Moreover, such relationship informa-
tion could be more accurate than the relationship
information obtained from different forward passes
from MC dropout.

Figure 3: Validation accuracy and entropy in all layers.

5 Discussion

Which compression method is more effective?
As described in Table 3, KD is the most effective
technique to capture the ambiguity. As we argued
in Section 3.3, even though applying only the layer
pruning technique can yield better distributions
than the STD, it is not sufficient to exactly capture
the relationship information. Nevertheless, this
technique is still helpful to improve the ability to
capture the ambiguity when KD is used together.
Therefore, in a situation where highly reliable and
faster models are required, pruning can be a good
option.

Can our observations be reproduced over
different datasets? The design of our proposed
methods is based on our three observations in
Section 3.1. If these do not manifest in other
datasets, our method may not work in general.
Therefore, we conducted the same procedure
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ChaosSNLI ChaosMNLI Emotion
Diff.↓ JSD↓ Diff.↓ JSD↓ Diff.↓ JSD↓

STD 0.6092 0.3299 0.5749 0.4219 0.3987 0.4203
MC 0.5476 0.2984 0.5187 0.3718 0.3711 0.4044
LS 0.5753 0.2723 0.5469 0.3540 0.3850 0.4057
TS 0.5342 0.2626 0.4957 0.3095 0.3663 0.3859
LDL 0.4819 0.2185 0.4435 0.2991 0.2866 0.3338
Pruning 0.5997 0.3197 0.5614 0.4091 0.3791 0.4069
+KD 0.5265 0.2635 0.4686 0.2799 0.3610 0.3935

Table 4: The relationship between JSD and the average difference between the ground truth probabilities and
predicted probabilities for the ground truth labels (Diff.) when predictions are incorrect.

ChaosSNLI ChaosMNLI Emotion
JSD↓ KL↓ Acc.↑ JSD↓ KL↓ Acc.↑ JSD↓ KL↓ Acc.↑

LS 0.2723 0.5724 0.7173 0.3540 0.8574 0.5591 0.4057 0.9825 0.5610
LS+Ours 0.2441 0.3413 0.7200 0.2603 0.3786 0.5653 0.3800 0.7137 0.5569

Table 5: The degree of improvement when our method is applied to the fine-tuned models with label smoothing

described in Section 3.1 on the datasets used in
our experiments. As described in Figure 3, in
these datasets, we observed that the validation
accuracy is starting to converge in the lower layers
(observation (1)). We also found that feature
representations from a lower layer contain richer
information about the degree of relationship (see
Figure 5 in Appendix A). We also observed again
that after the most rapid drop of entropy value
occurs, models started to converge as described in
Figure 3. These suggest that our method can be
applied to various other NLU datasets as well.

Is maximizing the probabilities for ground truth
labels when predictions are incorrect a valid
solution for tuning λ of our KD loss? In order
to validate the tuning approach, we measure the
average difference between the ground truth proba-
bilities and predicted probabilities for the ground
truth labels as described in Table 4. We found that
KD with our tuning approach significantly reduces
the differences by maximizing the probabilities
for the ground truth labels and the reduced differ-
ences tend to decrease the values of JSD, which
suggests that our proposed tuning approach is valid.

Can models trained with label smoothing
be improved with our proposed method? Since
our method is applied to a fine-tuned model, we
looked into whether the proposed method can
further improve the estimation ability for human
opinion distributions on models trained with label

smoothing. In this case, we used smoothed labels
instead of one-hot labels y during knowledge
distillation. As shown in Table 5, our method
can significantly improve the ability of capturing
ambiguity in the models that have already been
calibrated with label smoothing.

What are additional benefits of our method?
In our experiments, 1 layer is pruned for the
emotion analysis model and 3 layers are pruned
for the NLI models. These result in significant
reduction in the number of model parameters
(from 125M (RoBERTa-base) to 117M and to
103M, respectively). We also measured the average
latency per 300 token input on a low-end mobile
device (i.e., Samsung Galaxy Tab S6 Lite). The
pruned network is also found to significantly
reduce the latency on the mobile device (from 2.42
sec. to 2.22 sec. and to 1.86 sec., respectively).

6 Conclusion

In this work, we proposed a novel method for cap-
turing ambiguity with deep model compression
techniques, namely layer pruning and knowledge
distillation. Experimental results demonstrate that
our method substantially improves the ability of
quantifying ambiguity and provides efficient com-
pressed models for NLU products.

As future work, we would further investigate
the availability of different compression methods
such as pruning self-attention heads and FNN be-
cause redundant components in modern complex

6900



deep learning may lead to over-confidence (Guo
et al., 2017). In another direction, we may also ad-
dress limitations that are revealed in our work, such
as multiple training procedures or hyperparameter
tuning for each method (e.g., how much we allow
accuracy drop during layer pruning).

Limitations

Although our method well estimates the ambiguity
without additional resources as well as boosting
model latency significantly, there are a few limita-
tions. First, our method requires additional training
procedures, such as training the internal classifiers
and KD. For this, we may fine-tune the original
model and internal classifiers simultaneously. An-
other limitation is in setting the hyperparameters.
We allow the drop of accuracy by 1% to determine
the target layer for layer pruning and the value of
λ for KD, but this could be subjective and differ
depending on the researchers’ experience. Finally,
we validated our method with a limited number
of benchmarks since most of datasets have been
released with only aggregated gold labels (Uma
et al., 2021).

Ethics Statement

We used well-known datasets that have no ethi-
cal issues (S/MNLI and SemEval-2007 Task 14
dataset). However, some samples may contain con-
tents unsuitable for certain individuals. In partic-
ular, the SemEval-2007 Task 14 dataset provides
news headlines that evoke readers’ negative emo-
tional reaction.

It should also be noted that our method cannot
still produce completely reliable distributions. This
means that our method may suffer from false facts
or biases. There is thus a possibility that one can
misuse our model to support their false facts with
the results from our model, though problems of this
kind are not unique to our model.
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A Reproducibility of Our Observations
over Different Models and Datasets

Figure 4: Visualization of feature distributions on tweet
emotion intensity dataset samples in BERT-base layers

Figure 5: Visualization of feature distributions on the
validation sets of MNLI (top) and SNLI (bottom)
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