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Abstract
Speech Recognition builds a bridge between
the multimedia streaming (audio-only, visual-
only or audio-visual) and the corresponding
text transcription. However, when training the
specific model of new domain, it often gets
stuck in the lack of new-domain utterances, es-
pecially the labeled visual utterances. To break
through this restriction, we attempt to achieve
zero-shot modality transfer by maintaining the
multi-modality alignment in phoneme space
learned with unlabeled multimedia utterances
in the high resource domain during the pre-
training (Shi et al., 2022), and propose a train-
ing system Open-modality Speech Recogni-
tion (OpenSR) that enables the models trained
on a single modality (e.g., audio-only) ap-
plicable to more modalities (e.g., visual-only
and audio-visual). Furthermore, we employ a
cluster-based prompt tuning strategy to han-
dle the domain shift for the scenarios with
only common words in the new domain ut-
terances. We demonstrate that OpenSR en-
ables modality transfer from one to any in
three different settings (zero-, few- and full-
shot), and achieves highly competitive zero-
shot performance compared to the existing few-
shot and full-shot lip-reading methods. To the
best of our knowledge, OpenSR achieves the
state-of-the-art performance of word error rate
in LRS2 on audio-visual speech recognition
and lip-reading with 2.7% and 25.0%, respec-
tively. The code and demo are available at
https://github.com/Exgc/OpenSR.

1 Introduction

Speech Recognition (Afouras et al., 2018a; Ren
et al., 2021; Zhao et al., 2020) (e.g., Audio-Visual
Speech Recognition known as AVSR) transcribs
visual and audio data into text form, building a
bridge between multi-media speech (Cheng et al.,
2023; Huang et al., 2023a,b; Cui et al., 2022; Aox-
iong et al., 2023) and natural language (Yin et al.,
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Figure 1: Comparison between OpenSR and previous
methods under different sizes of labeled visual utter-
ance. As the results highlighted by the red circle show,
OpenSR with zero-shot even outperforms most previous
methods with full-shot.

2022, 2021; Jin et al., 2022a,b; Jin, 2021). Among
them, ASR (Automatic Speech Recognition) and
lip-reading (VSR, Visual Speech Recognition) are
twin tasks transcribed using only audio and only
vision, respectively. Audio utterances with clear
pronunciation are sufficient for ASR training, most
of which can be easily collected from recordings of
telephone conversations and audiobooks (Korvas
et al., 2014). While current lip-reading training
systems require mostly-frontal and high-resolution
videos with a sufficiently high frame rate, such that
motions around the lip area are clearly captured
(Prajwal et al., 2022). The significant difficulty
of collecting labeled visual utterances hinders the
training of lip-reading models suitable for new do-
mains or low-resource domains, resulting in the rel-
atively low-speed development of domain-specific
lip-reading models, compared with ASR models.

Since audio speech is easier to obtain, can we
use audio utterance alone to train lip-reading mod-
els for target domains? Humans, once they have
mastered a language, can immediately predict the
lip movements of a phoneme (Meltzoff and Moore,
1977). Similarly, if we align the phoneme represen-
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tations of acoustic and image fragments with each
other, we can then apply the term distribution and
syntax specification of the target domain learned
from the audio utterance to lip-reading. Building
on this novel idea, we employ the audio-visual
aligned encoder, such as AV-Hubert, co-trained on
a large number of multi-modality high resource
domain utterances, to align the multi-modality ut-
terances in the same phoneme space, and train a
domain-specific decoder from phoneme space to
text using the labeled audio-only utterances. Since
the audio-visual encoder is trained to embed dif-
ferent modalities of the same phoneme near one
another (for instance, the visual phoneme feature
of /tu:/ is aligned with its audio phoneme feature),
we can flexibly transfer the knowledge of the target
domain (e.g., the mapping from phoneme /tu:/ to
homophones two and too, and the syntax used
to distinguish them) from a single modality (i.e.,
audio) to more modalities (i.e., visual-only and
audio-visual). As shown in Figure 1, the zero-shot
lip-reading performance of our method is even bet-
ter than most full-shot methods.

Furthermore, we propose to enhance the discrim-
ination of visually similar words (e.g., pet and
bet, which are audio distinguishable but visually
similar (Kim et al., 2022)) with more readily avail-
able utterances containing only common words.
However, the uneven word distribution causes the
sequence modeling to be easily corrupted by do-
main shift during fine-tuning (Huang et al., 2022).
We propose a cluster-based prompt tuning strategy,
Cluster Prompt, only tuning the limited pa-
rameters of the fine-grained prompt-embedding of
each visual phoneme cluster, to prevent excessive
impact on sequence modeling.

The main contributions are as follows:
• To the best of our knowledge, OpenSR is the

first to achieve zero-shot lip-reading, which
fully considers the modality transfer.

• OpenSR is the first low-resource lip-reading
method that attempts to leverage common
words, adopting the Cluster Prompt
strategy to overcome the ensuing domain shift
problem and improve the accuracy of lip-
reading by 19.1% to 36.1%.

• OpenSR achieves modality transfer and the
state-of-the-art performance in all three set-
tings (zero-shot, few-shot and full-shot). In
particular, it achieves 2.7% and 25% word
error rate on LRS2 in AVSR and lip-reading.

2 Related Work

2.1 Lip Reading
The lip-reading task has attracted many researchers
(Cooke et al., 2006; Afouras et al., 2018a), aim-
ing to recognize spoken sentences according to
the given video of lip movements without relying
on the audio stream. With the support of a large
amount of visual speech utterances (Afouras et al.,
2018a,b), Assael et al. (2016) first proposes to use
neural networks for lip reading. (Ma et al., 2021)
and (Shi et al., 2022) adopt different pre-training
strategies, attempting to obtain fine-grained lip rep-
resentation by pre-training on a large amount of ad-
ditional unlabeled audio-visual utterances (Chung
et al., 2018). Some works (Makino et al., 2019;
Serdyuk et al., 2021) adopt massive labeled visual
utterances (even more than 90,000h) for training
and promote the generalization of the model. How-
ever, none of these methods can train lip-reading
models without large amounts of labeled visual ut-
terances, making them unusable in low-resource
domains where labeled visual utterances are scarce
or unavailable. This is also the original intention of
our work, for which we propose a training system
that can employ only labeled audio utterances to
train the lip-reading model.

2.2 Transfer Learning from Audio to Video
Although the two parallel speech modalities, audio
and video, remain aligned at the temporal level,
ASR is still far more accurate than lip reading,
benefiting from its easy access to labeled audio
utterance and fine-grained phoneme audio repre-
sentation. Ma et al. (2021) hopes to take advantage
of this natural temporal alignment and use audio to
assist with lip-reading training. Ren et al. (2021)
proposes different distillation strategies (from ASR
to lip-reading) which enables lip-reading to learn
complementary and discriminant clues from ASR.
Shi et al. (2022) has adopted audio assisted pre-
training methods, that regard audio as the auxiliary
supervision for visual utterances in order to obtain
fine-grained phoneme visual representations. How-
ever, in previous methods (Ren et al., 2021; Huang
et al., 2021), audio only played the role of auxiliary
supervision, and the lip-reading models could not
be trained using non-visual utterances (i.e., audio)
alone. In our work, we attempt to maintain the
alignment of audio and video in phoneme space,
and employ only labeled audio utterances instead
of visual utterances to train the lip-reading model.
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Figure 2: Illustration of OpenSR training system. In the second stage, parameters other than those in the transformer
decoder are frozen to maintain the cross modality alignment state achieved in the first stage. We propose three
different tuning and inference strategies in the third stage for scenarios with different scales of labeled visual
utterances in the target domain.

3 Method

3.1 Audio-Visual Alignment Learning

AV-Hubert (Shi et al., 2022) is a self-supervised
representation learning method for audio-visual
speech, alternating between feature clustering and
mask prediction, as shown in the first stage of Fig-
ure 2. During the feature clustering, the audio-
visual speech is labeled as a sequence of frame-
level assignments z={zat }Tt=1 based on the se-
quence of image sequences V ={Vt}Tt=1 and au-
dio acoustic frames A={At}Tt=1 (MFCC or audio-
visual features from the previous encoder) with
a discrete latent variable model (e.g., k-means).
Subsequently, with the paired data (A, V, z), the
model learns a better audio-visual representation in
phoneme space fp={fp

t }
T
t=1 ∈ RT×D, where T is

the length of the sequence and D is the dimension
of the embedding, by reducing the mask prediction
loss, just like the mask language modeling in BERT
(Devlin et al., 2018). The above two steps are re-
peated during training to improve the quality of
audio-visual speech clustering and representation.

Furthermore, the random dropout of modalities

in the framework maps the speech features of differ-
ent modalities into the same phoneme space, which
not only optimizes the representation quality of
the uni-modality, but also achieves cross-modality
representation alignment with a large amount of
source domain (i.e., high resource domain) unla-
beled audio-visual utterances. OpenSR is the first
attempt to take full advantage of this cross-modality
alignment of speech representations.

3.2 Decoder Training with Audio Only

Now that the audio and visual representations have
been mapped into the same phoneme space, we can
use audio of the target domain as an alternative to
video when labeled visual utterance is scarce.

As shown in the second stage in Figure 2, we
adopt the AV-Fusion and the pre-trained Trans-
former Encoder in the first stage to obtain the
features of phoneme space fp={fp

t }
T
t=1 ∈ RT×D.

With only labeled audio utterance of the target do-
main fa={fa

t }Tt=1 ∈ RT×D as input, the audio-
visual feature fed into AV-Fusion can be formally
expressed as: fav

t =concat(fa
t ,0D) ∈ RT×2D,

similar to the modality dropout mechanism in pre-
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training stage. With the parameters of AV-Fusion
and the Transformer Encoder being frozen, we ob-
tain the fusion features fm={fm

t }Tt=1 ∈ RT×D:

fm = AV-Fusion(frozen)(f
av) (1)

and then encode them into a common phoneme
space,

fp = encoder(frozen)(f
m) (2)

The freezing parameter allows speech recognition
training to focus on the decoder (from the phoneme
space to the text space), while avoiding the miss-
ing visual modality utterances from destroying
the cross-modality alignment relationship in the
phoneme space. A tunable Transformer Decoder is
appended to autoregressively decode the phoneme
feature fp into the target probabilities:

p(wt|{wi}t−1
i=1, f

p)=decoder(tunable)(f
p) (3)

, where {wi}si=1 is the ground-truth transcription.
In the second and third stages of training, the
overall model is trained with cross-entropy loss
Ls2s=−∑s

t=1 log p(wt|{wi}t−1
i=1, f

p).

3.3 Tuning of Target-domain Decoder in
Lip-reading

The decoder trained with the target domain audio
utterances fully learns the word distribution and
syntactic characteristics of the target domain. Fur-
thermore, the OpenSR training system can further
tune the lip-reading model with the labeled visual
utterances. Depending on the amount of visual
utterances, it can be divided into three types: zero-
shot, few-shot and full-shot.

Zero-Shot In OpenSR, the target domain decoder
trained in the ASR can be directly transferred to the
target domain lip-reading. Both audio and video
are aligned in the same phoneme space, and the
co-usable decoder for multi-modality speech recog-
nition only needs to map from phoneme space to
text. In inferring on lip-reading, only the visual
utterances fv={fv

t }Tt=1 ∈ RT×D inputs into AV-
Fusion, and the fusion feature can be formally ex-
pressed as: fav

t =concat(0D, fv
t ).

Full-Shot When sufficient labeled visual utter-
ance is available for training, the model parameters
can be further fine-tuned. With the word distribu-
tion and specific syntax of the target domain, the
decoder can steadily boost the discrimination and
representation of the pre-trained encoder for visual
utterance.

Figure 3: Illustration of Cluster Prompt. The cluster-
wise softmax enables the model to assign appropriate
prompt embeddings to features based on clustering.

Few-Shot More commonly, when we can only
use visual utterances containing only common
words for training, the training of the model is
likely to be affected by the data distribution, and
the model will be more inclined to recognize com-
mon words. We adopt a prompt tuning strategy
called Cluster Prompt to make the model pay
more attention to local phoneme features, as shown
in the Figure 3.

In the first stage, the pre-training process uses k-
means to put cluster labels on audio-visual features
during training. We further explore this cluster-
based approach by tuning the learnable clustering
embeddings cj={cij}

N

i=1 ∈ RN×D for each cluster
in each layer layerj of the encoder, where N is
the number of the clusters. Cluster embedding is
the cluster-specific fine-grained bias from audio-
based to visual-based phoneme features, which is
used to further enhance the visual discriminabil-
ity between visually similar clusters. The input
xj={xt

j}
T

t=1
∈ RT×D to each layer is first fed into

a cluster network Meta, which is consisted of a
linear projection layer and a cluster-wise softmax
layer, to extract the cluster weights uj ∈ RT×N

for each phoneme features xj :

uj = Meta(tunable)(xj) (4)

and then combine the cluster embedding vector to
update each audio-visual fusion feature:

x′
j = xj + uj × cj(tunable) (5)

At the same time, we freeze the parameters of
the encoder and the decoder to maintain the learned
syntactic knowledge and reduce the tuning compu-
tational resources:

xj+1 = layerj(frozen)(x
′
j) (6)
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Table 1: Comparison of LRS2-COMMON with LRS2: TF stands for word frequency threshold, red numbers
indicate the number of utterances containing words that do not appear in the corresponding vocab.

Split-Name Train Test Val Vocab-Size Hours TF

LRS2-224H 142 157 1 082 1 243 41 370 224h -
LRS2-29H 45 839 1 082 1 243 17 660 29h -
LRS2-COMMONTF>10 22 669 1 082(514+568) 1 243(751+492) 2 385 11h >10
LRS2-COMMONTF>20 17 247 1 082(389+693) 1 243(631+612) 1 413 8h >20
LRS2-COMMONTF>50 10 122 1 082(231+851) 1 243(416+827) 626 4h >50
LRS2-COMMONTF>100 5 885 1 082(135+947) 1 243(253+990) 344 2h >100

4 Experiment

4.1 Datasets

LRS2 Afouras et al. (2018a) is one of the most
commonly used publicly available English wild
lip-reading datasets, including 224 hours of video
extracted from shows on BBC television. In the
original dataset, the training data is divided into two
partitions: Pretrain (195H) and Train (29H), both
of which are transcribed from videos to text at the
sentence level. The only difference is that the video
clips in the Pretrain partition is not strictly trimmed
and sometimes longer than the corresponding text.
We conducted experiments on LRS2 with different
training data amounts (i.e., Pretrain+Train(224h)
and Train(29h)). Note that since the video of the
LRS3 dataset has already been used in the pre-
training process of AV-Hubert, we do not conduct
experiments on it.

LRS2-COMMON Based on the LRS2 dataset,
we further propose the LRS2-COMMON to verify
the lip-reading performance of the few-shot model
trained with labeled visual utterances containing
only common words. We counted the word fre-
quency of each word in the Train partition of LRS2,
and extracted new training sets with only common
words according to the word frequency. Note that
during the inference, we use the complete Test and
Validation that contain not only common words.

4.2 Evaluation and Implementation Details

For all experiments on LRS2, we use the word er-
ror rate (WER) as the evaluation index of speech
recognition (both lip-reading and AVSR). WER
can be defined as WER=(S +D + I)/M , where
S,D, I,M represent the number of words replaced,
deleted, inserted and referenced respectively. Dur-
ing validation, the inference is only performed
when all of the validation utterances are of the
same modality as the training utterances. For ex-

Table 2: Comparison of full-shot, few-shot and zero-
shot methods on LRS2.1 The experiments highlighted
by the underline are in the zero-shot setting.

Type Method Labeled Utt(hrs)WER(%)
Video Audio

Full-Shot

Son Chung et al. (2017) 224 - 70.4
Afouras et al. (2018a) 698 - 49.8

Zhao et al. (2020) 698 698 65.3
Zhang et al. (2019) 698 - 51.7

Afouras et al. (2020) 224 808 51.3
Ren et al. (2021) 698 698 49.2

Prajwal et al. (2022) 698 - 28.9
Shi et al. (2022) 224 - 28.6
OpenSR(ours) 224 224 25.0

Few-Shot Afouras et al. (2020) 224 1032 54.2
Ma et al. (2021) 224 - 39.1

Zero-Shot OpenSR(ours) ✘ 29 39.2
OpenSR(ours) ✘ 224 36.0

ample, zero-shot lip-reading trained on labeled au-
dio utterances should also be validated with audio
utterances (the inference is performed on the visual
utterances, during the testing). In Section A, we
present more implement details.

4.3 Main Result

As shown in Table 2, we compare our method with
the previous methods in LRS2 to highlight the ef-
fect of our proposed training system OpenSR. As
the first training system that achieves zero-shot lip-
reading, OpenSR not only achieves the state-of-the-
art zero-shot and few-shot performance, but even
outperforms most full-shot methods. This demon-
strates that our training system can effectively train
lip-reading models suitable for domains lacking
labeled visual utterances. Furthermore, we demon-
strate that OpenSR can improve the lip-reading
capability of the full-shot lip-reading model. Since
the features of audio and video are projected in the

1The results presented are all trained using publicly avail-
able datasets.
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Table 3: Comparison of cross-domain method and cross-modality method in training lip-reading model for LRS2-
BBC. and indicate that the parameters in the Transformer Encoder are tunable and frozen, respectively. The
experiments highlighted by the underline are in the zero-shot setting.

Pretrain Model Training Split Training Encoder
Frozen WER(%) ID

Utt(hrs) A V

Transformer-BASE

Train

LRS3(30h) ✔ 54.9 (1)

LRS2(29h)

✔ 51.2 (2)
✔ 98.3 (3)
✔ 46.0 (4)
✔ ✔ (A)+ (V) 35.7 (5)

Train
+

Pretrain

LRS3(433h) ✔ 45.3 (6)

LRS2(224h)

✔ 39.7 (7)
✔ 98.5 (8)
✔ 42.3 (9)
✔ ✔ (A)+ (V) 31.7 (10)

Transformer-LARGE

Train

LRS3(30h) ✔ 43.0 (11)

LRS2(29h)

✔ 31.4 (12)
✔ 98.2 (13)
✔ 39.2 (14)
✔ ✔ (A)+ (V) 29.5 (15)

Train
+

Pretrain

LRS3(433h) ✔ 38.8 (16)

LRS2(224h)

✔ 28.6 (17)
✔ 97.4 (18)
✔ 36.0 (19)
✔ ✔ (A)+ (V) 25.0 (20)

same phoneme space after pre-training, a decoder
suitable for both ASR and VSR can be trained
using only labeled audio utterances. Benefiting
from this well-trained decoder, the performance is
improved by 2.1% compared to (Shi et al., 2022)
using a similar framework.

4.4 Cross Domain VS Cross Modality
For the domains without labeled visual utterances,
there are two ways to train lip-reading models us-
ing knowledge transfer: cross-domain and cross-
modality. The experiments in Table 3 provide an-
swers to the following questions about knowledge
transfer:

• How much does the domain shift affect the
lip-reading model?

• Is OpenSR training with cross-modality better
than cross-domain transferring?

When there is no labeled visual utterances for
lip-reading model training in the target domain
(Here with LRS2), most of the current methods
train on labeled visual utterances from other high
resource domains (Here with LRS3). Compared
with the model trained with in-domain utterances
(ID: 2,7,12,17), the performance of models trained

with other domains (ID: 1,6,11,16) utterances de-
creased by 3.7% - 11.6%, mainly because there
may be terminological and syntactic differences
among domains. In Section B, we thoroughly dis-
cuss the domain differences between two datasets
LRS2&3 of the similar domain from the perspec-
tive of term distribution.

In contrast, OpenSR training system learns the
word distribution and syntax of the target domain
from audio, which effectively avoids domain shift
that affects the lip-reading model transferring be-
tween domains. As shown in Table 3, even training
without labeled visual utterances, the performance
of OpenSR training with only audio utterances (ID:
4,9,14,19) can achieve considerable improvement
(2.8% - 8.9%) in varying degrees comparing with
cross-domain methods (ID: 1,6,11,16). In Section
C, we further present qualitative results on cross-
domain and cross-modality.

4.5 Pre-training alone cannot achieve
zero-shot modality transfer.

With the extraordinary performance of AV-Hubert
on the uni-modality speech recognition, there
might be some doubt that this zero-shot modality
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transfer benefits entirely from AV-Hubert. Indeed,
pre-training does align different modalities into the
phoneme space and enhance the feature representa-
tion, but as shown in the experiment (ID: 3,8,13,18)
in Table 3, the model with simple fine-tuning can-
not achieve zero-shot modality transfer yet. The
idea of parameter freezing in the second stage of
OpenSR makes the model better maintain the align-
ment state between audio and visual features in
phoneme space. Maintaining the multi-modality
alignment is the key to zero-shot modality trans-
fer, and OpenSR consistently achieves performance
commensurate with the scale of the training utter-
ances and model parameters with this property.

Table 4: Comparison of different strategies using only
common words for training. ‘>N’ indicates that the train-
ing visual utterances only contain words with TF>N in
LRS2. #Param is the tunable parameters during tuning.

WER in LRS2-COMMON
Training Strategy # Param(MB) >100 >50 >20 >10

Shi et al. (2022) 477.33(×1.00) 68.8 61.8 53.9 49.6
OpenSR

+Finetune 477.33(×1.00) 34.5 33.2 32.1 30.3
+Cluster prompt 9.84(× 0.02) 32.7 32.1 30.8 30.5

4.6 Model Tuning with Common Word Videos

Table 4 compares the performance and tuning pa-
rameter scale with the state-of-the-art method in
LRS2-COMMONs with different word frequen-
cies. The domain shift seriously affects the train-
ing of the decoder in AV-Hubert, when the word
frequency threshold of the tuning dataset (from
LRS2-224H to LRS2-COMMONTF>100) gradu-
ally increased, the WER of lip-reading increases
sharply, from 28.6% to 68.8%. By learning the
word distribution and specific syntax in the target
domain from audio, OpenSR ensures that the model
will not overfit the common words even if only the
video utterances containing a small number of com-
mon words is used, as shown in training strategy
‘OpenSR + Finetune’. Furthermore, our proposed
Cluster Prompt training strategy in the few-shot
scenario shows a further improvement compared to
training strategy ‘OpenSR + Finetune’ in terms of
common words with a high word frequency thresh-
old (‘>100’, ‘>50’ and ‘>20’). Also, note that the
amount of the tuning parameters (×0.02) of the
Cluster Prompt is significantly smaller than the
amount (×1.00) in the other strategies. In partic-
ular, with the decrease of the frequency threshold

Table 5: Ablation experiments of different tuning layers
in the model. The encoder and decoder have 24 and 9
layers respectively.

Method WER(%)

OpenSR(zero-shot) 35.995

OpenSR+Tuning the Encoder Layers
+ w/ encoder.layer.[18,24] 28.273

+ w/ encoder.layer.[12,18] 26.996
+ w/ encoder.layer.[ 6,12] 26.711

+ w/ encoder.layer.[ 0, 6] 26.426

OpenSR+Tuning the Decoder Layers
+ w/ decoder.layer.[ 0, 9] 32.522

OpenSR+Tuning the Encoder and Decoder Layers
+ w/ encoder.layer.[ 0,24] & decoder.layer.[ 0, 9] 24.954

of common words, the amount of tuning utterances
keeps increasing, and the influence of domain shift
gradually disappears. Compared to Cluster Prompt,
the strategy of fine-tuning learns more about the
distribution of the target domain that is applicable
to lip-reading from the common word utterances,
such as sequence modeling in the decoder specifi-
cally for the visual utterances.

4.7 Is the audio trained decoder suitable for
lip reading?

We conducted ablation experiments on modules
participating in fine-tuning to explore why OpenSR
could optimize the upper accuracy limit of the full-
shot lip-reading, as shown in Table 5. Only 3.473%
(from 35.995% to 32.522%) improvement comes
from tuning the decoder, while fine-tuning the pre-
trained encoder can achieve additional 9.569% im-
provement (from 35.995% to 26.426%). The lim-
ited improvement achieved by continuing to tune
the decoder demonstrates that the word distribution
and syntax learned in the audio modality can be
zero-shot transferred to the visual modality. Mean-
while, this is why OpenSR can increase the accu-
racy ceiling, as the encoder pre-trained on large
amounts of utterances and the decoder with knowl-
edge of the target domain can steadily boost each
other. Furthermore, we also attempt to determine
the parameters that need to be tuned most during
modality transfer. When tuning the last few layers
in the encoder, the performance boost is the most
pronounced, increasing the performance by 7.722%
(from 35.995% to 28.273%), while additional tun-
ing of all the other layers (encoder.layer.[0,18])
only provides a limited increase of 1.847% (from
28.273% to 26.426%). This demonstrates that what
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Figure 4: Comparison of lip-reading performance with
different number of clusters(N). For comparison, the
performance of inf in the figure is simply represented
by N=500.

needs to be further tuned while modality trans-
fer is the target-modality representation of the en-
coder, so that it can distinguish visually similar
words (e.g., PET and BET). By maintaining multi-
modality feature alignment, the decoder trained
with a single modality (i.e., audio) utterance can
directly apply the knowledge of the target domain
to lip-reading models.

4.8 Modality Prompt VS Cluster Prompt

The Cluster Prompt enables the model to provide
prompt embeddings according to the clusters of
different phoneme features. In Figure 4, we show
the influence of the number of clusters on the per-
formance of accuracy. Obviously, when there is
only one cluster, it can be considered as providing
the prompt embedding only for the visual modality,
which can also be called Modality Prompt. With
the increase of the number of clusters (N), the clus-
ter division of the model becomes more refined, so
that the prompt embedding also becomes more con-
sistent with each representation. In particularly, we
noticed that the accuracy decreases when the num-
ber of clusters increases to inf (the performance of
inf in the figure is simply represented by n=500).
This is because there is no enough data to support
the training of over-differentiated cluster specific
prompt embedding.

4.9 Performance of AV Speech Recognition.

OpenSR can also achieve zero-shot modality trans-
fer from a single modality to multi-modality, by
maintaining both audio and visual modality fea-
tures aligned at the same time. As shown in Table

6, OpenSR outperforms other methods in audio-
visual speech recognition. Note that, even in the
zero-shot setting, OpenSR performes better than
the full-shot performance previous of most pre-
vious methods. Furthermore, only using 29h vi-
sual utterance to participate in training is enough
to comprehensively surpass the previous methods.
Comparing with AV-Hubert of the same backbone,
the performance of OpenSR is 0.4% better, demon-
strating the significance of the term distribution
and syntax specification learned during a single
modality training for full-shot speech recognition
in other-modality.

Table 6: Comparison of audio-visual speech recognition
performance on LRS2. The experiment highlighted by
the underline is in the zero-shot setting.

Labeled Utt(hrs)
Method Video Audio WER(%)

Afouras et al. (2018a) 1428 1428 8.5
Petridis et al. (2018) 381 381 7.0

Yu et al. (2020) 224 224 5.9
Ma et al. (2021) 224 224 3.7
Shi et al. (2022) 224 224 3.1

- 224 3.3
29 224 2.8OpenSR(ours)
224 224 2.7

5 Conclusion

The bottleneck of domain-specific models is the
lack of target domain data, such as the challenge
of visual utterance collection in lip-reading. We
propose OpenSR, a training system that can train
target domain lip-reading models without using la-
beled visual utterance. The other modality models
can directly utilize the target domain knowledge
obtained from the single modality (e.g., audio) ut-
terance, via maintaining the multi-modality feature
alignment state learned during pre-training. This
zero-shot modality transfer idea can alleviate the
training problem caused by the severely scarce la-
beled data of some modalities. For example, de-
spite there is no labeled visual utterance of the
target domain, we can still use OpenSR to train the
lip-reading model with the labeled audio utterance
for the target-domain specifically. Furthermore, our
training system achieves zero-shot modality trans-
fer in a tuning-based manner, bringing a new per-
spective utilizing the pre-trained models, which can
be transferred to other multi-modality pre-training
models such as CLIP (Radford et al., 2021).
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6 Ethical Discussion

Lip-reading has many applications, including in-
struction dictation in public areas or a noisy en-
vironment and information accessibility for the
hearing impaired. OpenSR makes it possible to
quickly build domain-specific lip-reading models
for low-resource domains (lack of labeled visual
utterances), which greatly enhances the fairness
of lip-reading technology across the domains and
languages.

For speech recognition, there may be concerns
about the risk of information leakage. But in fact,
as mentioned above, the lip-reading model has
a relatively high requirement on the visual utter-
ances used for lip-reading, requiring mostly-frontal
and high-resolution videos with a sufficiently high
frame rate, such that motions around the lip area
are clearly captured. In general, only close-range
cameras or online meetings have similar video con-
ditions, which ensures that the lip-reading model
will not be abused in potentially privacy revealing
scenarios such as surveillance videos.
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A Implementation Details

Audio and Visual Utterance Preprocessing.
For the visual utterance, we only intercept the lip
region for lip-reading. As the previous methods
(Shi et al., 2022; Afouras et al., 2018a,b), we adopt
dlib (King, 2009) to detect the 68 facial keypoints
and align each face with its neighbors. We crop a
96×96 region-of-interest (ROI) talking head video
centered on the mouth from each visual utterance.
For the audio utterance, we also remain same pre-
processing steps as the prior works (Ma et al., 2021;
Shi et al., 2022). We extract the 26-dimensional log
filterbank energy feature from the raw waveform
and stack the 4 neighboring acoustic frames for
synchronization. During training, for data enhance-
ment, we randomly crop 88× 88 from the whole
ROI and flipped it horizontally with 0.5 probability.
To improve noise robustness, we apply noise with
a probability of 0.25 to each audio utterance from
(Snyder et al., 2015) as steps in (Afouras et al.,
2018a).

Pre-training Setup. OpenSR builds on pretrain-
ing process of AV-Hubert (Shi et al., 2022), directly
utilizing its checkpoint for the subsequent stages.
During pre-training, a modified ResNet-18 used in
prior works (Ma et al., 2021; Martinez, 2021) and a
linear projection layer are adopted as visual and au-
dio encoders, respectively. It considers two models
with different configurations: Transformer-BASE
and Transformer-LARGE have 12/24 Transformer
layers with the embedding dimension/feed-forward
dimension/attention heads of 768/3072/12 and
1024/4096/16. We simply adopted the pre-trained
model obtained by training on LRS3 (Afouras et al.,
2018b) and VoxCeleb2 (Chung et al., 2018).

OpenSR Tuning Setup in a Single Modality. In
the second stage of OpenSR, we fine-tune the de-
coder with the labeled audio utterance and the ab-
sent modality (visual) feature is replaced by a zero-
vector. For comparison, we adopt the same de-
coder configuration as (Shi et al., 2022), with 6
and 9 Transformer layers in Transformer-BASE
and Transformer-LARGE, respectively. With the
encoder parameters frozen, we fine-tune the de-
coder on a single 3090 GPU for 45K/120K steps
in the 29h/224h setting. Note that, also only audio
can be used while tuning the hyperparamters on
the validation set during the second stage. Con-
versely, during the inference or further tuning with
the visual utterance (the third stage), we only adopt

the visual utterance as input and replace the au-
dio feature with the zero-vector 0D. Each stage of
OpenSR is trained with Adam, with the learning
rate being warmed up for the first 50% of updates
to 0.0005.

B Word distribution differences between
domains

In this section, starting with LRS2 and LRS3, we
explore the differences in word distribution in dif-
ferent domains. Although both datasets are ex-
tracted from television shows (BBC and TED re-
spectively), we still find a huge difference in word
distribution between them, perhaps due to the dif-
ferent content of the shows.

Different frequencies of the same word in dif-
ferent domains. In Figure 5, we visually show
the word frequency of each word in LRS2&3, each
domain has more than 4,000 words that do not
appear in the other’s dictionary, as shown by the
red dots. There are also a number of words that
vary widely in word frequency from domain to do-
main, as shown by the points off the diagonal. In
general, words that are far off the diagonal tend
to be terms specific to the domain. Except for a
few words with high frequencies that are common
to all domains, most words have different word
frequencies in different domains. From the per-
spective of common terms in LRS2, we further
quantitatively reveal the differences of the common
terms distribution in Figure 6. There are 834 words
(2.02% of the LRS2 vocabulary size) with word
frequency differences (greater than and less than
10, respectively), demonstrating that a large part
of the terms is domain-specific. At the same time,

Figure 5: Different frequencies of the same word in
LRS2&3. The color shows the number of words at that
position.
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Figure 6: The number of terms whose TFlrs2 ≥ Klrs2

and TFlrs3 ≤ Klrs3. TFlrs2&3 and Klrs2&3 are the
word frequency of each word and the counting threshold
on LRS2&3, respectively.

Figure 7: The IOU of the words with the highest @Topk
word frequency between LRS2 and LRS3.

there are a number of terms that varied greatly be-
tween domains: 88 words with frequency over 10
(e.g., bargain, crafts and saxon) and 2 words with
frequency over 80 (cos and antiques) never appears
in LRS3.

The IoU of words in LRS2 and LRS3 In Figure
7, we show the IoU (Intersection over Union) of
the words with the highest @Topk word frequency
in two datasets. Among the top 100 words in the
two datasets, there are still 21 different words in ad-
dition to non-domain-specific generic words such
as ‘The’, ‘A’ and ‘I’ et al. From the perspective
of the whole dataset, the IoU of the dictionaries
in the two datasets is only 36.925%, which means
that there are a large number of words that occur
only in their respective domains. Even between
near-domain datasets LRS2 and LRS3, there are
differences both in the most commonly used words
and in the whole dictionary. In certain domains,
such as biomedicine and electronic information,
the greater difference in word distribution between

Table 7: Video clips of visually confusable words.

Reference: in touch
confusable answer: searched

Reference: rectify
confusable answer: ratify

Reference: britain’s
confusable answer: prints & print’s

Reference: fingers
confusable answer: fears & feelers

domains makes the lip-reading model unable to
transfer across domains.

C Qualitative Results

Performance on visually confusing words.
Zero-shot OpenSR trained using only audio per-
formed worse on similar-sounding words. We show
several video clips of visually confusable words in
Table 7, and show the performance comparison of
the model trained with different scale visual utter-
ances in Table 8. With the gradual introduction of
visual utterances, the lip-reading performance of
the model for visually confusable words is signifi-
cantly enhanced, demonstrating the significance of
our proposed further training using the utterances
of common words.

Performance with different term distributions
The distribution of terms will seriously affect the
recognition results, while the training speech recog-
nition models. If a term appears never or only a
few times, it is essentially unrecognized, as shown
in the Table 9. We notice that the models are more
likely to come up more common answers (words
with high frequency in the in-domain dictionary),
probably because the model needs to be trained to
fit the word distribution in the training utterances.
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Table 8: Qualitative comparison on visually confusing words. Red words highlights misidentified words, (strikeouts)
in parentheses highlight corresponding visually similar words and the (red words) in parentheses highlight the
absent words.

Ground Truth: people getting in touch and wanting to rectify wrongs
OpenSRZero-shot(0h): people getting searched (in touch) and wanting to ratify (rectify) what was
OpenSRFew-shot(2h): people getting in touch and wanting to rectify what is
OpenSRFull-shot(433h): people getting in touch and wanting to rectify what’s

Ground Truth: regarding one of britain’s most noted
OpenSRZero-shot(0h): regarding one of prints (britain’s) most noting
OpenSRFew-shot(2h): regarding one of print’s (britain’s) most noting
OpenSRFull-shot(433h): regarding one of britain’s most noting

Ground Truth: all my fingers were hanging off
OpenSRZero-shot(0h): all my fears (fingers) were hanging (off)
OpenSRFew-shot(2h): all my feelers (fingers) were hanging off
OpenSRFull-shot(433h): all my fingers were hanging off

Table 9: Qualitative performance comparison of models trained with utterances of different word distribution. The
misidentified words are highlighted in red and the absent words are highlighted with (red) in parentheses. The table
on the right shows the word frequency shift of the misidentified words in different domains.

Word Frequency
Ground Truth: he absolutely insisted on writing his own intro Term Dataset
AV-Hubert(LRS3): (he) absolutely assisted on writing his own intro LRS2 LRS3

OpenSRzero-shot(LRS2): he absolutely insisted on writing his own entro insisted 2 0
OpenSRfull-shot(LRS2): he absolutely insisted on writing his own injury intro 0 1

Word Frequency
Ground Truth: an opportunity to pay tribute to all members of the armed forces Term Dataset
AV-Hubert(LRS3): an opportunity to pay attribute to all members of the armed forces LRS2 LRS3

OpenSRzero-shot(LRS2): an opportunity to pay tribute to all members of the armed forces tribute 5 0
OpenSRfull-shot(LRS2): an opportunity to pay tribute to all members of the armed forces attribute 0 3

Word Frequency

Ground Truth: let’s take a look behind the scenes at how it all came Term Dataset
AV-Hubert(LRS3): let’s take a look behind the seeds (at) how it all came LRS2 LRS3

OpenSRzero-shot(LRS2): let’s take a look behind the scenes (at) how it all came scenes 14 2
OpenSRfull-shot(LRS2): let’s take a look behind the scenes (at) how it all game seeds 3 7
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Table 10: Comparison of Lip-Reading performance on LRS3. VC2-EN stands for the English utterances of
VoxCeleb2. For unlabelled utterances, only audio-visual speech can be employed for training (no corresponding
transcription). Experiments labeled with † used non publicly available dataset.

Mode Method Unlabeled Utts Labeled Utts WER(%)Video(hrs)

Full-Shot

Lira (Ma et al., 2021) - 590 43.3
VisualSR (Ma et al., 2022) - 1 459 31.5
† Sub (Prajwal et al., 2022) - 2 676 30.7
† RecurrentNN (Makino et al., 2019) - 31 000 33.6
† AV-VIT (Serdyuk et al., 2021) - 90 000 25.9

AV-Hubert (Shi et al., 2022) LRS3+VC2-EN 433 28.6
OpenSR(ours) LRS3+VC2-EN 433 28.5

Zero-Shot OpenSR(ours) LRS3+VC2-EN ✗ 30.6

D Zero-Shot Lip-Reading on LRS3.

We further present the performance on the LRS3
dataset in Table 10 (although it has been used in
pre-training). During pre-training, the encoder has
fully mastered the domain-specific knowledge (the
word distribution and syntax) in LRS3, resulting in
the performance of 30.6% under the zero-shot set-
ting that is very close to the performance of 28.5%
under full-shot (+2.1%). Note that, on the LRS2
dataset, which is not used during the pretraining,
the performance of zero-shot is 11% worse than
that of full-shot (36.0%->25.0%). In fact, the dif-
ference between the further tuning effects on LRS2
and LRS3 (11% and 2.1%) effectively can also ef-
fectively demonstrate the domain shift between the
LRS2 and LRS3 datasets.
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