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Abstract

Neural language models have achieved supe-
rior performance. However, these models
also suffer from the pathology of overconfi-
dence in the out-of-distribution examples, po-
tentially making the model difficult to inter-
pret and making the interpretation methods
fail to provide faithful attributions. In this
paper, we explain the model pathology from
the view of sentence representation and argue
that the counter-intuitive bias degree and direc-
tion of the out-of-distribution examples’ rep-
resentation cause the pathology. We propose
a Contrastive learning regularization method
using Adversarial examples for Alleviating
the Pathology (ConAAP), which calibrates the
sentence representation of out-of-distribution
examples. ConAAP generates positive and
negative examples following the attribution
results and utilizes adversarial examples to
introduce direction information in regulariza-
tion. Experiments show that ConAAP effec-
tively alleviates the model pathology while
slightly impacting the generalization ability on
in-distribution examples and thus helps inter-
pretation methods obtain more faithful results.

1 Introduction

Neural language models have achieved superior
performance in various natural language process-
ing (NLP) domains and are used in many fields to
accomplish critical tasks, such as toxic comment
classification and rumor detection. However, the
drawbacks of NLP models in test-time interpretabil-
ity pose potential risks to these tasks, as existing
interpretation methods always fail to obtain faith-
ful attributions on these models, thereby failing to
reveal potential flaws and biases.

Following Ribeiro et al. (2016), Schwab and
Karlen (2019), and Situ et al. (2021), the attribu-
tion obtained by a faithful interpretation method
should indicate the real contribution of features in
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Figure 1: Confidence distribution comparison between
BERT tuned with normal method and ConAAP. We re-
move words of different importance on normal exam-
ples in testing set (operation is detailed in §3.3). The
attribution is obtained by gradient-based method (§3.2).
The normally tuned model is pathological, as the con-
fidence distribution after removing important words is
similar to after removing unimportant words, indicat-
ing that the interpretation method can not obtain faith-
ful attributions. The model tuned with ConAAP is non-
pathological, as the model can discriminate between
the important and unimportant words in terms of confi-
dence changing, and the attributions are more faithful.

terms of model confidence changing. Specifically,
the important words marked by a faithful attribu-
tion should contribute most to the model prediction,
and masking them out from the sentence should
greatly decrease model confidence. Conversely,
unimportant words should have little impact on pre-
diction and confidence. However, abnormal model
behaviors have been widely reported in previous
works. For example, Goodfellow et al. (2015) il-
lustrate that a well-trained model will sometime
predict pure noise rubbish examples, which should
contain only the unimportant features, with high
confidence. Feng et al. (2018) also find that model
tends to predict meaningless examples with tokens
removed with higher confidence than normal exam-
ples. We also demonstrate similar abnormal behav-
ior and the unfaithfulness of attribution by showing
the confidence distribution on the Movie Review
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(MR) testing set (Pang and Lee, 2005) of the basic
version BERT (Devlin et al., 2019) fine-tuned on
MR training set in Figure 1.

According to Guo et al. (2017) and Feng et al.
(2018), model pathology is a major reason for
these abnormal behaviors. They argue that neu-
ral language models are overconfident in their
prediction as the model overfits the negative log-
likelihood loss to produce low-entropy distribution
over classes. Thus the model will also be over-
confident in examples outside the distribution of
training instances, leading to the counter-intuitive
model confidence in these abnormal behaviors. Em-
pirically, Feng et al. (2018) also demonstrate the
explanation by mitigating the pathology with an en-
tropy regularization that maximizes the uncertainty
on out-of-distribution examples. Following their
findings, we argue that the interpretation method
fails to provide faithful results is mainly due to the
drawback of models rather than the drawback of the
interpretation method itself, i.e., the unfaithfulness
of attribution is due to the model pathology.

In this paper, we explain the model pathology,
which potentially makes the model difficult to in-
terpret, from the view of sentence representation,
and intuitively show how the pathology leads to
unfaithfulness attribution and how to alleviate the
pathology effectively. Based on our findings, we
also propose a Contrastive learning regularization
method using Adversarial examples for Alleviating
the Pathology (ConAAP). We summarize our main
contributions as follows:

1. We explain the model pathology and how it
causes the unfaithfulness attribution from the
view of sentence representation. We argue
that the counter-intuitive bias degree and bias
direction of the out-of-distribution examples
are two key factors leading to the pathology.

2. We propose ConAAP, a contrastive learning
regularization method that calibrates the sen-
tence representation of out-of-distribution ex-
amples. ConAAP generates positive and nega-
tive examples following the attribution results
and utilizes adversarial examples to introduce
direction information in regularization.

3. Experiments show that ConAAP effectively
alleviates the model pathology while slightly
impacting the generalization ability on in-
distribution examples and thus helps interpre-
tation methods obtain more faithful results.

2 Related Work

Interpreting the Language Model. To interpret
a language model, previous works utilize the
gradient-based method (Li et al., 2016; Sundarara-
jan et al., 2017; Ross et al., 2017; Zhan et al., 2022a;
Feng et al., 2018; DeYoung et al., 2020), atten-
tion scores (Bahdanau et al., 2015; Luong et al.,
2015; Vaswani et al., 2017), Occlusion (Gao et al.,
2018; Li et al., 2019; Jin et al., 2020; Zhan et al.,
2022b; Li et al., 2020), and Shapley values (Lund-
berg and Lee, 2017) to attribute the model predic-
tion. To quantitatively evaluate the faithfulness of
the obtained attribution, metrics including Reduced
Length (Feng et al., 2018), Comprehensiveness,
Sufficiency, and Area Over the Perturbation Curve
(AOPC) (DeYoung et al., 2020) are proposed.

Contrastive Learning. Encouraged by the re-
markable success of contrastive learning in com-
puter vision (CV) in learning better representa-
tion and improving performance on downstream
tasks (Chen et al., 2020b,a; Pan et al., 2021), var-
ious methods have been proposed for NLP tasks.
Limited by the discrete nature of text, instead of
generating contrastive pairs by cropping, resizing,
and rotating the input like in CV tasks, previous
works in NLP are always by back-translating, word
deleting, reordering, and substituting (Giorgi et al.,
2021; Wu et al., 2020; Gao et al., 2021). It is shown
that contrastive learning helps improve sentence
representation and model performance on down-
stream NLP tasks. However, few works focus on
model pathology and interpretability.

Adversarial Examples in Contrastive Learning.
It is found that using adversarial examples, which
can fool the model while being imperceptible to
humans (Gao et al., 2018; Li et al., 2019; Jin
et al., 2020; Li et al., 2020), in contrastive learn-
ing, can produce better sentence representations
and increase downstream performance. However,
previous works always utilize adversarial examples
as challenging examples and focus on the model
robustness and performance (Kim et al., 2020; Ho
and Vasconcelos, 2020; Meng et al., 2021) rather
than the model pathology and interpretability.

3 Method

3.1 Preliminaries

Given a data distribution D over input textX ∈ X
and output labels Y ∈ Y = {1, . . . , C}, a model
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fθ : X → Y maps the input text to the output soft-
max probability, which is trained by minimizing
the empirical risk Lce(X, Y ;θ) that equals to

E(X,Y )∼D[− log
exp(wTY rθ(X))

∑C
k=1 exp(w

T
k rθ(X))

] (1)

whereW is the classification parameters, wY ∈ W
denotes the classification parameters toward class
Y , θ is the model parameters, and rθ(·) denotes
the sentence representation of input text. Specifi-
cally, in classification tasks, BERT always uses the
value of [CLS] token as representation, while other
models, including LSTM and CNN, always use
the average token embedding before the last dense
layer. After training, the model correctly classifies
text based on the posterior probability:

P(Ytrue|X) =
exp(wTtruerθ(X))

∑C
k=1 exp(w

T
k rθ(X))

(2)

where wtrue denotes the classification parameters
toward the ground-truth class Ytrue. This value is
always regarded as the confidence in prediction.

3.2 Faithful Attribution
In this paper, we use the gradient-based method as
the basic interpretation method to obtain attribution,
which is formally defined as follows:

Attr(X) =

(∥∥∥∥
∂ wTtruerθ(X)

∂ emb(xi)

∥∥∥∥
2

)

i∈{1,...,N}
(3)

where X = x1x2 . . . xN is a normal sentence,
emb(·) denotes the word embedding. To measure
the faithfulness of the obtained attribution, previous
works always measure the influence of words of dif-
ferent importance on model confidence. We use the
Area Over the Perturbation Curve (AOPC) form
of Comprehensiveness (Comp.) and Sufficiency
(Suff.) metrics (DeYoung et al., 2020; Samek et al.,
2017; Nguyen, 2018) to measure the faithfulness.
AOPCComp. is formulated as

1
K+1

K∑
k=1

P(Ytrue|X)− P(Ytrue|timp
/k (X)) , (4)

and AOPCSuff. is formulated as

1
K+1

K∑
k=1

P(Ytrue|X)− P(Ytrue|tump
/k (X)) , (5)

where timp
/k (·) means remove the k most important

words in a sentence according to attribution, while

tump
/k (·) means remove the k least important words,
K indicates the range of words to be considered.
If attribution is faithful, it is expected to have a
high AOPCComp. value and a low AOPCSuff. value,
indicating that the information in the important
words has an overall larger impact on prediction
than in unimportant words.

3.3 Model Pathology From the View of
Sentence Representation

In this section, we explain the model pathology
from the view of sentence representation and try to
answer how does the pathology lead to unfaithful-
ness attribution?

Feng et al. (2018) propose an analysis method
called input reduction, which iteratively calculates
the attribution and removes the least important
word in a sentence. By analyzing the model confi-
dence change on the incomplete sentence, they find
that when the reduced examples are nonsensical for
humans and lack information for supporting the pre-
diction, the models still make the same prediction
as the original sentence with high confidence. The
counter-intuitive high confidence is attributed to the
model overconfidence in such out-of-distribution
examples.

To make the analysis process more compatible
with the calculation of faithfulness (4) (5), we use
a variant reduction method to generate incomplete
out-of-distribution examples rather than the one
proposed by Feng et al. (2018). Specifically, given
a sentence and a well-trained model, we first obtain
the attribution of the sentence according to (3), and
then cumulatively remove the words in the sentence.
We remove not only the unimportant words but also
the important words. For the important words, we
cumulatively remove 50% of words in descending
order of the attribution. For the unimportant words,
we cumulatively remove 50% of words in ascend-
ing order of the attribution. Additionally, we gen-
erate adversarial example, which is imperceptible
to humans and can mislead the model prediction,
from the given normal sentence with PWWS (Ren
et al., 2019). Therefore, we have four kinds of
examples: (i) the in-distribution normal example,
(ii) the out-of-distribution examples with important
words removed, (iii) the out-of-distribution exam-
ples with unimportant words removed, and (iv) the
adversarial example located on the other side and
in the vicinity of the decision boundary.

Following these operations, we fine-tune a basic
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# Reduced words # Reduced words# Reduced words1 2 3

1

2

3 importance

Gosling provides an awful performance that

dwarfs everything else in the film.

Adversarial sentence      generated by PWWS: Adversarial sentence      generated by PWWS:

An idealistic screw story that wreak out the latent

romantic in everyone.

Adversarial sentence      generated by PWWS:

Morton is a bully actress portraying a complex

character.

Figure 2: The visualization of sentence representations and the attribution obtained by gradient-based interpretation
on MR instances. For the representation visualization, darker4 and � indicate out-of-distribution examples with
more words removed. The out-of-distribution examples closer to the original example are more likely to maintain
the same model prediction as the original example, while the examples closer to the adversarial example tend to
decrease the confidence in the original class as the adversarial example leads to different predictions and is located
in the vicinity of the decision boundary. For the attribution, darker colors indicate higher importance.

BERT on MR training set and obtain the sentence
representations of the four kinds of examples de-
rived from the MR testing set instances. We then
project the representations to a two-dimensional
space with t-SNE (van der Maaten and Hinton,
2008). The visualization of the sentence represen-
tation of three MR instances and their attributions
according to (3) are shown in Figure 2. We can
summarize some counter-intuitive phenomena.

Observation 1: When the most important few
words are removed, the representations of such
incomplete out-of-distribution examples are still
very close to the original sentence. Intuitively, the
most important few words should contain the most
significant information for supporting the predic-
tion. Losing this information, the model confi-
dence should decrease, and the representation of
such incomplete sentences should be close to the
adversarial example, which is located on the other
side and in the vicinity of the decision boundary.
Focusing on instance 1©, when the three most im-
portant words amazing (N), dwarfs (N), and ev-
erything (N) are removed from the instance, the
sentence is transformed into “Gosling provides an
amazing performance that dwarfs everything else
in the film.”, which is unfathomable to humans
and does not contain any information supporting
classifying this incomplete sentence into any class

(positive or negative). However, the representation
of this sentence (N) is still close to the original sen-
tence (•), indicating that the model still regards it
belongs to the original class with high confidence.

Observation 2: When unimportant words are re-
moved, the representations of such incomplete out-
of-distribution examples are biased away from the
original sentence more than expected. Intuitively,
the unimportant words should contain low-impact
information to support the prediction. Losing this
unimportant information, the model confidence
should almost not change, and the representations
of such incomplete sentences should still be close
to the original sentence. Focusing on instance 1©,
when the six least important words else (�), film
(�), Gosling (�), an (�), in (�), and the (�) are
removed from the instance, the sentence is trans-
formed into “Gosling provides an amazing per-
formance that dwarfs everything else in the film.”.
Even though this sentence is grammatically incor-
rect, it is still easy for humans to classify it as
a positive example. However, the representation
of this incomplete sentence (�) is largely biased
from the original examples (•) and is even closer
to the adversarial example (6) than the sentence
with three important words removed (N), indicat-
ing that the model predicts this out-of-distribution
examples with lower confidence.
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Similar phenomena can also be observed in in-
stances 2© and 3©. More results can be found in Ap-
pendix B.2. Based on Observation 1 and Obser-
vation 2, we can answer the question raised before
from the view of sentence representation: When
important words are masked out from the sentence,
the representations of such out-of-distribution ex-
amples are sometimes too close to the original
sentence, maintaining the high model confidence,
even if such examples do not contain any informa-
tion supporting the prediction. When unimportant
words are masked from the sentence, the repre-
sentations of such out-of-distribution examples are
sometimes largely biased away from the original
sentence and are approaching the decision bound-
ary, decreasing the model confidence, even if such
examples are still easy for humans to classify.

Appendix B.1 provides further study on the dis-
tance between out-of-distribution sentences and the
in-distribution normal sentence, which supports our
claim on Observation 1 and Observation 2.

3.4 Contrastive Learning with Adversarial
Examples for Alleviating the Pathology

In this section, we try to answer how to alleviate the
pathology effectively? We also detail the proposed
ConAAP regularization method. According to our
analysis, the model pathology can be explained by
the counter-intuitive sentence representation distri-
bution of out-of-distribution examples. Therefore,
a natural way to alleviate the pathology is to cali-
brate their distribution. To calibrate the sentence
representation, we should focus on both the bias
degree and bias direction.

For the out-of-distribution examples with unim-
portant words removed, which are always used to
measure the AOPCSuff. value, we try to decrease the
bias degree of their representation from the orig-
inal normal example, as most of these examples
are still easy to classify. For the out-of-distribution
examples with important words removed, which
are always used to measure the AOPCComp. value,
we try to increase the bias degree of their represen-
tation from the original normal example, as these
examples are more difficult to classify. However, if
they are pushed away from the original example in
a direction away from the decision boundary, the
counter-intuitive high confidence will still be main-
tained. Therefore, we also simultaneously force
their bias direction toward the decision boundary,
which is indicated by the adversarial example.

To achieve the calibration, we reuse the word
removal operation we proposed in §3.3 and used in
Figure 2. The operation to delete important words
is defined as tneg, and the operation to delete unim-
portant words is defined as tpos. We also define
the operation that generates adversarial examples
as tadv. To formulate the contrastive loss objective
of ConAAP, for convenience, we first define the
calculation S:

S(k,l)(i,j) = exp(sim[rθ(X
k
i ), rθ(X

l
j)]/τ) (6)

where sim denotes the cosine similarity, i.e.,
sim[ri, rj ] = r

T
i rj/‖ri‖‖rj‖. k, l denotes the ex-

ample type, and k, l ∈ {neg, pos, adv, ·}, which re-
spectively indicates the exampleXneg,Xpos,Xadv

sampled from the examples generated by the oper-
ations tneg, tpos, tadv, and the normal example. i, j
are the example indexes. τ is a temperature param-
eter similar to the normalized temperature-scaled
cross-entropy (NT-Xent) loss (Chen et al., 2020a;
van den Oord et al., 2018). Therefore, for a normal
example in a mini-batch {Xi}Bi=1, the loss objec-
tive of ConAAP can be formulated as:

LConAAP(Xi;θ) = E
{Xi}Bi=1∼D
Xpos

i ∼tpos(Xi)

Xneg
i ∼tneg(Xi)

Xadv
i ∼tadv(Xi)

[− log
S(·,pos)
(i,i)

+S(neg,adv)
(i,i)∑B

j=1(Snegative)
]

(7)

where

Snegative =S(·,neg)
(i,i) + S(·,adv)

(i,i)

+ 1[i 6=j][S(·,·)(i,j) + S
(·,neg)
(i,j) + S(·,pos)

(i,j) ]

and 1[·] ∈ {0, 1} is an indicator function that
equals 1 if [·] is true, B is the batch size.

To reduce the bias degree from the original ex-
ample of the representation of out-of-distribution
examples with unimportant words removed, we use
the term S(·,pos)

(i,i) in the numerator. This constraint
increases the similarity between the representation
of the normal example and examples with unimpor-
tant words removed, implying that model should
regard the information in the removed unimportant
words only slightly impacting the prediction.

To increase the bias degree from the original
example of the representation of out-of-distribution
examples with important words removed, we use
the term S(·,neg)

(i,i) in the denominator. This constraint
decreases the similarity between the representation
of normal example and examples with important
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words removed, implying that model should regard
the information in the removed important words
significant in prediction.

We simultaneously use the term S(neg,adv)
(i,i) in

the numerator to force the bias direction of out-
of-distribution examples with important words re-
moved toward the decision boundary indicated by
the adversarial example. We also use the term
S(·,adv)
(i,i) in the denominator to prevent the represen-

tation of normal example and adversarial example
from collapsing together, ensuring that the adver-
sarial example can always be utilized as a guide to
locate the direction of decision boundary. It should
be noted that ConAAP only focuses on alleviating
the model pathology, and we leave improving the
model robustness to future work.

The terms S(·,·)(i,j)+S
(·,neg)
(i,j) +S(·,pos)

(i,j) in the denom-
inator imply that the model should differentiate the
various examples and their derived examples in a
mini-batch, as the semantics of different examples
should be different.

Finally, we use the LConAAP as regularization
and combine it with the normal training method,
which originally trains the model only with maxi-
mum likelihood. The overall objective can thus be
formulated as follows:

minθ Lce(X, Y ) + α LConAAP(X) (8)

where α is a parameter balancing the two parts.

4 Experiment

4.1 Metrics
We measure the model pathology and the faith-
fulness of attribution with metrics AOPCComp. and
AOPCSuff., and the parameter K in them is both
set as the 40% of words for each sentence. We
use AOPCDiff. to indicate the difference between
AOPCComp. and AOPCSuff., i.e., the difference be-
tween the overall influence of words of different
importance on prediction. Based on the Reduced
Length (Feng et al., 2018), we also use IR# and
UR# to measure the influence of Important and
Unimportant words on prediction, measuring the
number of important and unimportant words re-
moved until the prediction changes. We use RDiff.

to indicate the difference between IR# and UR#.
Larger AOPCDiff. and RDiff. are expected for a non-
pathological model and faithful attribution. We also
use accuracy (ACC.) and confidence (P(Y |X))
on normal examples to measure the generalization
ability of model on in-distribution examples.

4.2 Experiment Setup
Dataset. Focusing on the text classification, our
experiments are performed on AG News (Zhang
et al., 2015), MR (Pang and Lee, 2005), and
IMDB (Maas et al., 2011). More details of datasets
are provided in Appendix A.1.

Model. Three models in different architectures
are adopted. For TextCNN, we reuse the archi-
tecture in (Kim, 2014) while replacing the embed-
ding with the 300-dimensional GloVe (Pennington
et al., 2014). For LSTM (Hochreiter and Schmid-
huber, 1997), we connect a Bi-LSTM layer with
150 hidden units with a dense layer based on the
300-dimensional GloVe layer. For BERT (Devlin
et al., 2019), we use the base uncased version.

Baseline. To show the effectiveness of ConAAP
and empirically demonstrate the analysis of the
bias degree and bias direction we provide in §3.3
and §3.4, we use the following baselines: (i) Nor-
mal: using (1) as objective. (ii) ConAAP: com-
bining (7) with Normal method, using (8) as ob-
jective. (iii) Entropy: maximizing the model un-
certainty on the reduced examples (Feng et al.,
2018). Please see Appendix A.3 for more details
on Entropy method. (iv) ConAAP w/o imp-dir:
removing S(neg,adv)

(i,i) ,S(·,adv)
(i,i) in LConAAP, indicating

removing the calibration on the bias direction of
out-of-distribution examples with important words
removed. (v) ConAAP w/o imp-deg-dir: removing
S(·,neg)
(i,i) ,S(neg,adv)

(i,i) and S(·,adv)
(i,i) in LConAAP, indicat-

ing removing the calibration on both the bias degree
and direction of out-of-distribution examples with
important words removed.

Implementation Details. The batch size is set
as 64. For efficiency, we use a method called
CharDelete to generate adversarial examples in
tadv, which randomly deletes characters in the im-
portant words until the attack success. More de-
tails of CharDelete are in Appendix A.2. We use
Adam (Kingma and Ba, 2015) as the optimizer.
Most setting of learning rate / α / τ for LSTM,
TextCNN, and BERT is 5e-4/1.2/0.1, 5e-4/1.2/0.1,
3e-5/1.2/0.01. All reported results are the average
of five independent runs.

4.3 Main Results
ConAAP marginally impacts the generalization
performance for in-distribution examples. Ta-
ble 1 illustrates the accuracy and confidence results
for in-distribution examples. Utilizing ConAAP
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LSTM TextCNN BERT

Method ACC. ↑ P(Y |X) ACC. ↑ P(Y |X) ACC. ↑ P(Y |X)

AG News

Normal 91.59 0.93 91.45 0.94 94.64 0.99
Entropy 90.76 0.93 91.51 0.92 94.61 0.97
ConAAP 90.71 0.89 91.21 0.92 94.28 0.96
w/o imp-dir 90.32 0.92 91.17 0.92 94.13 0.95
w/o imp-deg-dir 90.31 0.91 91.43 0.93 94.39 0.96

MR

Normal 79.34 0.85 79.02 0.83 86.40 0.97
Entropy 78.05 0.86 78.83 0.84 86.39 0.99
ConAAP 78.23 0.82 78.24 0.88 87.05 0.97
w/o imp-dir 77.89 0.79 77.83 0.80 87.32 0.95
w/o imp-deg-dir 77.82 0.81 77.69 0.81 87.14 0.96

IMDB

Normal 78.12 0.84 77.53 0.82 84.08 0.99
Entropy 75.71 0.78 77.64 0.78 83.39 0.90
ConAAP 77.45 0.82 77.68 0.81 84.09 0.99
w/o imp-dir 77.46 0.83 77.33 0.82 83.08 0.95
w/o imp-deg-dir 77.52 0.82 77.21 0.82 83.40 0.96

Table 1: The comparisons of model accuracy and con-
fidence on in-distribution normal sentences.

as regularization during training has a minimal im-
pact on the model’s behavior for in-distribution
examples, as evidenced by the marginally changed
model accuracy and confidence. The accuracy dif-
ference between ConAAP and Normal training
methods is within 1.11%, and the model confi-
dence on normal examples P(Y |X) decreases by
at most 0.04 compared to Normal method. These
results demonstrate that imposing regularization on
the sentence representations of out-of-distribution
examples only slightly compromises the model’s
generalization performance for in-distribution ex-
amples. Furthermore, bias degree and direction
constraints in ConAAP also have only a minor im-
pact on generalization capabilities.

ConAAP effectively alleviates model pathology.
Table 2 illustrates the results on model pathology
and attribution faithfulness. ConAAP consistently
yields the largest values for RDiff. and AOPCDiff.,
indicating that the model considers the information
in important words to have a more significant im-
pact on predictions than that in unimportant words,
and the attributions are more faithful. Moreover,
when the calibration on the bias direction of out-
of-distribution examples with important words re-
moved (w/o imp-dir) is removed, both RDiff. and
AOPCDiff. decrease, indicating less faithful attribu-
tions and reduced effectiveness in alleviating model
pathology. Removing the calibration on both the
bias degree and direction of out-of-distribution ex-
amples with important words removed (w/o imp-
deg-dir) leads to further reductions in RDiff. and
especially AOPCDiff. values, demonstrating the ef-

IR# UR# RDiff. ↑ AComp. ASuff. ADiff. ↑
AG News

LSTM

Normal 26.59 28.74 2.15 0.07 0.03 0.04
Entropy 25.40 28.42 3.02 0.06 0.02 0.04
ConAAP 22.32 27.74 5.42 0.18 0.05 0.13

w/o imp-dir 22.97 27.50 4.53 0.18 0.09 0.09
w/o imp-deg-dir 23.05 27.76 4.71 0.16 0.09 0.07

TextCNN

Normal 19.54 23.45 3.91 0.12 0.04 0.08
Entropy 19.57 24.50 4.93 0.16 0.03 0.13
ConAAP 18.68 24.59 5.91 0.22 0.04 0.18

w/o imp-dir 18.77 23.88 5.11 0.22 0.07 0.15
w/o imp-deg-dir 19.38 24.22 4.84 0.17 0.05 0.12

BERT

Normal 27.74 34.72 6.98 0.03 0.01 0.02
Entropy 27.10 34.85 7.75 0.04 0.01 0.03
ConAAP 24.09 34.78 10.68 0.18 0.01 0.17
w/o imp-dir 27.04 34.68 7.64 0.12 0.02 0.10
w/o imp-deg-dir 28.08 34.92 6.84 0.05 0.01 0.04

MR

LSTM

Normal 9.95 12.68 2.73 0.07 0.03 0.04
Entropy 9.17 12.03 2.86 0.09 0.04 0.05
ConAAP 8.94 12.46 3.52 0.13 0.03 0.10

w/o imp-dir 9.61 12.76 3.15 0.10 0.02 0.08
w/o imp-deg-dir 9.13 12.53 3.40 0.10 0.03 0.07

TextCNN

Normal 11.42 13.40 1.98 0.08 0.04 0.04
Entropy 9.51 11.28 1.77 0.08 0.03 0.05
ConAAP 6.61 9.90 3.29 0.19 0.06 0.13

w/o imp-dir 7.09 9.88 2.79 0.19 0.08 0.11
w/o imp-deg-dir 7.23 10.28 3.05 0.17 0.07 0.10

BERT

Normal 11.42 15.02 3.60 0.06 0.03 0.03
Entropy 10.43 14.91 4.48 0.05 0.02 0.03
ConAAP 10.31 15.08 4.77 0.20 0.02 0.18

w/o imp-dir 10.97 15.12 4.15 0.10 0.02 0.08
w/o imp-deg-dir 10.69 15.09 4.40 0.05 0.02 0.03

IMDB

LSTM

Normal 25.85 36.18 10.33 0.05 0.01 0.04
Entropy 27.63 34.76 7.13 −0.04 0.01 −0.05
ConAAP 20.33 37.38 17.05 0.15 0.05 0.10

w/o imp-dir 20.59 37.03 16.44 0.12 0.05 0.07
w/o imp-deg-dir 22.51 37.05 14.54 0.13 0.07 0.06

TextCNN

Normal 19.03 25.04 6.01 0.07 0.02 0.05
Entropy 20.34 24.53 4.19 0.10 0.06 0.04
ConAAP 16.02 26.69 10.67 0.14 0.03 0.11

w/o imp-dir 18.10 26.39 8.29 0.13 0.04 0.09
w/o imp-deg-dir 18.90 26.58 7.68 0.13 0.04 0.09

BERT

Normal 24.94 37.36 12.42 0.04 0.02 0.02
Entropy 23.94 37.60 13.66 0.11 0.02 0.09
ConAAP 22.49 36.34 13.85 0.16 0.02 0.14
w/o imp-dir 23.78 36.86 13.08 0.13 0.02 0.11
w/o imp-deg-dir 24.46 36.91 12.45 0.08 0.03 0.05

Table 2: The comparisons of the pathology of model
and the faithfulness of attribution. A is short for AOPC.

fectiveness of ConAAP’s multi-view objective that
simultaneously calibrates the bias degree and direc-
tion of the representations of various examples.

4.4 Further Analysis and Ablation Study

In this section, we conduct further analysis and
ablation study on BERT and MR dataset.

Hyperparameter α. Figure 3(a) illustrates the
influence of α. We find that AOPCDiff. begins to
increase when α > 0.05 and stabilizes for α > 0.5.
The accuracy is stable and will slightly increase as
α continues to increase.

Temperature τ . Figure 3(b) illustrates the in-
fluence of τ . We find that ConAAP is sensitive
to τ , and an appropriate τ contributes to both
model accuracy and the effectiveness in alleviat-
ing the pathology. AOPCDiff. reaches its peak when
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Hyperparameter

Figure 3: Ablation study of hyperparameter α, τ , and batch size . The AOPCDiff. is shown in the distance between
AOPCSuff. and AOPCComp., and a darker color indicates a smaller value.

Figure 4: Influence of attack methods. Scatter plot in-
dicate accuracy and bar plot indicate AOPCDiff..

τ = 0.01, while the accuracy fluctuates by no more
than 1.4% when τ is assigned different values.

Batch size. Figure 3(c) shows the influence of
batch size on ConAAP. Larger batch sizes prove
beneficial for ConAAP, as both model accuracy and
the ability to alleviate pathology improve with an
increase in batch size.

Attack method in tadv. Various attack methods
can be utilized in ConAAP (Gao et al., 2018; Garg
and Ramakrishnan, 2020; Li et al., 2019; Jin et al.,
2020), and the influence of attack methods is shown
in Figure 4. ConAAP remains effective in alleviat-
ing model pathology when utilizing different attack
methods. It should be noted that adversarial ex-
amples in ConAAP are used to introduce direction
information and are not intended to be nearly im-
perceptible to humans. Consequently, their quality
is not of primary concern, and a fast CharDelete
method suffices for our purposes.

Confidence Changing with Word Removal.
Figure 5 illustrates the impact of word removal
on model confidence. As more important words
are removed, the confidence of the Normal method
remains close to 1, while the label shift induced
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(a) Normal: Remove important words (b) Normal: Remove unimportant words

(c) ConAAP: Remove important words (d) ConAAP: Remove unimportant words

Figure 5: The comparisons of model confidence (range
from 0 to 1) density distribution. The results are ob-
tained on the entire MR testing set.

by word removal causes the model’s confidence
in the original class to approach 0 (Figure 5(a)).
In contrast, the distribution of ConAAP is consid-
erably smoother than the Normal method (Figure
5(c)). When more unimportant words are removed,
the confidence for both ConAAP and the Normal
method consistently concentrates in a high region
(Figure 5(b)(d)).

Case study. The case study is shown in Figure 6.
For the model trained with the Normal method, var-
ious interpretation methods show considerable di-
vergence in word importance. Moreover, the model
predicts the sentence with high confidence even
after removing the two most important words (e.g.,
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One of the greatest movies ever.

One of the greatest movies ever.

One of the greatest movies ever.

ConfidenceReduction Path (important words)

Method: Normal

0

1

2

faithful attribution:

ConfidenceReduction Path (unimportant words)

One of the greatest movies ever. [99.28] [99.28] [99.28]0

One of the greatest movies ever. [99.09] [92.68] [99.22]1

One of the greatest movies ever. [97.61] [74.71] [96.23]2

One of the greatest movies ever. [92.73] [68.08] [91.03]3

[99.28]

[92.68]

[87.21]

[99.28]

[98.77]

[90.53]

[99.28]

[92.68]

[74.71]

No.

No.

Gradient Integrated gradients Occlusion

One of the greatest movies ever.

One of the greatest movies ever.

One of the greatest movies ever.

ConfidenceReduction Path (important words)

Method: ConAAP

[99.96] [99.96] [99.96]

[71.91] [71.91] [71.91]

[44.64] [44.64] [35.03]

0

1

2

faithful attribution:

ConfidenceReduction Path (unimportant words)

One of the greatest movies ever. [99.96] [99.96] [99.96]0

One of the greatest movies ever. [99.86] [98.97] [99.98]1

One of the greatest movies ever. [99.12] [98.90] [99.75]2

One of the greatest movies ever. [98.73] [99.64] [98.95]3

No.

No.

Gradient Integrated gradients Occlusion

Figure 6: Case study on the instance sentence “One
of the greatest movies ever”. The Reduction Path indi-
cates how the words in the sentence are cumulatively
removed, No. indicate the number of removed words
of current-step sentence. The arrows of different colors
indicate the most or the least important words in the
current-step sentence attributed by different interpreta-
tion methods. The confidence values of different colors
indicate the model confidence (range from 0 to 100) in
positive following the reduction path of different attri-
bution methods.

following Gradient attribution, the model predicts
the sentence “One of the greatest movies ever” as
positive with 87.21% confidence). In contrast, for
the model trained with ConAAP, different interpre-
tation methods show a more consistent result of
word importance (e.g., important words are con-
centrated in greatest, movie; unimportant words
are concentrated in one, of , the, ever), resulting
in more faithful attributions. Specifically, when
the two most important words are removed, the
average confidence across different attributions is
41.43%. Conversely, when unimportant words are
removed, the model can still make high-confidence
predictions similar to the original examples.

5 Conclusion

In this paper, we argue that the failure of interpre-
tation methods to provide faithful attributions for
language models is due to the model pathology that
models are overconfident in out-of-distribution ex-

amples when making predictions. We explain the
model pathology from the perspective of sentence
representation and propose ConAAP, a contrastive
learning regularization method to calibrate the sen-
tence representation of out-of-distribution exam-
ples. Experiments demonstrate the effectiveness
of ConAAP in alleviating model pathology, which
helps interpretation methods obtain faithful results.
We hope that our work will provide a new perspec-
tive on research in the field of interpretability.

Limitations

We explain model pathology from a classification
perspective, but the pathological nature may exist
in language models for performing various tasks,
such as reading comprehension, textual entailment,
and visual question answering. Although our pro-
posed regularization technique may be applica-
ble to various tasks, we have only investigated
its effectiveness in classification problems. Fur-
ther evaluations are expected to be conducted in
future works. The proposed method also leads to
more time-consuming training, primarily due to
the generation of adversarial examples, while only
a minimal amount of time is spent on generating
out-of-distribution examples.

Ethics Statement

This paper investigates model pathology from a
sentence representation perspective and proposes
a regularization technique to alleviate the pathol-
ogy. It is possible that the proposed method can be
used for both benign purposes, such as fixing the
potential flaws and biases of models, and malign
ones, such as exposing the vulnerabilities of mod-
els, which makes it easier for adversaries to gener-
ate malicious input. Despite these risks, we argue
that studying model pathology openly is essential.
Exploring the pathological nature of models will
help us effectively control these potential risks and
improve our understanding of the mechanics of
natural language models. All datasets used in this
paper are publicly accessible, and our work fully
complies with their respective licenses.
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A Additional Experimental Details

A.1 Details on Dataset

AG News contains news articles in the areas of
World, Sport, Business, and Science/Technology,
with 120,000 for training and 7,600 for testing. MR
contains movie reviews from Rotten Tomatoes la-
beled as positive or negative, with 8,530 for training
and 1,066 for testing. IMDB contains binary polar
movie reviews from the Internet Movie Database,
with 25,000 for training and 25,000 for testing.

A.2 Details on CharDelete Attack Method

We use the CharDelete adversarial attack method
in tadv to generate adversarial examples in our main
experiments. The details of CharDelete are shown
in Algorithm 1. ConAAP does not tend to generate
high-quality adversarial examples that are imper-
ceptible to humans and only utilizes adversarial
examples to introduce direction information into
regularization. This attack method meets our re-
quirements, and a complex method is unnecessary.

Algorithm 1: CharDelete Algorithm
input :Original sentence X = x1x2 . . . xN ,

model fθ , true label Ytrue

output :Adversarial example Xadv

1 obtain the attribution of all input words Attr(X) by
gradient-based attribution method in (3)

2 obtain the importance rankings (indexes) of input
words R(X)← arg sort

i
Attr(xi)i∈{1,2,··· ,N}

3 X′ ←X
4 for ri ∈ R(X) do
5 X′ ← randomly remove the letter in the ri-th

word of sentence X′

6 if argmax
Y ∈Y

P(Y |X ′) 6= Ytrue then

7 return X ′ as Xadv; /* Success */

8 return X; /* Fail */

A.3 Details on Entropy Method

The Entropy training method is proposed by (Feng
et al., 2018). They use an entropy of the output
distribution as a regularization term in the overall
training objective. Specifically, the loss objective
of the Entropy method is

Lentropy =
∑

(X,Y )∈(X ,Y)
log(P (Y |X))

+ λ
∑

i∈{1,··· ,b}
H
(
P
(
Y | tump

/min(Xi)
)) (9)

where λ is a parameter balancing the two terms,
tump
/min generates the sentences with multiple unim-

portant words reduced to the minimum length that
can keep the model predictions by beam search, b
is the beam width, H denotes the entropy. λ is set
as 1e-3, in accordance with the original paper.

B Additional Experimental Results

B.1 Distance Between Different Examples
We also provide the aggregated results on the dis-
tance between out-of-distribution sentences and the
in-distribution normal sentence in Figure 7-9. After
removing important words, the density distribution
of Euclidean distance between such sentence rep-
resentations and the original sentences becomes
smoother, with an increase in the maximum dis-
tance. However, most sentence representations re-
main close to the original ones (with Euclidean
distance approaching 0). Intuitively, although the
density distribution becomes smoother after impor-
tant word removal, there is no significant horizontal
shift (i.e., minimal distance changes), indicating
that information from some important words does
not have a sufficient impact on predictions. Af-
ter removing unimportant words, the change in
the density distribution of Euclidean distance be-
tween such sentence representations and the origi-
nal sentence is less pronounced than when impor-
tant words are removed. However, the representa-
tions of some sentences diverge considerably from
the originals when only a few unimportant words
are removed (e.g., distance greater than 10 in MR
when only one unimportant word is removed), in-
dicating that information from some unimportant
words may have a much greater influence on pre-
dictions than expected.

B.2 Sentence Representation Distribution
Figure 10-11 show more visualization of the sen-
tence representation and the attribution on instance
sentences. Observation 1 and Observation 2 can
also be observed in these examples.
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(a) remove important words (b) remove unimportant words
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Figure 7: The density distribution of Euclidean dis-
tance between the representations of out-of-distribution
sentences and in-distribution normal sentences. The re-
sults are obtained on the MR test set, with BERT fine-
tuned on the MR training set.
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(a) remove important words (b) remove unimportant words

Figure 8: The density distribution of Euclidean dis-
tance between the representations of out-of-distribution
sentences and in-distribution normal sentences. The re-
sults are obtained on the IMDB test set, with BERT
fine-tuned on the IMDB training set.
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(a) remove important words (b) remove unimportant words

Figure 9: The density distribution of Euclidean dis-
tance between the representations of out-of-distribution
sentences and in-distribution normal sentences. The re-
sults are obtained on the AG News test set, with BERT
fine-tuned on the AG News training set.
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# Reduced words # Reduced words # Reduced words1 2 3

1

2

3

importance

Adversarial sentence      generated by PWWS: Adversarial sentence      generated by PWWS: Adversarial sentence      generated by PWWS:

The movie celebrate coming back to the achingly

unfunny phonce and his several silly subplots.

A funny miss that eve tunney can't redeem. My precious new star wars movie is a lumbering,

wheezy sweep.

Figure 10: Additional visualization of sentence representations and the attribution obtained by gradient-based
interpretation on MR instances. For the representation visualization, darker 4 and � indicate out-of-distribution
examples with more words removed. The out-of-distribution examples closer to the original example are more
likely to maintain the same model prediction as the original example, while the examples closer to the adversarial
example tend to decrease the confidence in original class as the adversarial example leads to different predictions
and is located in the vicinity of the decision boundary. For the attribution, darker colors indicate higher importance.

# Reduced words # Reduced words # Reduced words

1

2

3

1 2 3

importance

Adversarial sentence      generated by PWWS: Adversarial sentence      generated by PWWS: Adversarial sentence      generated by PWWS:

Big fat liar is lilliputian more than home alone

raised to a new, self-deprecating level .

An evacuate exercise, a florid but finally insipid

crime melodrama with mint of surface flash but

lilliputian emotional resonance.

In the era of the sopranos, it experience

painfully spare and unauthentic.

Figure 11: Additional visualization of sentence representations and the attribution obtained by gradient-based
interpretation on MR instances. For the representation visualization, darker 4 and � indicate out-of-distribution
examples with more words removed. The out-of-distribution examples closer to the original example are more
likely to maintain the same model prediction as the original example, while the examples closer to the adversarial
example tend to decrease the confidence in original class as the adversarial example leads to different predictions
and is located in the vicinity of the decision boundary. For the attribution, darker colors indicate higher importance.
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