
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 6403–6417

July 9-14, 2023 ©2023 Association for Computational Linguistics

Efficient Transformers with Dynamic Token Pooling

Piotr Nawrot† Jan Chorowski‡ Adrian Łańcucki⋄♣ Edoardo M. Ponti†
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Abstract

Transformers achieve unrivalled performance
in modelling language, but remain inefficient in
terms of memory and time complexity. A possi-
ble remedy is to reduce the sequence length in
the intermediate layers by pooling fixed-length
segments of tokens. Nevertheless, natural units
of meaning, such as words or phrases, display
varying sizes. To address this mismatch, we
equip language models with a dynamic-pooling
mechanism, which predicts segment bound-
aries in an autoregressive fashion. We com-
pare several methods to infer boundaries, in-
cluding end-to-end learning through stochastic
re-parameterisation, supervised learning (based
on segmentations from subword tokenizers or
spikes in conditional entropy), as well as lin-
guistically motivated boundaries. We perform
character-level evaluation on texts from multi-
ple datasets and morphologically diverse lan-
guages. The results demonstrate that dynamic
pooling, which jointly segments and models
language, is both faster and more accurate than
vanilla Transformers and fixed-length pooling
within the same computational budget.

1 Introduction

The Transformer architecture (Vaswani et al., 2017)
lies at the heart of cutting-edge generative mod-
els, such as GPT-3 (Brown et al., 2020) for text
and DALL·E 2 (Ramesh et al., 2022) for images.
Its success can be largely attributed to the ability
to leverage a considerable amount of data, which
yields performance gains (Kaplan et al., 2020) and
emergent abilities (Wei et al., 2022) in accordance
with well-established scaling laws. Nonetheless,
the time and memory efficiency of Transformers
remains constrained by their algorithmic complex-
ity of O(l2n), where l stands for sequence length
and n for the number of layers.

To remedy this shortcoming without renouncing
the expressivity of a deep model, the quadratic self-
attention can be sparsified (Child et al., 2019; Roy

et al., 2021; Ren et al., 2021) or linearly approxi-
mated (Beltagy et al., 2020). Hourglass Transform-
ers (Nawrot et al., 2022) provide an alternative so-
lution, where the sequence length is reduced in the
intermediate layers by merging fixed-size groups of
tokens, similar to (Dai et al., 2020). These pooled
representations are up-sampled back to the orig-
inal length in order to generate sequences in an
auto-regressive fashion (Ronneberger et al., 2015).

Nevertheless, pooling groups of fixed size is sub-
optimal in several respects. First, these groups
are misaligned with linguistic primitives: units of
meaning such as morphemes, words, phrases, and
clauses vary in size. Second, the elements of a se-
quence may carry different degrees of information
(for instance, silence and voice in speech). Ideally,
the model should perform hierarchical computa-
tion, relying on the same abstractions as human
processing of language, and conditional, by allocat-
ing resources to sub-sequences in proportion to the
model uncertainty. In this work, we demonstrate
that dynamic pooling results not only in higher
shortening rates of input sequences, and thus in-
creased efficiency, but also superior performance
in next token prediction due to adopting the correct
inductive bias in grouping tokens.

To this end, we propose a new Transformer vari-
ant that jointly learns token sequences and dynami-
cally pools them into latent groupings of variable
size (Figure 1). Crucially, the segmentation must
preserve the auto-regressive property, and typical
subword tokenizers cannot be applied to incom-
plete sequences during generation. Rather, we learn
a neural boundary predictor during training: 1) su-
pervised by tokenizers such as Unigram (Kudo,
2018); 2) supervised by spikes in the conditional
entropy of the predictive distribution, which en-
sure that the computation is adaptive to the level of
uncertainty of the sequence model; 3) end-to-end
through stochastic re-parameterisation (Maddison
et al., 2017; Jang et al., 2017); 4) use natural data
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Figure 1: The architecture of a dynamic-pooling Transformer, which jointly performs language modelling and token
segmentation. The boundary predictor predicts segment boundaries and pools together groups of variable length by
averaging. The shortened sequence is processed efficiently by a series of intermediate layers, then up-sampled back
to the original length via duplication. The model generates the next token xxxt in the same resolution as the input.

boundaries such as whitespaces, which separate
words in many scripts, without a predictor.

To validate our model, we experiment with
character-level language modelling of text in sev-
eral English benchmarks, including text8 (Ma-
honey, 2006), CC-100 (Wenzek et al., 2020), and
wiki40b (Guo et al., 2020), as well as in a series
of languages representing different morphological
types: Finnish, Hebrew, and Vietnamese. We find
that dynamic pooling not only achieves lower time
and memory complexity, but even surpasses the
performance of vanilla Transformers and fixed-size
pooling Transformers in most benchmarks by sta-
tistically significant margins.

Overall, our results indicate a promising direc-
tion to further accelerate training and therefore fa-
cilitate scaling. A FAQ section about our methods,
findings, and the experimental setup is available
in Appendix A. We release the code at https://
github.com/PiotrNawrot/dynamic-pooling.

2 Background

2.1 Language Modelling with Transformers

Let xxx = (x1, . . . , xl) denote the input sequence.
A language model assigns a probability value to
any possible sequence of tokens from a vocabulary
V . The parameters of a model θ are optimised to
maximise the aggregate probability of all xxx ∈ V∗

in the training set D:

argmax
θ

∑

xxx∈D

l∑

t=1

log p(xt | xxx<t,θ), (1)

where t indexes time steps. In our experiments, θ
corresponds to the parameters of an autoregressive
Transformer model (Vaswani et al., 2017).

A key advantage of Transformers is their ability
to scale, which ultimately reaps the largest ben-
efits according to (Sutton, 2019)’s ‘bitter lesson’
and reveals surprising emergent capabilities of lan-
guage models (Kaplan et al., 2020; Wei et al., 2022).
Nevertheless, the algorithmic complexity of self-
attention, O(l2) where l is the length of the se-
quence, creates a bottleneck. To alleviate this cost,
previous work (Clark et al., 2022; Tay et al., 2022;
Nawrot et al., 2022) proposed to reduce the se-
quence length after the initial layers by pooling
together groups of tokens. A single shortening by
a factor k reduces the complexity to O( l2

k2
). This

allows for increasing either the model efficiency or
its depth within the same compute budget.

2.2 Hourglass Transformer

Naïve length reduction through pooling would re-
duce the length of output, however language mod-
els operate with the same input and output reso-
lutions. For this reason, (Nawrot et al., 2022) in-
troduced the Hourglass Transformer composed of
three blocks of Transformer layers, which down-
sample, process, and upsample the tokens back to
the original granularity. The first block encodes
each input token xt into hhht. Afterwards, groups of
adjacent tokens of fixed length k are mean-pooled
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to form ⌈ l
k⌉ representations sss:

sssm =
1

k

mk∑

i=mk−k+1

hhhi (2)

Next, each pooled representation sssm is processed
by the middle block of Transformer layers, which
operates with complexity O( l2

k2
), yielding sss′m. This

sequence is up-sampled to its original resolution
by duplication: uuut = sss′⌈ t−k+1

k
⌉, and added to the

hidden representations hhh from before shortening
through a skip connection, and passed to the third
block.

Note that we subtract k− 1 from the index. This
is because pooling and up-sampling in an autore-
gressive model pose a risk of data leakage from the
future to the past. In fact, up-sampled representa-
tions might encompass future tokens if no measures
are taken to prevent this. As a remedy, Hourglass
Transformer shifts the up-sampled sequence to the
right by k−1 positions, and pads it with a learnable
null-group representation uuu0 at the beginning. This
is sufficient to satisfy the autoregressive property
in the fixed pooling scenario.1

Hourglass Transformer was shown to improve
time and space complexity in a number of language
and image modelling tasks, for a given parameter
count. However, this came at the expense of degrad-
ing the perplexity of the language model, especially
with shortening factors k > 2. We conjecture that
this undesirable side effect is due to two main rea-
sons. Firstly, the distribution of lengths of natural
units of meaning such as morphemes and phrases
in natural languages is uneven: for instance, word
length is correlated with its frequency (Zipf, 1949;
Bentz and Ferrer-i Cancho, 2016). Secondly, infor-
mation content tends to be distributed uniformly
across units of meaning (Meister et al., 2021).

As a consequence, fixed pooling creates seg-
ments with incongruous boundaries and unequal
information content. For instance, in speech, this
results in giving silence and voice the same im-
portance. Instead, an ideal model should allocate
compute conditionally on the information content
of a given token. This would also ultimately lead
to interpreting language hierarchically based on
the same abstractions that humans adopt for lan-
guage processing. Hence, we present a method to
enable variable-length pooling and up-sampling in
autoregressive language models.

1We refer to (Nawrot et al., 2022) for more details.

3 Dynamic-Pooling Transformer

3.1 Boundary Prediction
In order to augment the Hourglass architecture with
variable-size pooling, we seek to find a sequence
of segment boundaries bbb ∈ {0, 1}l for every input
xxx. Let bt = 1 denote a segment boundary between
elements xt and xt+1. The boundary predictor is
implemented as a Multi-Layer Perceptron with pa-
rameters ϕ. As shown in Figure 1, this module
maps each representation hhht encoded by the first
stack of Transformer layers into a Bernoulli proba-
bility distribution:

b̂t = p(bt=1) = sigmoid (MLPϕ (hhht)) . (3)

Since segment boundaries are discrete, sampling
from this distribution is not differentiable with
respect to the model perplexity. Hence, we op-
timise this latent variable through stochastic re-
parametrisation (Jang et al., 2017; Maddison et al.,
2017) via hard Gumbel-sigmoid (Section 3.1.1),
jointly learning the language model and boundary
predictor. We favour this solution over a score-
function estimator of the gradient, as it suffers from
high variance and computation costs due to sam-
pling (Schulman et al., 2015).

As an alternative, we explore training the bound-
ary predictor module with a binary cross-entropy
loss with respect to two different sources of super-
vision: a Unigram tokenizer (Section 3.1.2) and
spikes in conditional entropy (Section 3.1.3). Fi-
nally, we consider resorting to linguistically in-
spired boundaries (Section 3.1.4). During training
and evaluation, we perform maximum likelihood
inference for these variables. In other words, each
b̂t from Equation (3) is rounded to the closest bi-
nary scalar such that bt = ⌊b̂t⌉.

3.1.1 Segmenting with Gumbel-Sigmoid
In order to learn the input segmentation end-to-
end based on the model perplexity, we can re-
parameterise the Bernoulli distribution of Equa-
tion (3) by injecting stochasticity in this form:

b̂t = sigmoid


log b̂t u

(1− b̂t) (1− u)

1/τ



u ∼ Uniform(0, 1). (4)

where τ is the temperature, a hyper-parameter. This
estimator, however, is biased and might lead to
sub-optimal results. As a consequence, we also
propose methods based on supervised learning of
the boundary predictor in the following sections.
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Figure 2: Entropy of a Transformer character-level lan-
guage model in two text segments. Red vertical lines
indicate the boundaries according to spikes in condi-
tional entropy. Most of them coincide with whitespaces,
due to the high uncertainty at word starts, but they also
fall after morphemes like ‘great’ or ‘measure’. Segmen-
tation may vary based on the context, e.g., of the word
‘performance’.

3.1.2 Segmenting with Subword Tokenizers
Widespread algorithms for extracting variable-
length boundaries for text are subword tokenizers,
including Unigram (Kudo, 2018), Byte Pair
Encoding (BPE; Sennrich et al., 2016), and Word-
Piece (Schuster and Nakajima, 2012). However,
these create subwords greedily, and might change
the segmentation of a given sequence prefix after
more tokens are observed. For instance, consider
the phrase ‘civil aviation’. A Unigram model
might segment its prefix ‘civil aviatio’ differently
before and after observing the character ‘n’:

_civil _a vi ati o
_civil _a vi ation

During training an entire sentence is tokenized, but
during inference a prefix is extended one charac-
ter at a time and re-tokenized, possibly changing
the boundaries like in the example above. Hence,
deploying off-the-shelf tokenizers naïvely during
inference does not recover the oracle segments and
creates a mismatch between training and evaluation
boundaries.

As a remedy, we provide the training tokeniza-
tion as supervision to our autoregressive boundary
predictor instead. More specifically, we employ
a Unigram tokenizer (Kudo, 2018), as it aligns
with morphological units better than other algo-
rithms (Bostrom and Durrett, 2020). To prevent
subword units from crossing word boundaries, we
split the text on whitespace characters beforehand.
Vocabulary size is a tunable hyper-parameter which

offers different efficiency–performance trade-offs.

3.1.3 Segmenting with Entropy Spikes
As an alternative to providing supervision through
Unigram, we also propose a new segmentation
method based on spikes of conditional entropy,
which is agnostic about the presence of natural
boundaries (such as whitespaces) or the availability
of tokenizers. These properties make it suitable for
other modalities in addition to text, such as speech
and vision. Moreover, this enables top-down su-
pervision and end-to-end training without external
dependencies.

Intuitively, in natural language the information
content tends to be spread evenly throughout a sen-
tence, to facilitate communication. The conditional
entropy is the expectation of such information con-
tent over the tokens in the vocabulary:

H(xt | xxx<t) =
∑

x∈V
p(xt | xxx<t) (− log p(xt | xxx<t))︸ ︷︷ ︸

information content
(5)

Therefore, peaks in this conditional entropy pro-
vide indications of surprisal, and can serve as natu-
ral boundaries between segments. More formally,
let Ht be the conditional entropy at time t. We
select local spikes by comparing their value within
a (left) window of size k. We place boundaries
according to the following conditions:

bt =

{
1 if Ht > Hi ∀i ∈ {t− k, . . . , t− 1}
0 otherwise.

(6)
Empirically, entropy spikes in language models
overlap with word boundaries to a significant de-
gree (Hutchens and Alder, 1998). However, they
are also more flexible as they enable conditional
computation based on the model’s confidence about
its next token prediction. As an example of segmen-
tation based on entropy spikes, consider Figure 2.

3.1.4 Linguistically Inspired Segments
Finally, perhaps the most straightforward source
of segmentation is word boundaries. In fact, in
many scripts, these are marked by whitespace char-
acters.2 The simplicity of this method of segmen-
tation comes with the obvious drawback of not
providing control over the rate of shortening, while
we found that the optimal rate varies with the lan-
guage. Hence its efficiency–performance trade-off
is not tunable.

2Several scripts such as Chinese characters, however, do
not adopt this convention.
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Segment boundaries are placed in between two
symbols. In our experiments, we put a boundary
after a whitespace character. Thus, we do not need
to train a boundary predictor, since predicting a
whitespace character is a signal to close the group
in the next iteration of auto-regressive generation.
This would not be possible, had we chosen to put a
boundary before a whitespace character.

3.2 Pooling and Up-sampling
In the pooling step (Figure 1) a generated sequence
of boundaries bbb is used to pool the tokens belonging
to the same segment by averaging. Thus, we form∑l

t=1 bt+1 shortened representations sss, which are
then passed to the middle block of Transformer
layers. Note that for Gumbel-sigmoid, to keep
pooling differentiable, we algebraically manipulate
bbb ∈ Rl into B ∈ Rl×1+

∑
t
bt , i.e. a binary matrix

that maps from the original length to the shortened
length, following (Bhati et al., 2021). The cell Bij

is 1 if token i is merged into the j-th group, and
0 otherwise. Thus, sss = hhhB/

∑
iBi⋆, where the

denominator unit-normalises the matrix columns.
To obtain the up-sampled representationuuut while

preserving the autoregressive property, we calcu-
late the largest index m so that the output of the
middle block sss′m does include future information:
uuut = sss′m, where m =

∑t
i=1 bi. As a consequence,

a segment representation sss′m can only be added to
the last token pooled into group m. For all the
other non-final tokens, we take the representation
of a previous segment sss′m−1. Similar to Hourglass,
the representation for the first (null) group sss0 is a
learnable vector. Afterwards, uuut is added to the
highway layer representation hhht.

3.3 Auxiliary Objectives
In addition to minimising the language modelling
loss with respect to the parameters θ as shown in
Equation (1), we use auxiliary objectives to train
the boundary predictor parameters ϕ. For super-
vised learning with subword tokenizers and entropy
spikes, we minimise the cross-entropy between pre-
dicted boundaries bbb and gold ones. For end-to-end
learning with Gumbel softmax, we introduce a reg-
ularizer based on a Binomial prior. Let k =

∑
t bt:

Binomial(α; l, k) =

(
l

k

)
αk(1− α)l−k (7)

where α ∈ [0, 1] is a hyper-parameter. This reg-
ularizer prevents the model from collapsing into

trivially predicting each position as a boundary.

4 Experimental Setup

4.1 Datasets

In addition to English, we evaluate our model on
data in three languages, which represent different
morphological types: Finnish for agglutinative, He-
brew for introflexive, and Vietnamese for isolating.
Thus, we ensure that dynamic pooling is robust to
different word length distributions. For English, we
use text8 (CC-BY-SA) (Mahoney, 2006), CC-100
(MIT) (Conneau et al., 2020) and wiki40b (CC-
BY-SA) (Guo et al., 2020) as they are established
benchmarks for character-level language models.
For the rest of the languages, we use the corre-
sponding subsets of wiki40b. To make results
comparable across languages and prevent data im-
balance, we limit the size of CC-100 and wiki40b
to the first 400M tokens of the training set and the
first 2M tokens of the validation set. We retain the
original splits for each dataset.

For all datasets and languages, we follow the
same pre-processing steps of (Mahoney, 2006) for
creating text8. Specifically, for each language we
keep only the characters from its script, as well as
whitespace and an end-of-line. The text is lower-
cased, and the digits are spelt out in the target
language. For wiki40b, we also remove special
structural markers and normalise homoglyphs. Fi-
nally, for Hebrew we also remove diacritics as they
are not required to understand the text. This way,
we filter out excerpts in different languages, which
are known to contaminate noisy multilingual texts
(Kreutzer et al., 2022). The pre-processing scripts
can be found as part of our code.

4.2 Models

All of our experiments, except for the scaling ab-
lation, use 12-layer Hourglass Transformers with
2 layers in the first block, 8 layers in the second
block which operates on shortened sequences, and
2 layers in the final block, following (Nawrot et al.,
2022). For every Transformer layer, the hidden
dimension is 512, the intermediate feed-forward
dimension is 2048. Self-attention is split into 8
heads. We use a post-norm architecture, GELU
activation function (Hendrycks and Gimpel, 2016)
in feed-forward layers and the relative attention
parametrisation from Transformer XL (Dai et al.,
2019). In total, the model has ~41M parameters.

The boundary predictor is a 2-layer MLP that
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takes a hidden state as input and outputs a scalar at
every time step. For models with dynamic pooling,
this module adds around 1M additional parameters.
We use the SentencePiece (Kudo and Richardson,
2018) library to train Unigram segmentation for
every dataset separately. We detect spikes in condi-
tional entropy according to a window of size k = 2,
which we select from range k=1 . . . 4 for optimal
BPC on text8. For Gumbel Sigmoid, we set the
prior probability of a boundary α to 0.2 for English,
Vietnamese and Hebrew, and 0.37 for Finnish. The
Gumbel temperature parameter was set to 0.5 in
all experiments. For Unigram vocabulary size, we
set |V| = 10000 for English and Vietnamese and
|V| = 200 for Finnish and Hebrew. We list training
hyper-parameters in Appendix B.

5 Results

The results for the experiments on character-level
language modelling are shown in Table 1. In ad-
dition to the four proposed segmentation methods,
we include a vanilla Transformer and fixed-size
pooling Transformers with multiple shortening fac-
tors as baselines. Every model is evaluated with
respect to two metrics: bits per character (BPC; ↓)
and shortening factor (SF; ↑). The former measures
the negative log-probability of the language model
predictions, and thus its quality; the latter measures
the average reduction of the sequence length in in-
termediate layers, and thus the model efficiency.
Figure 5 shows how higher SF translates to lower
training time and memory consumption in practice,
as measured on a common GPU with an optimised
model implementation.

Segmentation Methods In all the English evalu-
ation benchmarks (text8, wiki40b, and CC-100),
both whitespace-based and Unigram-based seg-
mentations achieve the lowest BPC, outperform-
ing both vanilla and fixed-pooling Transformers
by statistically significant margins.3 Moreover, the
same two methods achieve the highest degrees of
shortening. Note that for equivalent SFs, fixed-size
pooling becomes detrimental to performance. The
approaches based on entropy spikes and Gumbel-
Sigmoid are generally inferior to the alternatives for
dynamic pooling. However, for comparable short-
ening factors, they always outperform vanilla and
fixed-pooling Hourglass models. Moreover, they
make the fewest assumptions about the data and the

3We indicate with a ⋆ wherever this is the case according
to a Paired Student’s t-test with p < 0.05.
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Figure 3: Test BPC (↓) and shortening factor (SF; ↑).
The higher the SF, the more efficient the model is (cf.
Figure 5 in the Appendix). SF increases with higher
vocabulary size (Unigram) or smaller prior boundary
probability (Gumbel). Dynamic pooling methods shift
the Pareto front, i.e., increase performance for the same
efficiency (and vice versa). Note that fixed-pooling at
k=1 corresponds to the vanilla Transformer model.

availability of external supervision, so they might
be appropriate for other domains (such as speech
and vision) in future work. In general, providing
a Transformer with the correct inductive bias for
pooling variable-size segments not only facilitates
scaling but also enhances prediction quality.

Notably, the gains resulting from whitespace seg-
mentation are not identical in all languages, due to
their inherent differences in morphological types
and average word length. Shortening Factors for
this method range from 3.8× in introflexive He-
brew, to 7.9× in agglutinative Finnish, whereas
isolating Vietnamese and mildly fusional English
lie in between with 4.4× and 5.7×, respectively.
The larger SFs of dynamic pooling methods trans-
late into higher training speed, from 1.7× for Un-
igram in Hebrew to over 2.5× for whitespaces
in English, while simultaneously lowering BPC.
Overall, the gains from dynamic pooling are ro-
bust cross-lingually, but the optimal segmentation
method may vary.

Efficiency–Performance Pareto Front While
both low BPC and high SF are desirable, there ex-
ists a trade-off between them which is specific to
each boundary prediction method. Hence, the ideal
model should strike the right balance to improve
in both respects simultaneously. Intuitively, vocab-
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English Finnish Hebrew Vietnamese
text8 wiki40b cc-100 wiki40b wiki40b wiki40b

BPC SF BPC SF BPC SF BPC SF BPC SF BPC SF
Vanilla 1.143 (1.0x) 1.091 (1.0x) 1.225 (1.0x) 0.945 (1.0x) 1.274 (1.0x) 1.065 (1.0x)

Fixed (SF=2) 1.149 (2.0x) 1.084 (2.0x) 1.224 (2.0x) 0.946 (2.0x) 1.279 (2.0x) 1.060 (2.0x)
Fixed (SF=3) 1.155 (3.0x) 1.093 (3.0x) 1.229 (3.0x) 0.951 (3.0x) 1.290 (3.0x) 1.068 (3.0x)
Fixed (SF=4) 1.166 (4.0x) 1.102 (4.0x) 1.240 (4.0x) 0.961 (4.0x) 1.304 (4.0x) 1.087 (4.0x)

Gumbel 1.136⋆ (4.6x) 1.080 (4.7x) 1.212⋆ (4.6x) 0.941 (2.6x) 1.281 (4.7x) 1.061 (4.3x)
Entropy 1.138⋆ (4.1x) 1.083 (4.1x) 1.218⋆ (3.8x) 0.949 (4.1x) 1.276 (3.6x) 1.072 (4.2x)
Unigram 1.134⋆ (5.0x) 1.078⋆ (5.0x) 1.212⋆ (4.8x) 0.937 (2.1x) 1.270⋆ (1.9x) 1.058 (4.0x)

Whitespaces 1.133⋆ (5.7x) 1.077⋆ (5.6x) 1.214⋆ (5.2x) 0.955 (7.9x) 1.284 (3.8x) 1.057⋆ (4.4x)

Table 1: Language modelling results on 3 English datasets and 3 other morphologically diverse languages. For each
pair of method and dataset, we report test BPC (↓) and average shortening factor (SF; ↑). We run each experiment 3
times with different random seeds. We mark with a star (⋆) symbol results that are statistically better than both the
vanilla Transformer baseline and fixed shortening by means of a Paired Student’s t-test with p < 0.05. We report
results based on the best hyper-parameter configuration for each language.

ulary size in Unigram and the prior α in Gumbel-
Sigmoid provide easily controllable knobs to study
this interaction: as they change, so does the short-
ening factor. In Figure 3, we plot BPC and SF for
six vocabulary sizes (200, 500, 1k, 3k, 5k, 10k)
and five α values (0.20, 0.25, 0.30, 0.37, 0.45)
and compare them with fixed-size pooling in Hour-
glass Transformers. Manifestly, dynamic pooling
enhances the Pareto front by finding more opti-
mal trade-offs between efficiency and performance.
Moreover, while fixed pooling follows a similar
trend cross-lingually, dynamic pooling behaves
more idiosyncratically: e.g. BPC in Vietnamese
and English surprisingly improves with higher SFs.
During our study of the Efficiency–Performance
Pareto Front, we noticed that the Gumbel-Sigmoid
pooling approach exhibits greater instability com-
pared to the Unigram-based pooling method. This
can be observed through artifacts such as the spikes
in BPC for Hebrew, depicted in Figure 3.

Time and Space Complexity To capture the con-
crete gains in efficiency of models with higher SFs,
we have measured the memory consumption and
training time of our PyTorch implementation of
text8 models on a typical GPU (NVIDIA GV100
32GB). The results in Figure 5 apply to dynamic-
pooling (Gumbel, Whitespace, Unigram, and En-
tropy), fixed-pooling, and vanilla Transformers
(only for SF=1). Note that these results are iden-
tical for both fixed-pooling and dynamic-pooling
Hourglass for the same SF as the cost of the bound-
ary predictor is negligible. With a shortening factor
SF = 2, the model reduces both memory con-
sumption and training time by over 40%, com-
pared to a vanilla Transformer. At SF = 4, where

dynamic-pooling Hourglass still achieves superior
BPC scores, resource consumption is reduced be-
tween 50% and 60% and training is 2.5× faster.
This allows models to increase in size with the same
compute budget (which depends on the hardware),
while simultaneously benefiting their performance.

Scaling the Model We investigate if dynamic-
pooling Transformers scale well in terms of model
size, by adding more layers in the middle block
(Figure 4). We focus on this block as it increases
the model depth (and hence its capacity) while
retaining a higher efficiency due to operating on
shortened sequences. We find that the gains from
dynamic pooling are consistent across all numbers
of layers. Extrapolating from the trends, dynamic
pooling holds promise to continue providing bene-
fits even in extremely large language models.

Average-pooling vs Sub-sampling As an abla-
tion, we also compare two different methods to
represent groups of tokens when shortening the in-
put sequence length: average pooling, used in our
experiments, and sub-sampling, i.e. selecting only
the last token as a representative for each group.
As it emerges from Table 2, average pooling yields
superior performance in all models, including both
fixed and dynamic pooling Transformers.

Other Efficient Transformer Models Finally,
we remark that our method differs from most effi-
cient Transformer algorithms, which reduce the
quadratic complexity of attention (Child et al.,
2019; Lee-Thorp et al., 2022; Choromanski et al.,
2021; Wang et al., 2020), as it focuses on length
reduction. While previous efficient variants tend to
trade quality for efficiency, we have shown that the
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Shortening
Segmentation Avg-Pooling Sub-sampling
Fixed (SF = 2) 1.149 1.180
Entropy 1.138 1.151
Whitespaces 1.133 1.144

Table 2: BPC results on text8 for two shortening meth-
ods (average-pooling and sub-sampling) and three seg-
mentation methods.
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Fixed (SF=4)
Dynamic (Unigram)
Dynamic (Whitespaces)

Figure 4: Test BPC on text8 plotted against the number
of Transformer layers for different shortening methods.
We use two layers in the first and last transformer block
and only scale the middle, downsampled block. There
are 28M parameters in models with 8 layers, up to 69M
parameters in models with 20 layers. For all variants we
observe performance gains with dynamic pooling.

dynamic-pooling mechanism improves both simul-
taneously in our experiments. Moreover, Nawrot
et al. (2022) has shown that combining both strate-
gies yields further gains.

6 Related Work

Dynamic RNNs Our approach is inspired by
variants of RNNs that process sequences at vary-
ing time scales by introducing a hierarchy of hid-
den units. For instance, RNNs that mimic speed-
reading by introducing hidden units that can skip
over some input elements (Campos et al., 2018;
Seo et al., 2018). Similarly, (Chung et al., 2017)
discovers the latent hierarchy of an input sequence
using a stack of LSTMs. Each layer is equipped
with a binary gate responsible for hard boundary
detection, where lower-level boundaries determine
state updates made by higher-level layers. When-
ever the detector ends a segment, its representation
is fed to the upper layer.

Early slow- and fast-changing units were already
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Figure 5: Memory consumption and duration of a train-
ing step for different shortening factors on English
text8. These results apply to both dynamic pooling
and fixed pooling Hourglass models, as well as vanilla
Transformers (for SF=1).

described by (Hihi and Bengio, 1995). Similarly,
Clockwork RNN (Koutnik et al., 2014) introduces
a hierarchy of hidden state units that make transi-
tions at a set of different, fixed frequencies. Adap-
tive Computation Time networks perform a differ-
ent amount of computation on each sequence item
(Graves, 2016). Both ideas were combined in Fast-
Slow RNNs (Mujika et al., 2017) which can choose
a heavy or light transition between timesteps.

Pooling Transformer models While pooling
blocks in Transformers are related to slowly vary-
ing units in RNNs, their operation is different.
RNNs suffer from unreliable transport of informa-
tion across long time spans. Units that act like skip-
connections over time can help them to carry in-
formation (Krueger et al., 2017). In a Transformer
network, a unit at time t can directly communi-
cate with any other unit, including previous ones,
and we find it important to confirm the benefits of
dynamic pooling in Transformer models.

Perhaps the most similar approach to ours is
Funnel Transformer (Dai et al., 2020) which uses
a similar, hourglass-shaped Transformer architec-
ture. After passing through the first block, the data
is pooled at a fixed rate, processed by the deep
middle Transformer block, and up-sampled for the
last block. Canine (Clark et al., 2022) has a simi-
lar three-part architecture, and processes Unicode
inputs, which are downsampled with Transformer
and convolution layers. (Tay et al., 2022) imple-
ments gradient-based subword tokenization within
a Transformer model, which learns dynamic group-
ings of tokens into fixed-size groups. In (Bai et al.,
2021), sentence and paragraph boundaries were
used as additional conditioning for the model.
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Boundary Detection We investigate boundaries
provided by an external model, derived directly
from the data, or top-down from the model’s en-
tropy. (Kreuk et al., 2020) shows a bottom-up ap-
proach to phoneme segmentation task combining
contrastive learning (van den Oord et al., 2019)
with a method for boundary detection based on
dissimilarity between subsequent frames. It was
later extended by (Bhati et al., 2021) to segment
the sequence of speech frames dynamically. Re-
cently, (Cuervo et al., 2022) introduced a hierar-
chical sequence processing model in which units
in the upper layer operate on a dynamically short-
ened sequence, with the shortening guided by a
boundary prediction model.

(Rocki et al., 2016) control the activity of LSTM
gates with the model’s output cross-entropy. (Al-
pay et al., 2019) used a similar mechanism based on
information content to guide the copying of individ-
ual activations in an LSTM network. Similarly, we
employ the entropy of model predictions to choose
where to insert boundaries.

7 Conclusions

We proposed a new family of language models that
pool variable-size segments of tokens in the inter-
mediate layers in order to enhance the efficiency
and performance of the Transformer architecture.
In particular, we learn a boundary predictor either
end-to-end through stochastic re-parameterisation,
through supervision (obtained from subword to-
kenization or spikes in the conditional entropy),
or based on linguistic boundaries such as words.
We evaluate this model extensively on multiple
language modelling benchmarks in English and
in other typologically diverse languages: Finnish,
Hebrew, and Vietnamese. Compared to vanilla
Transformers and fixed pooling, we observe a sig-
nificant decrease in model perplexity as well as
time and space complexity. This opens up the per-
spective to develop Transformer models capable
of computing language both hierarchically, with
the same abstractions humans perform at different
levels of linguistic structure, and conditionally on
the information content of each segment.

In the future, our dynamic-pooling Transformer
can be combined with methods relying on external
memory (Wu et al., 2022), encoders operating at a
fine resolution (Xue et al., 2022; Tay et al., 2022),
and more generally any task with long-context in-
puts (Shaham et al., 2022). This may further facili-

tate the scalability of current language modelling
architectures.

8 Limitations

Linguistic variation Our results are highly de-
pendent on the target language and its morphol-
ogy. For example, word boundaries might seem
like an obvious choice for dynamic segmentation,
and in fact they achieve the best performance in
English and Vietnamese. However, for some lan-
guages like agglutinative Finnish, whitespaces are
less frequent, which is detrimental to model perfor-
mance. Explicit word boundaries are not available
for all scripts. For example, in Chinese charac-
ters, or in modalities other than text like speech
or vision, there is no obvious equivalent to whites-
paces. However, segmentation based on stochastic
re-parameterisation, subword tokenizers and spikes
in conditional entropy overcomes these limitations.

Contiguous segments In its current formulation,
dynamic pooling only allows for merging contigu-
ous segments of tokens in a sequence. However,
this is not ideal for morphology types like Hebrew
where morphemes are discontinuous: vowels are
interspersed between consonant roots for inflection.
Moreover, future works should consider higher
levels of linguistic structure than words, such as
dependency trees, for pooling. In this case, dis-
continuous segments may be necessary to handle
non-projective syntactic dependencies.

Independent boundary decisions The decision
to emit a boundary at time step t depends on previ-
ous boundaries only indirectly through the hidden
representation of the first Transformer block, as
this preserves the efficiency of the boundary predic-
tor. Instead, a recurrent model could be explicitly
conditioned on previous boundary decisions, which
however would negatively affect the time complex-
ity of the language model.

Work contribution of authors

The idea of training the models with pooling of
variable-length segments was discussed among the
authors while Jan Chorowski was at the University
of Wrocław. Experiments were performed by Piotr
Nawrot while he was employed in a research grant
at the University of Wrocław, under the supervision
of Adrian Łańcucki and Edoardo M. Ponti. The
manuscript was written by Piotr Nawrot, Adrian
Łańcucki and Edoardo M. Ponti.
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Appendix

A Frequently Asked Questions

A.1 Pros and Cons of shortening methods

Pros Cons
Fixed - Simple - Sub-optimal results, especially for SF > 2

Whitespaces
- Linguistically inspired
- Does not require a boundary predictor

- Not available in all languages, e.g., Chinese
- No control over SF

Entropy
- Better performance than Fixed
- Suitable for other modalities such as speech and vision

- Requires a boundary predictor
- Worse than Unigram and Gumbel

Unigram
- Best trade-off between efficiency and performance
- Shown to align well with morphological units

- Requires a boundary predictor
- Works only in sequential discrete data
- Requires training a tokenizer up-front

Gumbel
- Good trade-off between efficiency and performance
- Suitable for other modalities such as speech and vision

- Requires a boundary predictor
- High variance performance

Table 3: Pros and cons of different shortening methods. SF is a shorthand for Shortening Factor.

A.2 What is the ultimate segmentation method?
While Whitespace offers the best performance in many cases, this is not always true even in the linguistic
domain. In agglutinative languages (e.g., Finnish), words are longer than in English, which has a
detrimental effect on the Whitespace method. For such languages, other dynamic methods that allow
for controlling the shortening factor (SF), such as Unigram, are better suited. Moreover, languages with
non-Latin scripts (like Chinese) may lack explicit whitespaces. For modalities different from text, such as
speech and vision, Gumbel and Entropy are to be favoured as they do not assume the discreteness of the
input sequence.

A.3 Why evaluating on language modelling rather than downstream tasks?
Since we present a proof of concept for dynamic-pooling Transformers, we limit the experiments to
language modelling because: 1) it is a foundational NLP task; 2) previous efficient Transformer variants
were evaluated on similar benchmarks. Crucially, there is a strong correlation between performance in
language modelling and downstream tasks.

A.4 How do you ensure that the results are reliable?
Our code is based on the optimised, open-source implementation of Transformer-XL from NVIDIA
(Apache 2.0 License), which reproduces the scores reported by (Dai et al., 2019). Our implementation of
the fixed-pooling Hourglass Transformer model similarly reproduces the results from (Nawrot et al., 2022).
We make our code publicly available, under the Apache 2.0 License, inheriting from the original source,
to ensure the reproducibility of our results. Moreover, memory utilisation was measured by controlling
resource allocation on GPUs (Figure 5) rather than through a naive nvidia-smi readout, as this would
overestimate the reserved buffers.

B Hyper-parameters

Following (Dai et al., 2019), we train for 2 · 105 steps with a batch size of 8 and a learning rate 2.5 · 10−4

on 2x NVIDIA RTX 3080. Each training run took from approximately 12h to 30h, depending on the
configuration. We use a linear warm-up schedule for the first 4k steps, followed by a single-cycle cosine
scheduler. We use an Adam optimiser with β1 = 0.9, β2 = 0.999 and ϵ = 1e−8, and clip the gradients at
0.25. We apply a 0.1 dropout rate in the attention matrix and feed-forward layers. Before every epoch, we
cyclically shift the text stream, divide it into non-overlapping chunks of 2048, and shuffle. During the
evaluation, to provide context to the model, we split the test set into partially overlapping sequences of
size l = 2048 with a step size of 512 and calculate the model perplexity only over the last 512 tokens.
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