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Abstract

When applied to processing long text, Large
Language Models (LLMs) are limited by their
context window. Existing efforts to address
this limitation involve training specialized ar-
chitectures, and cannot be easily applied to off-
the-shelf LLMs. We present Parallel Context
Windows (PCW), a method that alleviates the
context window restriction for any off-the-shelf
LLM without further training. The key to the
approach is to carve a long context into chunks
(“windows”), restrict the attention mechanism
to apply only within each window, and re-use
the positional embeddings across the windows.
Our main results test the PCW approach on
in-context learning with models that range in
size between 750 million and 178 billion pa-
rameters, and show substantial improvements
for tasks with diverse input and output spaces.
We show additional benefits in other settings
where long context windows may be beneficial:
multi-hop questions and retrieval-augmented
question answering with multiple retrieved doc-
uments. Our results highlight Parallel Context
Windows as a promising method for applying
off-the-shelf LLMs in a range of settings that
require long text sequences. We make our code
publicly available at https://github.com/
ai21labs/parallel-context-windows.

1 Introduction

A key parameter of a Large Language Model
(LLM) is its context window, the number of text
tokens it can process in a forward pass. Cur-
rent LLM architectures limit the context window
size—typically up to several thousand tokens— be-
cause the global nature of the attention mechanism
imposes computational costs quadratic in context
length. This presents an obstacle to use cases where
the LLM needs to process a lot of text, e.g., tack-
ling tasks that require long inputs (Tay et al., 2020;
Shaham et al., 2022), considering large sets of re-
trieved documents for open-book question answer-
ing (Karpukhin et al., 2020; Levine et al., 2022a,b),
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Figure 1: In-context learning (ICL) accuracy against
n-shot training examples for the BANKING77 intent
classification dataset (Casanueva et al., 2020) using the
model Jurassic-1-Grande (17B). The blue line shows
the improvement in performance as the context window
is filled with examples; the orange line shows how our
Parallel Context Windows method, which adds up to
four times more training examples, provides a signifi-
cant boost in performance. The error bars represent the
standard deviation across multiple runs, as explained in
Section 3.1.

or performing in-context learning (Brown et al.,
2020) when the desired input-output relationship
cannot be adequately characterized within the con-
text window.

Previous work has addressed such obstacles
by training dedicated architectures, e.g., training
sparse attention mechanisms for long inputs (Za-
heer et al., 2020; Guo et al., 2021) and Fusion-in-
Decoder readers for retrieved documents (Izacard
and Grave, 2020). However, these architectures are
often tailored to specific use cases, and they are
often constrained in terms of their size as a trade-
off, in order to facilitate long text consumption. It
remains an open problem to find an effective way
to allow off-the-shelf LLMs to process text longer
than its original context window, without dedicated
training.

In this paper, we introduce Parallel Context Win-
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input: Argentina brings the cup home.  
topic: sports

input: Biden wins presidency.  
topic: politics

input: New smart camera released.  
topic:  technology

Single Context Window

Parallel Context Windows

input: Wall Street reports drops.  
topic: _

Test example

input: Wall Street reports drops.  
topic: _

Test example

input: Argentina brings the cup home.  
topic: sports

Figure 2: An illustration of Parallel Context Windows (PCW) approach, exposing the LLM to text within multiple
context windows during generation. Tokens inside each window attend only to the previous tokens in their window.
Test example tokens attend to the tokens of all context windows.

dows (PCW), illustrated in Figure 2, a new ap-
proach for addressing this problem in any decoder-
based LLM1, and show its efficacy in several se-
tups. PCW involves splitting long text into multiple
parallel contexts, each equally accessible during
output generation. Doing so consists of two sim-
ple post-hoc modifications to a pretrained LLM,
neither of which requires any further training: (1)
using sparse masking to allow each context win-
dow to attend only to itself, while still allowing
the generated text to attend to all contexts simul-
taneously; and (2) reusing the model’s learned po-
sitional embeddings within each parallel context
window, sidestepping the problem of extrapolating
positional embeddings and signaling to the model
that each window is equally “close” to the gener-
ated tokens.

We conducted an in-depth investigation of the
extent to which Parallel Context Windows can im-
prove LLMs’ ability to perform in-context learning
(Brown et al., 2020): when a pretrained LLM is
given an input sequence of concatenated “training”
input–output pairs representing a task, followed by

1We will use LLM to refer to decoder-only language mod-
els.

a single “test” input, it is able to supply the corre-
sponding test output with high accuracy. Crucially,
in the setting of in-context learning, the context
window limitation inherently caps the number of
training examples that can be inserted before the
test example. This significantly limits the applica-
bility of in-context learning for tasks with long or
highly diverse inputs or outputs.

We focus on these types of tasks, showing
that Parallel Context Windows significantly aid in-
context learning of two task families that tend to
suffer from low in-context learning performance:
classification tasks that have many classes and ex-
tractive question answering tasks. We experiment
with Jurassic-1 models (Lieber et al., 2021) having
between 7B and 178B parameters and GPT2 mod-
els (Radford et al., 2019) having between 750M
and 1.5B parameters. Notably, using 3 Parallel
Context Windows leads to average performance
gains of 6.7, 7.3, and 7.9 points in the in-context
learning scores of classification tasks with over 5
classes for Jurassic-1 models of sizes 7B, 17B, and
178B, respectively (see example in Figure 1). Our
results show that Parallel Context Windows broad-
ens the scope of tasks that can be learned via the
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Figure 3: Attention pattern and positional embeddings
assignment in PCW. The (i, j) cell in the matrix is col-
ored iff the ith token can attend to the jth token. Each
context window (in grey) attends to itself and is assigned
positional embeddings (~pi) independently, thus re-using
the positional vectors. Task tokens (in blue) attend to all
the windows. PCW makes the attention matrix sparser,
effectively parallelizing the processing of multiple win-
dows.

popular setup of in-context learning, to tasks that
require more training examples than permitted in
current context sizes.

We further explore the applicability of PCW to
two other settings that may benefit from the integra-
tion of several documents. One is multi-hop ques-
tion answering, where the different pieces of infor-
mation are shown in different windows. We show
that in some cases parallel reading is beneficial,
through a test case on the HotpotQA benchmark
(Yang et al., 2018). The other setting is retrieval-
augmented question answering, where we show
that reading several retrieved documents in parallel
is advantageous, through a test case on the Natural
Questions benchmark (Kwiatkowski et al., 2019).

Overall, we provide clear evidence that, with-
out any further training, Parallel Context Windows
can make a large amount of text accessible to an
off-the-shelf LLM during decoding. We thus see
promise in further investigation of Parallel Context
Windows for applying off-the-shelf LLMs in other
applications that require such capabilities, such as
tackling tasks with long inputs.

2 Parallel Context Windows

This section provides the details of our Parallel
Context Windows method. The high-level idea of
PCW is to insert a long input sequence into multiple
replicas of the LLM’s original context window, and
to allow for a small amount of tokens at the end of
the sequence to attend to all of the context windows
simultaneously. We design PCW so that the mod-
ifications made to the off-the-shelf LLM are min-
imal, such that processing long contexts remains
effective even without further training of the LLM.
A side advantage is that the LLM modifications
required for PCW are quite simple to implement.
Specifically, PCW applies two modifications to two
mechanisms in common autoregressive LLMs: the
positional embeddings (Section 2.1) and the atten-
tion mask (Section 2.2). Figure 3 illustrates both
changes.

2.1 Positional Embeddings Modification

Denoting the LLM’s original context window size
by N and the Transformer’s input representation
dimension by d, Transformer-based LLMs receive
information regarding the input text ordering via a
set of N positional embeddings {~pi ∈ Rd}Ni=1, by
adding ~pi to the input token embedding in position
i.

We conceptually divide the tokens at the input of
the LLM into context tokens and task tokens. The
context tokens are inputs that assist the LLM with a
given task, such as in-context examples, or relevant
retrieved documents. Task tokens refer to the input
of the test example, e.g., a sentence to be classified
or a question.

When considering a task that requires T task
tokens to formulate, the fact that there are only
N trained positional embeddings implies that ef-
fectively only C = N − T input tokens can be
processed as context.2 In order to implement PCW,
we expand the number of processable context to-
kens by a factor of B such that the overall input
sequence can include B ·C +T tokens. In order to
allow LLMs to process this long sequence of text,
we assign one of N learned positional embedding
vectors to location i ∈ {1, . . . , B · C + T} by the

2In the case of absolute positional embeddings this is a
hard restriction; for relative positional embeddings, processing
more tokens entails degradation (Press et al., 2021).
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following mapping (depicted in Figure 3):

~pPCW
i =

{
~p(i−1 mod C)+1 1 ≤ i ≤ BC

~pi−(B−1)C BC < i ≤ BC + T

(1)

In words, via this mapping, the model effectively
identifies B replicas of the first C original posi-
tional embeddings, and the T task tokens retain
the last T positional embeddings, now seeing these
B replicas as context in their near past. We refer
to these replicas of the positional embeddings as
context window replicas. Notably, while the above
re-use of the positional embeddings assigns mean-
ingful positions to all tokens within the longer in-
put sequence, the memory cost of this expansion is
quadratic, and moreover, the model was not trained
to have two tokens in the same position attend to
each other. To address these, we describe below a
modification to the LLM’s attention mechanism.

2.2 Attention Mask Modification
We impose a restriction on the attention mecha-
nism which implies that tokens within each context
window replica perform autoregressive attention to
other tokens in their context window replica, and
do not attend to tokens in other context window
replicas. In contrast, the task tokens attend to con-
text tokens within all context window replicas.

In the above setting of context window size
N , we represent attention restrictions by atten-
tion mask scores aii′ ∈ {0, 1} for i, i′ ∈ [N ] :=
{1, . . . , N}. If aii′ = 0 then for any Transformer
layer in the LLM, tokens in input location i cannot
attend to tokens in input location i′, and if aii′ = 1
they can. In common autoregressive LLMs, a token
can only attend to tokens that precede it, which fol-
lowing the above notation is translated into aii′ = 1
if 1 ≤ i′ ≤ i ≤ N and aii′ = 0 otherwise.

For the case of PCW, the B parallel context win-
dows include tokens in positions i ∈ [C], and are
identified with an index b ∈ [B]. The T task tokens
are not parallelized, and are located in positions
i ∈ {C+1, . . . , C+T = N}. For completeness of
the notation, we will assign a dummy context win-
dow index b = B+1 to the T task tokens. We add a
second index to the attention scores: abb

′
ii′ ∈ {0, 1}

for i, i′ ∈ [N ] and b, b′ ∈ [B]. Similarly to the
above, if ab,b

′
ii′ = 0 then for any Transformer layer

in the LLM, tokens in input location i and context
window b cannot attend to tokens in input location
i′ and context window b′, and if ab,b

′
ii′ = 1 they can.

With the above notation in place, the following
restriction implies that context tokens perform au-
toregressive attention within each context window
replica (illustrated in Figure 3):

ab,b
′

ii′ =

{
1, if 1 ≤ i′ ≤ i ≤ C and b = b′

0, otherwise
(2)

The following implies that the T task tokens attend
to all tokens in all B context windows (for i > C):

aB+1,b′
ii′ =

{
1, if 1 ≤ i′ ≤ i ≤ N, b′ ∈ [B + 1]

0, otherwise
(3)

The above attention masks allow the model to
attend to B times more context when decoding
the output, while keeping the computational cost
linear in the number of parallel contexts B. Overall,
for both the above PCW modifications, assigning
B = 1 corresponds to the vanilla LLM mechanism.

3 PCW for In-Context Learning

3.1 Experimental Setup

We apply the PCW method in the setting of in-
context learning (ICL): we distribute the in-context
training examples among the multiple context win-
dow replicas, thus allowing the test example to
attend to more training examples. For each ex-
periment, we report the performance with regular
ICL, using the maximum number of examples that
fit in a model’s context window (nmax). For our
PCW method, given B parallel windows, we effec-
tively use B × nmax training examples. The nmax

used for each dataset and model can be found in
Table 9. Unless stated otherwise, we report results
with B = 3 in the main paper, and discuss the
choice of B in Appendix C. Since training exam-
ples vary in length, we allocate in-context examples
into the parallel windows in a manner that balances
the windows’ lengths.3 The test example (corre-
sponding to the T task tokens in Section 2) receives
the positional embedding that immediately follows
the longest context window.

Training and test sets The performance of in-
context learning was shown to significantly vary
with the choice of training examples (Zhao et al.,
2021). We followed past work (Zhao et al., 2021;

3Within each window, positional embeddings are assigned
sequentially starting from 1. See Appendix A for a discussion.
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Lu et al., 2021), randomly sampling 30 sets of train-
ing examples from the full training set. We report
the mean and standard deviation of performance
metrics across these samples. When comparing
PCW method with standard ICL, statistically sig-
nificant differences according to a t-test (p-value
< 0.05) are marked with *. To allow for an exten-
sive set of experiments, we followed prior work
and randomly subsampled the test sets to contain
at most 250 examples (Zhao et al., 2021; Lu et al.,
2021; Han et al., 2022).

Models We experiment with 5 LMs of vary-
ing sizes: GPT2-Large (0.75B parameters) and
GPT2-XL (1.5B) (Radford et al., 2019); and three
Juarassic-1 (J1) models (Lieber et al., 2021): Large
(7.5B), Grande (17B), and Jumbo (178B). Due to
its massive size, we reduced the number of sampled
training sets and the test set size for J1-Jumbo to
15 and 125, respectively.

Datasets Our main focus is classification, and we
experiment with 15 different datasets in this cate-
gory, listed in Appendix B. Many of these datasets
are used in prior work on in-context learning (Zhao
et al., 2021; Lu et al., 2021; Han et al., 2022). We
additionally experiment with several datasets with
a high number of output classes (up to 150), to ex-
amine how well our approach works in this setting.
To classify an example in the in-context learning
setup, we assign the label using restrictive greedy
decoding (see Appendix A). We also experiment
with another type of tasks, information extraction,
and test 4 datasets with a subset of the models
(J1-Large and J1-Grande). For these tasks we use
greedy decoding at temperature 0 (as in Zhao et al.
(2021)). For further information about the decoding
and formats used for the different types of datasets,
see Appendices A and B.

3.2 Classification Tasks Results
PCW enables in-context learning with a large
number of classes. Table 1 shows the results
on various classification tasks, organized by the
number of classes. With a small number of output
classes (≤ 5), we find small or insignificant differ-
ences between PCW and vanilla ICL on J1-Large
(7.5B), while with J1-Grande (17B) and J1-Jumbo
(178B), PCW is superior in the majority of cases.
However, many of these differences are not statisti-
cally significant.

Our PCW method shines in classification tasks
with a large number of output classes. With more
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Figure 4: Average gains of PCW vs. the # of labels.
Each data point represents the average gain across all
datasets and J1 models. There is a a strong positive
correlation between the number of unique labels and the
gains from PCW.

than 5 classes, PCW statistically significantly out-
performs ICL in nearly all models and datasets.
The average improvement across these datasets is
6.7, 7.3, and 7.9 for J1-Large, J1-Grande, and J1-
Jumbo. Evidently, the larger the model, the greater
the benefit from our method. This positive scaling
behavior of PCW stands in contrast to prior work
attempting to improve ICL (Zhao et al., 2021; Lu
et al., 2021; Han et al., 2022), where improvements
to 178B-scale models were smaller than improve-
ments observed in smaller models.

In Table 5 (Appendix D.1), we report results with
GPT-2 models. Although they are smaller than J1
models, we find consistent statistically significant
improvements with GPT2-XL (1.5B parameters)
in almost all datasets. With GPT2-Large (0.75B),
we find improvements in the majority of datasets.

PCW improves with more classes. To examine
the relation between the number of output classes
and the performance of PCW, we compute the dif-
ference between PCW and ICL in each experiment,
and average over all datasets (and models) having
the same number of classes. As Figure 4 shows,
there is a strong positive correlation between the
number of classes and the improvement brought
about by PCW (Pearson correlation r = 0.93 be-
tween the log-number of classes and the average
improvement; the slope is 3.02). For datasets with
dozens of unique labels—specifically Banking77
(Casanueva et al., 2020), NLU Intent (Xingkun Liu
and Rieser, 2019), and CLINIC150 (Larson et al.,
2019)—we observe improvements of 10–15 points
in most cases. Importantly, prior in-context learn-
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J1- Large (7.5B) J1-Grande (17B) J1-Jumbo (178B)

Dataset # Labels ICL PCW ICL PCW ICL PCW

SST-2 2 93.51.6 93.81.1 95.21.1 95.60.5 96.51.4 97.01.5
CR 2 93.90.7 93.90.7 93.60.8 93.80.8 93.61.5 93.11.0
RTE 2 58.33.8 58.13.7 61.25.1 62.23.0 63.95.0 66.04.1
Subj 2 84.17.7

∗ 79.17.2 93.02.5 95.31.2
∗ 89.15.3 93.62.1

∗

CB 3 65.28.0 61.28.2 75.08.1 75.76.0 76.24.3 76.63.5
AGNews 4 79.83.6 81.52.1

∗ 81.43.0 82.72.1 82.53.8 85.91.7
∗

SST-5 5 45.53.9 47.42.9
∗ 51.63.4 53.82.2

∗ 55.42.8 55.13.9
YELP 5 56.23.8 56.35.1 66.22.2 65.62.0 66.34.1 65.42.6
TREC 6 87.04.5 89.43.2

∗ 86.53.8 88.73.4
∗ 87.15.7 90.43.1

DBPedia 14 93.23.0 96.21.5
∗ 92.53.3 97.31.6

∗ 91.74.4 96.52.3
∗

NLU Scenario 18 81.92.2 84.21.5
∗ 86.12.1 88.81.1

∗ 85.42.9 87.81.6
∗

TREC Fine 50 60.56.9 68.83.4
∗ 63.36.0 71.84.6

∗ 71.45.7 78.73.6
∗

NLU Intent 68 69.73.3 79.71.9
∗ 72.13.1 81.91.6

∗ 74.33.4 81.62.9
∗

BANKING77 77 51.03.4 63.52.7
∗ 55.23.3 69.12.2

∗ 55.33.5 70.93.1
∗

CLINIC150 150 67.32.7 75.41.7
∗ 68.92.5 78.61.8

∗ 65.75.0 79.92.1
∗

Table 1: Accuracy results (in %) for J1-Large, J1-Grande, and J1-Jumbo models with regular ICL in comparison
with using PCW with B = 3 prompts. The best results for each model and dataset are boldfaced, and ‘*’ is used to
indicate that the boldfaced result is statistically better (t-test with p-value < 0.05).

ing work has not considered datasets with such a
larger number of classes, perhaps due to the stan-
dard limitation of the context window size.4 We
note that in GPT-2 models (Table 5, Appendix D.1)
we do not see a significant correlation between
PCW improvements and the number of classes, but
these smaller models tend to struggle with very
large numbers of classes.

Comparing results for datasets with different
numbers of output classes may be confounded
by other factors, such as differences in domain,
style, or genre. To isolate such effects, we com-
pare results with two datasets, each having both
fine-grained and coarse-grained labels: (1) The
TREC dataset (Li and Roth, 2002), which has 6
coarse-grained and 50 fine-grained classes. (2)
NLU (Xingkun Liu and Rieser, 2019),5 which has
18 scenarios and 68 intents. From Table 1, we
see that PCW outperforms standard ICL by 2.6
and 8.1 points on TREC coarse-grained and fine-
grained classification, respectively. Similarly, on
NLU coarse- and fine-grained classification, we
see average improvements of 2.5 and 9.0 points,
respectively. We conclude that our approach shines
especially well when dealing with a large number
of output classes.

4An exception is Alex et al. (2021), who evaluated GPT3
on Banking77 in a limited setting, but obtained poor results.

5Note that the NLU dataset is also misleadingly known as
HWU64; see the Huggingface dataset page for more details.

PCW makes in-context learning more stable.
A known limitation of in-context learning is high
variance across examples and sensitivity to aspects
like the order of examples (Lu et al., 2021). Encour-
agingly, we find that PCW reduces such variance:
We observe average std values of 3.1, 2.3, and 2.6
for J1-Large, J1-Grande, and J1-Jumbo with PCW,
compared to 3.9, 3.4, and 3.9 in standard ICL.

3.3 Information Extraction Results
Table 2 shows the results of ICL and PCW on in-
formation extraction datasets with tasks like air-
line name extraction or extractive question answer-
ing. These tasks can be considered as classification
tasks with an extremely large number of classes, po-
tentially the entire vocabulary or phrases from the
vocabulary. Our approach consistently improves
results with both J1-Large and J1-Grande, resulting
in statistically significant improvements in almost
all cases. We also observe smaller standard devia-
tions with PCW compared to ICL.

It is worth noting that prior work has not experi-
mented much with information extraction in an in-
context learning setting. Zhao et al. (2021) reported
results with several datasets, but not with extractive
question-answering. Our approach seems to allow
in-context learning in such cases as well.

Finally, we tested two multiple-choice QA tasks:
OpenBookQA (Mihaylov et al., 2018) and Sto-
ryCloze (Mostafazadeh et al., 2017). With our
larger model, J1-Grande, PCW leads to a signifi-
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J1-Large (7.5B) J1-Grande (17B)

Dataset ICL PCW ICL PCW

ATIS 85.65.3 89.03.0
∗ 88.04.6 91.73.1

∗

MIT Movies 67.92.7 70.32.5
∗ 69.03.9 69.33.3

SQuAD 79.22.1 80.51.4
∗ 83.82.5 85.11.4

∗

adversarialQA 43.02.2 44.61.5
∗ 46.42.0 47.41.8

Table 2: PCW improves information extraction (ATIS
and MIT Movies are measured with EM, SQuAd and
adversarialQA with F1).

cant improvement in OpenBookQA and does not
significantly improve or worsen over ICL in other
cases. Details and results of the experiment can be
found in Appendix D.2.

4 PCW for Question Answering

In this section, we explore potential usages of PCW
in other settings than in-context learning. Specif-
ically, we examined two question-answering set-
tings where PCW is expected to help aggregate
information from multiple texts. Firstly, we con-
sider the case of question answering based on re-
trieved documents. Secondly, we experiment with
multi-hop reasoning, where the model is required
to utilize more than one text while answering a
question. Importantly, while in Section 3 the par-
allel context windows were used for processing
training examples for ICL, in this section the win-
dows are used for parallel processing of documents
related to the test example.

4.1 Retrieval Based Question Answering

Setup We first experiment with Natural Ques-
tions (NQ, Kwiatkowski et al., 2019) in an open-
book question-answering retrieval setting: Given
a question and a set of candidate documents, that
may or may not contain the evidence for the ques-
tion, a model needs to generate a free-text answer.

In the single context window setting (the base-
line), we followed the few-shot setup defined by
Lazaridou et al. (2022): For each question, we re-
trieved evidence documents from Wikipedia, using
a BM25 sparse retriever (Robertson et al., 2009).
We then prompted the model with in-context train-
ing examples of the related task of extracting the an-
swer from a gold evidence document, and concate-
nated the test question and N ∈ {1, 2, 4, 6, 8, 10}
evidence documents6. To fully utilize the context

6Notably, Lazaridou et al. (2022) used this apparatus only
with N = 1, while we experiment with different values of N .
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Figure 5: NQ results for J1 Grande—EM against num-
ber of documents in a single window.

J1-Large (7.5B) J1-Grande (17B)

Type Seq PCW Seq PCW

Comparison 15.3 21.5 20.9 28.7
Bridge 21.6 16.5 27.1 24.0

Table 3: Zero-shot Exact Match (EM) results on Hot-
potQA with Sequential and Parallel processing (PCW
approach).

window size, we “padded” the prompt with as much
in-context training examples as possible.

For PCW, we followed the setup of a single win-
dow while taking advantage of the method’s natural
ability of parallelization: We increased the number
of retrieved documents per question, and divided
them between windows. E.g., for N = 1 and 3
parallel context windows (B = 3), PCW processes
B ×N = 3 retrieved documents (1 per each win-
dow), thus effectively increasing the chance that
the correct answer span will be shown to the model
in one of the retrieved documents. The metric we
used was the standard Exact Match (EM). We refer
to Appendix A for more details.

Results Figure 5 shows the results for J1-Grande,
when using PCW compared to the baseline, as a
function of the number of candidate documents in
a single window. In all cases, PCW performs bet-
ter than the baseline, demonstrating the benefit of
parallel processing of candidate documents. As we
increase the number of available retrieved docu-
ments, we see an increase in performance for both
approaches. Similar trend can be seen for J1-Large
(see Figure 6 in Appendix). Naturally, the perfor-
mance of this task depends on the probability of
retrieving the correct answer. The latter increases
in PCW setting, when the number of processed
documents is multiplied by B = 3.
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4.2 Multi-hop Question Answering

Setup Finally, we experiment with HotpotQA
(Yang et al., 2018), which requires multi-hop rea-
soning. Given a question and 10 evidence docu-
ments (2 gold and 8 distractors), answering the
question requires reasoning over both gold docu-
ments. HotpotQA includes two question types7: (a)
Questions that refer to a bridge entity. For exam-
ple, to answer the question “when was the singer
of Radiohead born?”, one needs to reason that the
singer is “Thom Yorke” (the bridge entity) and then
find his birthday. (b) Questions that rely on a com-
parison between two entities. For example: “Who
has played for more NBA teams, Michael Jordan
or Kobe Bryant?”. As a baseline, we provide all
of the evidences in a random, sequential manner.
For PCW, we use 5 windows, with 2 evidences in
each window. Since the 10 evidences filled most
of the context window of J1 models, we work in
a zero-shot setting. The evaluation metric is the
standard Exact Match (EM).

Results Table 3 shows the results. We break
down the results according to the bridge and
comparison question types. Interestingly, PCW
helps with comparison questions, improving per-
formance over the baseline in both J1-Large and
J1-Grande while degrading the performance on
bridge questions. This disparate behavior can be
explained by the kind of processing required to an-
swer the two types of questions. In comparison
questions, the model can extract the necessary in-
formation from the two gold texts independently,
making them suitable for PCW. For example, to
know who played for more NBA teams, the LM
needs to extract the number of NBA teams Jordan
played for from one text, while extracting the num-
ber of NBA teams Bryant played for from another
independent text. In contrast, to answer a bridge
question, the processing of each text is conditioned
on the other text: When reading a sentence about
Thom Yorke’s birthplace, we already need to know
that Yorke is the Radiohead singer, if we wish to
then be able to answer the above question. This
makes PCW less suitable for these types of tasks in
its current form, and we leave it as an open direc-
tion for how to encode sequential relation between
windows (perhaps by some further training).

7Examples of questions taken from Yang et al. (2018)

5 Related Work

5.1 In-Context Learning
In-context learning has been the subject of exten-
sive research since it was first introduced by Brown
et al. (2020). For instance, Zhao et al. (2021)
showed that LMs are often miscalibrated. Zhao
et al. (2021) and Han et al. (2022) explored ways to
overcome this issue by different calibration meth-
ods. Lu et al. (2021) observed that few-shot perfor-
mance varies significantly depending on the order
of examples in the prompt, and proposed a protocol
for finding better permutations. Min et al. (2021)
proposed a noisy channel approach to boost few-
shot performance. Our framework is orthogonal
and thus complementary to these methods, as we
are mainly focused on how to increase the number
of examples shown to the model. Our approach is
also more general as it seamlessly supports genera-
tive tasks as well.

5.2 Expanding the Context Window
The issue of a limited context window has been
the focus of many studies that tried to alleviate
the memory footprint of self-attention. One line
of work (Zaheer et al., 2020; Guo et al., 2021, in-
ter alia) suggested using sparse attention to over-
come this difficulty. Press et al. (2022) proposed
to encode positional information via relative fac-
tors added to attention weights, instead of absolute
positional encoding. Despite the impressive ex-
trapolation abilities of Press et al. (2022), the self-
attention cost of such models remains quadratic,
making inference for longer prompts slow and
expensive. Ivgi et al. (2022) suggest SLED, an
encoder–decoder model for long texts, which en-
codes short overlapping chunks of the input text,
and fuses the information in the decoder, a-la
Fusion-in-Decoder (Izacard and Grave, 2020). Sim-
ilarly to our approach, both Izacard and Grave
(2020) and Ivgi et al. (2022) employ off-the-shelf
architectures, but those methods require further
training. Among all mentioned methods, our work
is the first that utilizes existing LLMs for longer
inputs without any further training.

In concurrent work, Hao et al. (2022) suggest
using multiple context windows, while scaling the
context tokens’ attention weights. We show that
large gains can be made without scaling the atten-
tion weights, and we demonstrate particularly large
gains for tasks with diverse output spaces.

Moreover, they focus on LLMs with non-learned
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positional encoding (sinusoidal, Vaswani et al.
2017 and ALIBI, Press et al. 2022) and only show
results in the ICL setting. In contrast, we show
that PCW is effective for more common LLMs that
have learned positional embeddings, and show that
PCW obtains gains both in ICL and in document
retrieval settings.

6 Conclusion and Future Work

In recent years, a multitude of successful
approaches have been proposed for allowing
Transformer-based language models to leverage
large amounts of text during inference, leading to
a variety of dedicated architectures. In parallel,
however, the mainstream LLM production line of
new models with “regular”—up to several thou-
sand tokens—context window sizes enjoys faster
progress in the form of scaling, innovation, and
data updating.

This paper introduced Parallel Context Windows
(PCW): A simple approach for allowing any off-
the-shelf LLM to broaden the scope of text it can
access during inference. We showed the effective-
ness of PCW in the framework of in-context learn-
ing, where access to a context that is larger by a
factor of B implies learning from B times more
training examples. Our results show that PCW is
more effective than the vanilla single context win-
dow approach for in-context learning over a broad
set of multi-class classification tasks, suggesting
that PCW could improve in-context learning in
tasks with diverse input or output spaces. We also
showed promising signals for applying PCW for
multiple retrieved document reading.

Two key directions of future work strike us as
particularly promising. First, by demonstrating
that an off-the-shelf LLM can attend to substan-
tially larger quantities of text via PCW, our results
motivate further investigation of the PCW method
in other settings in which it would be desirable to
apply mainstream LLMs over long text sequences.
Second, though our results suggest that PCW is
effective without further training, we believe that
further (short) training of an LLM with parallel
context windows could further enhance the abili-
ties demonstrated in this work.

Limitations

We presented Parallel Context Windows (PCW),
a simple approach that alleviates context window
restrictions for any off-the-shelf LLM, without ad-

ditional training. We showed the potential of this
method on a variety of models and datasets. With
that, our method does have some limitations.

The number of context windows has a limit, and
needs to be predetermined. Similarly to vanilla
in-context learning, the number of examples to in-
clude in the prompt must be selected beforehand.
For PCW, it is also required to select the number
of context windows, B. In this paper, most of the
results are for B = 3. We experiment in Appendix
C with the choice of B. The results are task de-
pendent, but at a high level we find that there are
diminishing returns around B in the range of 5 to 7.
We leave further investigation of how to effectively
benefit from more windows for future work.

Not effective for all types of tasks. As discussed
in Section 3, PCW shows impressive gains in ICL
for tasks such as multi-class tasks classification as
well as information extraction. However, for some
tasks, PCW does not improve performance. This
might indicate that some tasks are not suited for
parallel processing. Section 4.2 demonstrated that
PCW is more suitable for cases where the input
text could be divided into few independent inputs,
but it remains an open question as to whether tasks,
such as long text generation, would benefit from
PCW.
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A Experimental Details

A.1 PCW Implementation Details
Handling context windows of various lengths
Section 2 thoroughly describes PCW method for
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tokens. Throughout all our experiments, this was
rarely the case. We considered two variations of
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PCW to handle these cases. The first was whether
to use left or right indentation of the windows,
meaning whether all of the windows should begin
or end in the same position id. To avoid any discon-
tinuity in the assignment of position ids, it is also
possible to pad the windows with some dummy to-
kens (e.g., new line). Left indentation was found to
be the most preferred option in ICL setting, while
padding did not appear to be significant. For that
reason, and considering the simplicity of this so-
lution, we chose to use left indentation in all of
our experiments. It is important to note that in the
PCW implementation, all the windows and the task
tokens attend to a single shared BOS token. We
found that having multiple BOS tokens negatively
affected our results.

Splitting the inputs into windows For the ex-
periments described in Section 3, we assigned an
equal number of nmax samples per window, and
only attempted to balance the lengths of the win-
dows by greedily switching long and short samples
between windows. nmax was calculated according
to the following formula:

nmax = bN − Tmax

D90
c (4)

where N is the context window size, Tmax is the
length of longest test sample and D90 is the 90th
percentile of the train samples’ lengths. To avoid
unwanted effects due to outliers, we removed the
longest percentile of train and test samples.

In the experiments described in Section 4.1, we
divided the documents according to the retriever’s
ranking, so that the last document in each window
would have the highest ranking in the window. It
should be noted that the training examples were not
parallelized. The same randomly chosen examples
were used for both baseline and PCW, and new
examples were drawn for each test sample. For the
experiment described in Section 4.2, the division
between windows was random.

A.2 Evaluation Details
Classification A common way to evaluate mod-
els in the in-context learning setup is to iterate
over all possible labels for each test sample and
check which label receives the highest probability
according to the LM. This approach is problem-
atic where a large number of classes is present,
especially when some class names are split into
multiple tokens. To save computational costs, we

implemented constrained greedy decoding, at each
step allowing only tokens that could result in a
valid label. It is important to acknowledge that this
evaluation method could result in slightly different
performance for both the ICL baseline and for the
PCW approach. However, since most of the labels
only contained few tokens in both J1’s & GPT’s
tokenizers, and the first token is usually quite in-
dicative to the nature of the label, this effect should
be minor.

Information extraction The LMs’ predictions
for the information extraction tasks were generated
with greedy decoding at temperature 0, similar to
Zhao et al. (2021). We used Exact Match (EM) or
F1 as the metric of choice for the extraction tasks.

Computational cost As discussed in the begin-
ning of this appendix, we used restrictive decoding
for the majority of the experiments in the paper.
This usage greatly reduced the computational cost
of our experiments: Most classification tasks were
preformed in 1-4 GPU hours for all models (besides
experiments with J1-Jumbo, which lasted roughly
10-50 GPU hours per experiment). The experi-
ments described in Section 3.3 and Section 4 took
up to 20 GPU hours each.

B Datasets Information

B.1 Overview

We used 15 different datasets for our classifica-
tion experiments: SST-2 (Socher et al., 2013),
CR (Ding et al., 2008), RTE (Dagan et al., 2006),
Subj (Pang and Lee, 2004), CB (de Marneffe
et al., 2019), AGNews (Zhang et al., 2015b),
SST-5 (Socher et al., 2013), YELP (Zhang et al.,
2015a),TREC (Li and Roth, 2002), DBPedia
(Zhang et al., 2015a), NLU (Xingkun Liu and
Rieser, 2019), BANKING77 (Casanueva et al.,
2020) and CLINIC150 (Larson et al., 2019). TREC
and NLU datasets were used with both fine and
coarse grained labels. The different formats used
in all of tasks, as well as the values of nmax for
both J1 and GPT2 models, can be found in Table
9. We have also used 6 more datasets from extrac-
tion and multiple-choice domains, which were only
evaluated with J1 models:

• ATIS airlines (Zhao et al., 2021); nmax = 67.

• MIT Movie Genre (Zhao et al., 2021);
nmax = 54.
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• SQuAD (Rajpurkar et al., 2016); nmax = 8.

• adversarialQA(Bartolo et al., 2020); nmax =
8.

• OpenBookQA (Mihaylov et al., 2018);
nmax = 87.

• StoryCloze(Mostafazadeh et al., 2017);
nmax = 44.

For Section 4 we used Natural Questions
(Kwiatkowski et al., 2019) and HotpotQA (Yang
et al., 2018) datasets. All datasets were evaluated
with the standard test set or validation set in the ab-
sence of a public test set. As described in Section 3,
we subsampled all test sets for the ICL experiments.
In Natural Questions dataset, we used half of the
test set (its original size was 3610 samples) to speed
up evaluation. We used the full HotpotQA valida-
tion set, containing 7405 samples. The datasets are
all in English.

The majority of the datasets can be found in
the Huggingface Datasets package (Lhoest et al.,
2021), apart from the information extraction tasks
ATIS airlines (Hemphill et al., 1990) and MIT
movie genre (Liu et al., 2012), which were taken
from Zhao et al. (2021), and Natural Questions
(Kwiatkowski et al., 2019) which was loaded and
incorporated with retrieved documents using Py-
serini (Lin et al., 2021). Since loading the training
set via Pyserini is not currently a built-in option,
we used the validation set of Natural Questions
as an effective train set. We found this decision
reasonable since we only used the training set for
few-shot prompting, and we did not optimize any
parameters using the validation set.

We have tried our best to track the licenses of the
datasets used in this work. The license information
that we have managed to find is as follows: SST-2,
RTE, SST-5, NLU Scenario, NLU Intent, BANK-
ING77 and SQuAD—CC-BY 4.0, adversarialQA—
CC-BY-SA 4.0, DBPedia—CC-BY-SA 3.0.

B.2 Preprocessing and Formatting
In all ICL experiments, we used only pairs of in-
puts and expected outputs, without any instructions.
For the classification datasets, we mainly used for-
mats found in Lu et al. (2021) when applicable.
For extraction and multi-choice datasets, we used
the formats from Brown et al. (2020). We gener-
ated new formats for classification datasets with
dozens of labels, which are rarely used in few-shot

setting. The formats were based on wordings and
labels used in HuggingFace, with minor modifica-
tions to make the formats more similar to natural
language (e.g., replacing ‘_’ with spaces in label
names). Details of the classification prompts can be
found in Table 9. Experiments from Section 4 were
formatted similarly to the work done by (Lazaridou
et al., 2022). Their prompts formats are presented
in Table 10.

C The Effect of the Number of Context
Windows on Performance

When using PCW for ICL, the number of paral-
lel context windows (B) affects the number of in-
context training examples. We used B = 2, 3, 4
in preliminary experiments, and saw that for clas-
sification tasks, the optimal choice of B depends
on the number of unique labels in the task. We
observed that the performance for tasks with a
high number of classes was improved when we
increased B, while the optimal choice of B for
tasks with few classes tended to be 1 or 2 (See Ta-
bles 6,7 and 8). For simplicity, We chose to display
results for B = 3 in all of the main experiments.

Nevertheless, we were curious to see how far we
could push the number of parallel context windows
before the model stopped benefiting from them. We
used a representative subset of three datasets with
a varying number of classes, and increased B from
1 to 8. The number of training sets and the size of
test set for those experiments were set on 15 and
125 respectively.

As seen in Figure 7, when the number of context
windows is increased, datasets with a large number
of classes, such as AGNews and DBPedia (with 4
and 14 labels, respectively), continue to improve
(with a convergence at around B = 6). Hence,
PCW can achieve even greater improvements by
optimizing B per dataset. Increasing the number
of context windows, however, seemed to harm the
performance of SST-2.

Identifying which tasks benefit from large paral-
lel data processing would be an interesting research
direction in the future. For now, we recommend
choosing an optimal B on the development set (if
available) for best results. In the absence of a devel-
opment set, a conservative choice, such as B = 3,
may be beneficial. It is possible to investigate the
behaviour of PCW with a larger number of win-
dows, but we find it irrelevant for most practical
cases of ICL, where an extremely large number of
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Figure 6: NQ results for J1 Large—EM against number
of documents in a single window.

training samples would allow finetuning a model.
We leave exploring this issue for future work.

D Additional Results

D.1 Replication Experiments with GPT2

Table 5 presents replication of the results shown in
Table 1 for GPT2-Large and GPT2-XL models. A
qualitative inspection of errors in these experiments
suggested that vanilla ICL fails more in examples
where the test label appears earlier in the prompt.
Since PCW allows more context windows, it more
often shows a training example with the test label
towards the end of one of the windows. We eval-
uated GPT2-Large performance on the AGNews
dataset and discovered that PCW shows a training
example with the test label in a closer location to
the test example 62% of the time. In those cases,
PCW outperforms ICL by 19.4%, compared to a
margin of roughly 10% for the entire test set. This
analysis suggests that PCW provides a solution to
the recency bias noted by Zhao et al. (2021).

D.2 Multiple-Choice QA

In addition to our in-depth investigation of PCW,
we have experimented with two multiple-choice
QA datasets OpenBookQA (Mihaylov et al., 2018)
and StoryCloze (Mostafazadeh et al., 2017) under
ICL setting. We formatted and evaluated the tasks
as in Brown et al. (2020), by providing few-shot
examples with the correct completion followed by
an example of context only, and comparing the av-
erage per-token LM likelihood of each possible
completion. We did not use the calibration from
Brown et al. (2020). We used the same setup as
described in Section 3.1, with the exception of re-
ducing the number of sampled training sets and

J1-Large (7.5B) J1-Grande (17B)

Dataset ICL PCW ICL PCW

OpenBookQA 46.01.5 46.61.0 51.62.2 54.2∗
1.7

StoryCloze 84.21.0 84.30.8 84.70.9 84.61.0

Table 4: Results for J1-Large and J1-Grande models for
Multiple Choice datasets.

the test set size used for J1-Grande in the Open-
BookQA experiment to 15 and 125, respectively.

The results shown in Table 4 show that increas-
ing the number of examples of in-context training
under the PCW setting improved the performance
of J1-Grande in the OpenBookQA task, but did not
significantly affect the other scenarios. Based on
this observation, it seems that PCW has the poten-
tial of providing gains for multiple-choice tasks in
specific scenarios, but further analysis should be
made based on more datasets to better understand
it. We leave this for future work.
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GPT2-Large(0.75B) GPT2-XL(1.5B)

Dataset # Labels ICL PCW ICL PCW

SST-2 2 80.511.4 85.55.7
∗ 90.73.8 93.02.1

∗

CR 2 81.36.3 83.84.7 79.46.0 82.93.4
∗

RTE 2 53.02.5 53.51.9 55.42.7 55.52.0

Subj 2 67.412.3 69.511.8 68.010.8 68.66.7

CB 3 45.34.7 44.44.2 53.59.2 51.97.0
AGNews 4 61.912.9 72.57.0

∗ 68.012.4 80.03.5
∗

SST-5 5 41.14.6 44.74.4
∗ 37.17.9 43.35.9

∗

TREC 6 55.68.3 57.74.9 48.44.7 48.62.6

DBPedia 14 63.118.9 80.75.3
∗ 77.210.5 87.33.9

∗

NLU Scenario 18 37.06.1
∗ 31.43.7 47.58.0 52.96.1

∗

TREC Fine 50 30.37.8 33.64.0
∗ 36.86.4 39.52.8

∗

NLU Intent 68 24.35.4 28.14.4
∗ 30.25.2 38.94.5

∗

BANKING77 77 29.35.3 28.54.0 30.94.0 33.73.2
∗

CLINIC150 150 44.23.2 45.41.8 46.92.5 48.71.9
∗

Table 5: Accuracy results for GPT2-Large and GPT2-XL models with regular ICL in comparison with using PCW
with B = 3 prompts. The results mirror the results found in Table 1 and use the same format, with the exception of
YELP dataset that had nmax = 0 for GPT2 models.

Dataset # Labels ICL PCW (B = 2) PCW (B = 3) PCW (B = 4)

SST-2 2 93.51.6 94.11.3 93.81.1 94.01.1
CR 2 93.90.7 93.80.7 93.90.7 92.91.5
RTE 2 58.33.8 59.43.9 58.13.7 57.94.3
Subj 2 84.17.7 81.97.5 79.17.2 77.77.0
CB 3 65.28.0 59.97.7 61.28.2 56.85.4
AGNews 4 79.83.6 80.92.4 81.52.1 81.91.9

SST-5 5 45.53.9 46.33.9 47.42.9 46.12.8
YELP 5 56.23.8 56.83.4 56.35.1 54.83.1
TREC 6 87.04.5 88.83.4 89.43.2 89.73.0

DBPedia 14 93.23.0 95.12.3 96.21.5 96.41.3

NLU Scenario 18 81.92.2 83.41.7 84.21.5 84.61.4

TREC Fine 50 60.56.9 65.23.8 68.83.4 68.83.2

NLU Intent 68 69.73.3 77.72.1 79.71.9 80.91.9

BANKING77 77 51.03.4 58.73.3 63.52.7 65.82.5

CLINIC150 150 67.32.7 74.42.5 75.41.7 78.12.1

Table 6: Results for different choices of B for J1-Large model. The best result for each dataset is boldfaced.

Dataset # Labels ICL PCW (B = 2) PCW (B = 3) PCW (B = 4)

SST-2 2 95.21.1 95.40.7 95.60.5 95.60.3

CR 2 93.60.8 93.90.9 93.80.8 93.90.7

RTE 2 61.25.1 64.22.7 62.23.0 62.43.4
Subj 2 93.02.5 94.61.3 95.31.2 95.71.0

CB 3 75.08.1 74.78.3 75.76.0 73.05.6
AGNews 4 81.43.0 82.12.4 82.72.1 82.62.0
SST-5 5 51.63.4 53.62.9 53.82.2 53.92.0

YELP 5 66.22.2 66.61.7 65.62.0 65.51.9
TREC 6 86.53.8 88.14.0 88.73.4 89.24.5

DBPedia 14 92.53.3 95.82.7 97.31.6 97.91.3

NLU Scenario 18 86.12.1 88.41.4 88.81.1 89.21.2

TREC Fine 50 63.36.0 67.74.3 71.84.6 71.24.8
NLU Intent 68 72.13.1 79.72.4 81.91.6 83.31.6

BANKING77 77 55.23.3 64.53.1 69.12.2 70.92.8

CLINIC150 150 68.92.5 76.52.5 78.61.8 80.22.6

Table 7: Results for different choices of B for J1-Grande model. The best result for each dataset is boldfaced.
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Dataset # Labels ICL PCW (B = 2) PCW (B = 3)

SST-2 2 96.51.4 97.80.9 97.01.5
CR 2 93.61.5 93.91.0 93.11.0
RTE 2 63.95.0 65.23.9 66.04.1

Subj 2 89.15.3 91.63.0 93.62.1

CB 3 76.24.3 76.27.1 76.63.5

AGNews 4 82.53.8 84.91.7 85.91.7

SST-5 5 55.42.8 55.63.2 55.13.9
YELP 5 66.34.1 68.32.5 65.42.6
TREC 6 87.15.7 89.13.0 90.43.1

DBPedia 14 91.74.4 96.22.6 96.52.3

NLU Scenario 18 85.42.9 87.11.8 87.81.6

TREC Fine 50 71.45.7 77.52.4 78.73.6

NLU Intent 68 74.33.4 80.32.5 81.62.9

BANKING77 77 55.33.5 65.93.9 70.93.1

CLINIC150 150 65.75.0 74.84.2 79.92.1

Table 8: Results for different choices of B for J1-Jumbo model. The best result for each dataset is boldfaced. For
computational considerations, we have only attempted to use B = 2 and B = 3.
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Figure 7: Multi-class tasks benefit from increased context windows, but simpler tasks with fewer classes may suffer
from a decrease in performance.
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Dataset nmax

J1
nmax

GPT2
Prompt Example Labels

SST-2 68 27 Review: , the power of this movie is undeniable .
Sentiment: positive

[negative, positive]

CR 54 21 premise: Review: in fact , i liked it so much after
using it with my son who is now 2 years old , that
i bought one for our new baby ’ s room
Sentiment: positive

[negative, positive]

RTE 17 5 premise: The 10-day-old "test-tube" baby ele-
phant born at Colchester Zoo has found a name,
thanks to the internet!
hypothesis: baby elephant born
prediction: True

[True, False]

Subj 42 18 Input: they follow him to las vegas , where he is
ostensibly doing “ research “ for the next season
, but is actually pursuing a dream to become a
dancer in a vegas show .
Type: objective

[objective, subjective]

CB 19 5 premise: Paula could not help herself. It was just
the way she was. Others might say they hated her
and mean it.
hypothesis: others hated Paula
prediction: true

[true, false, neither]

AGNews 30 11 input: Citigroup faces regulatory probe The UK’s
Financial Services Authority launches a formal
investigation into Citigroup’s "unusual trading
activity".
type: business

[world, sports, business, technology]

SST-5 51 20 Review: it ’s just a little too self-satisfied .
Sentiment: okay

[terrible, bad, okay, good, great]

YELP 5 0 review: Good modern atmosphere and delicious
cupcakes.
stars: 3

[1, 2, 3, 4, 5]

TREC 88 38 Question: When was the first Barbie produced ?
Type: numeric

[abbreviation, entity, description, human, loca-
tion, numeric]

DBPedia 21 7 input: The Bstanu River is a tributary of the Râul
Mare in Romania.
type: nature

[company, school, artist, athlete, politics, trans-
portation, building, nature, village, animal, plant,
album, film, book]

NLU
Scenario

112 43 utterance: you have got the answer right.
scenario: general

[lists, weather, general, cooking, email, alarm,
datetime, calendar, social, transport, iot, recom-
mendation, takeaway, play, music, qa, news, au-
dio]

TREC
Fine

84 37 Question: What dropped 1 , 313 feet in 1980 ?
Type: entity other

[abbreviation abbreviation, abbreviation expan-
sion, entity animal, entity body, entity color, en-
tity creation, entity currency, entity disease, entity
event, entity food...

NLU
Intent

101 43 utterance: please read out the tasks from the list
for today
intent: lists query

[alarm query, alarm remove, alarm set, audio
volume down, audio volume mute, audio volume
other, audio volume up, calendar query, calendar
remove, calendar set...

BANK-
ING77

77 27 query: Card payment didn’t go through.
intent: declined card payment

[activate my card, age limit, apple pay or google
pay, atm support, automatic top up, balance not
updated after bank transfer, balance not updated
after cheque or cash deposit...

CLINIC150 101 39 utterance: i would like to look up my credit score
please
intent: credit score

[restaurant reviews, nutrition info, account
blocked, oil change how, time, weather, redeem
rewards, interest rate, gas type...

Table 9: Table of classification datasets with their used prompts and the nmax for both GPT2 and J1 tokenizers. For
readability, we truncated the list of labels for some of the multi-label tasks.
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Task Prompt

Natural Questions (NQ) Title: We Bought a Zoo
Evidence: We Bought a Zoo We Bought a Zoo is a 2011 American family... The film also stars
Scarlett Johansson, Maggie Elizabeth Jones...
Question: who is the little girl on we bought a zoo?
Answer: Maggie Elizabeth Jones
Title: Vaal River

Evidence: ...The river flows west into the Grootdraai Dam near Standerton, Mpumalanga. On its
course to the Vaal Dam in Vereeniging...
Question: where does the vaal dam get its water from?
Answer: Vaal River
==
Title: San Juan River (Colorado River tributary)
Evidence: in the San Juan Mountains has often been diminished by warming winter temperatures..
==
Title: olorad
Evidence: drained by the Colorado River. The South Park of Colorado is the region of the
headwaters of the South Platte River...
==
Title: San Juan River (Colorado River tributary)
Evidence: ...Colorado at the confluence of its East and West Forks. Both forks originate above
elevations of in the eastern San Juan Mountains in the San Juan National Forest...
==
Question: where are the san juan mountains in new mexico?
Answer:

HotpotQA Evidences:
==
The 2009 Singapore Grand Prix (formally the 2009 Formula 1 SingTel Singapore Grand Prix) was
a Formula One motor race held at the Marina Bay Street Circuit in Singapore on 27 September
2009...
==
Catharina Felser (born October 2, 1982) is a German race car driver born in Siegburg...
==
...Sergio Pérez, the only other Mexican to finish on the podium, currently races with Sahara
Force India F1 Team .
==
Sergio Pérez Mendoza ( ; born 26 January 1990) also known as "Checo" Pérez, is a Mexican
racing driver, currently driving for Force India.
==
Question: Which other Mexican Formula One race car driver has held the podium besides the
Force India driver born in 1990?
Answer:

Table 10: Prompt formats for Natural Questions (NQ) and HotpotQA. The prompts were manually shortened for
readability.
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