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Abstract

Building an AI assistant that can seamlessly
converse and instruct humans, in a user-centric
situated scenario, requires several essential abil-
ities: (1) spatial and temporal understanding of
the situated and real-time user scenes, (2) ca-
pability of grounding the actively perceived vi-
suals of users to conversation contexts, and (3)
conversational reasoning over past utterances
to perform just-in-time assistance. However,
we currently lack a large-scale benchmark that
captures user↔assistant interactions with all
of the aforementioned features. To this end,
we propose SIMMC-VR, an extension of the
SIMMC 2.0 dataset to a video-grounded task-
oriented dialog dataset that captures real-world
AI-assisted user scenarios in VR. We propose
a novel data collection paradigm that involves
(1) generating object-centric multimodal dia-
log flows with egocentric visual streams and
visually-grounded templates, and (2) manually
paraphrasing the simulated dialogs for natural-
ness and diversity while preserving multimodal
dependencies. To measure meaningful progress
in the field, we propose four tasks to address the
new challenges in SIMMC-VR, which require
complex spatial-temporal dialog reasoning in
active egocentric scenes. We benchmark the
proposed tasks with strong multimodal models,
and highlight the key capabilities that current
models lack for future research directions.

1 Introduction

With the growing popularity of smart glasses, stud-
ies on visually grounded conversational agents
have gained significant interest. For instance,
SIMMC 2.0 (Kottur et al., 2021) introduces an image-
grounded, task-oriented dialog (TOD) dataset
where an assistant agent co-observes the user’s ego-
centric viewpoint to aid with user requests. Many
follow-up works (Huang et al., 2021a; Lee et al.,
2022; Chiyah-Garcia et al., 2022) focus on chal-
lenges around dialog-image grounding, such as

∗Work done during an internship at Meta Reality Labs.
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Figure 1: SIMMC-VR is a Situated Interactive Multi-
Modal Conversation dataset that features task-oriented
user↔assistant dialogs streamed immersively in a virtual-
reality (VR) environment. The dataset is created on pro-
grammed realistic shopping scenarios and actively-rendered
photorealistic user visual observations, which brings new chal-
lenges for complex spatial-temporal reasoning on the multi-
modal interactions (visual cues and grounded-dialogs).

visual coreference resolution (e.g. ‘the yellow dress
behind the rack’) of a static image.

However, several technical gaps still remain in
applying prior work to build a real-world, situated
multimodal assistant (Figure 1). For instance, a
typical multimodal user-assistant scenario (with a
video capturing capability) would include (1) spa-
tial and temporal language references as grounding
contexts (‘the shirt I saw earlier when I entered
the store’), (2) actively perceived egocentric mo-
tions as part of conversation contexts (“No – turn
around the other way"), (3) references to conver-
sational memories from past sessions (‘the one I
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bought earlier’, the ‘black coat’ in Figure 1 being
retroactively mentioned by both the assistant and
the user), etc. While these scenarios are perceived
as the expected capabilities of a next-generation
multimodal assistant, our survey of datasets (Sec. 5)
highlights that due to the static and constrained na-
ture of the datasets’ grounding context, they lack
sufficiently complex interactions.

To this end, we present SIMMC-VR, a video-
grounded task-oriented dialog dataset comprising
4K user↔assistant task-oriented dialogs (95.3K
utterances) grounded on diverse photorealistic VR
video streams (4.8M frames). For data collection,
we propose a novel two-stage approach with: (1)
a multimodal interaction simulator that generates
egocentric VR streams grounded on object-centric
multimodal dialog flows, and (2) a manual para-
phrasing step for naturalness and diversity while
preserving multimodal dependencies between vi-
sual scenes and their grounding language. Our
pipeline allows for flexible and cost-effective data
collection, easily extendable to simulate any other
domains given the availability of 3D virtual assets.

To measure progress towards real-world appli-
cability, we propose four SIMMC-VR tasks that ad-
dress new challenges in complex spatio-temporal
dialog reasoning. We then extend state-of-the-art
multimodal models to the SIMMC-VR tasks and dis-
cuss the limitations of current models.

Our contributions are as follows: (1) we present
SIMMC-VR, a video-grounded task-oriented dialog
dataset (95K utterances over 4.8M frames) tar-
geted towards real-world applications for an assis-
tant on smart glasses. (2) We propose the tasks with
complex spatio-temporal conversational dependen-
cies, and benchmark them by extending the state-of-
the-art multimodal models. (3) Our data collection
platform allows creation of a similar dataset in any
target domains.

2 SIMMC-VR Dataset
SIMMC-VR is actively multimodal, where each data
instance is a video from a user’s egocentric view-
point recording all interactions within a virtual
shopping environment, densely paired with dia-
log utterances and essential attributes. Each task-
oriented dialog mimics real-world shopping sce-
narios where the assistant’s goal is to help the user
make purchases and navigate through the environ-
ment. In each instance, the user walks around a
virtual shop while the assistant provides product
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User Simulator Asst. Simulator

Object-centric Flows
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Dialog SimulatorActive Scene Generator
Path Planner

Phase 1. Automatic Multimodal Dialog Flow Generation
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. . .

User

Assistant

. . .

…

…
…

…
Templated Utterances & Generated Dialog Attributes
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Figure 2: Dialog generation flow: (Upper half) a meta-
agenda is firstly programmed to sample an object-centric flow
(grounded in the environment), which is used by the goal
generator to sample high-level dialog goals. These goals are
then used by both user and assistant simulators to synthesize
templated utterances, which are then manually paraphrased by
linguistic experts for diversity and naturalness (lower half).

information or recommendations; as well as help
the user locate and navigate to products of interest.

Dataset Collection Strategy. Multimodal or em-
bodied dialogs (Das et al., 2017a; Padmakumar
et al., 2022) are often constructed via a two-player
game where participants interact with the environ-
ment and converse with each other (i.e. in a Wizard
of Oz (WOZ) (Mrkšić et al., 2017; Budzianowski
et al., 2018a) role-playing fashion). However, it
can be overly challenging to require annotators to
role-play as the AI assistant in our complex and
quite cluttered VR shop environments (>100 prod-
ucts). Furthermore, to match the potential retroac-
tive reasoning shopping scenarios (e.g. concern-
ing products priorly seen/mentioned), it could add
much mental burden for annotators to memorize
object attributes and their locations while compos-
ing authentic long dialogue interactions. Lastly, in
conjunction with the aforementioned difficulties, it
is rather unscalable and inextensible to manually
annotate all the required labels (dialog acts, coref-
erences) cross-referencing complex moving scenes
for a task-oriented dialog dataset.

We therefore collect the dataset through two
phases: (1) simulating multimodal dialog flows
with templated utterances – thereby programmati-
cally generating fine-grained-scene-grounded anno-
tations and systematically ensuring the diversity of
the conversations, and (2) manual paraphrasing,
which ensures the naturalness of utterances with
a significantly less annotation overhead (Rastogi
et al., 2020; Shah et al., 2018).
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2.1 Multimodal Dialog Generation
Our pipeline for multimodal dialog generation sim-
ulates plausible and natural multimodal interactions
in a virtual environment (Figure 2), The process
is as follows: (1) Decide a meta-agenda based
on object attributes and traversal routes. (2) Sam-
ple specific objects that fulfill the decided agenda
as the object-centric flow. (3) Perform the user
traversal path planning and video recording using
the sampled objects as starting/ending points. (4)
Synthesize the corresponding utterances via pre-
written templates and the multimodal contexts. (5)
Manually paraphrase the templated utterances.

We categorize a full dialog instance (generated
through the previously described steps) into two
phases: (a) static phase where the user mostly fo-
cuses on a specific viewpoint (with a small amount
of randomness in movement or eye-gaze) when con-
versing with the assistant (Section 2.1.2), and (b)
active phase, where the user navigates to another
spot within the environment, at will or following
assistant instructions, containing larger movements
and actions (Section 2.1.1). The two phases in-
terleave each other, creating a realistic shopping
scenario (e.g. user walks into a shop, stopping by a
few products, and wanders to other ones).

Virtual Environment. Following SIMMC 2.0, we
use the same set of photorealistic VR shopping en-
vironments in Unity (Unity, 2020), where a set of
seed scenes with pre-arranged digital assets (e.g.
shirts, dresses for fashion domain and sofas, ta-
bles for furniture domain) are programmatically
re-arranged into randomized larger sets of scenes.

Table 6 lists the asset (product item) categories
used for constructing the SIMMC-VR dataset for
both fashion and furniture domains.

2.1.1 Active Scene Simulation
Figure 3ab illustrates the process of simulating vi-
sual observations of a user traversal, where a path
planning is performed (connecting the start and end
user position/orientation) in the environment, and
the trajectories are rendered into egocentric videos.

Path Planning. Ideally, the navigational guidance
should minimize the overall traversal distance (to a
target spot), while taking the smoothness of move-
ments into consideration. Given a start and end
position in the extracted environment layout, we
perform an A∗search to plan a trajectory simulating
a user’s traversal within a shop. Additionally, we
modify the standard A∗algorithm to minimize the

amount of turning for smoother and more natural
user movements1, with random noises added to nat-
urally jitter the planned path. We then augment
the output path with rotation angles computed to
account for the user orientation during the traversal.
At each viewpoint on the planned path, a Unity
camera snapshot is taken, and the traversal video is
rendered by combining all the snapshots.
Referential Objects. Once the intended user-
traversal video is planned and recorded, we define
key action points, using the start/end viewpoints
of user movements (i.e. displacement or turning
actions). Inspired by the natural communication
behavior, where we often refer to certain landmarks
when giving navigational guidance, we derive a set
of referential objects from objects placed across
these viewpoints (e.g. “Turn left when you see
the red shirt."). Figure 3a illustrates the referen-
tial object sampling strategy: (1) Compute the co-
sine similarity between an egocentric viewpoint
(3D) vector (gaze point at the center of yellow dot-
ted lines) and a look-at vector to each of the ob-
jects within the scene – a higher similarity implies
that it is closer to the eye-gaze line of sight, hence
more probable to be referenced during conversa-
tions. (2) Augment the previously derived rankings
with other plausible features such as stronger color
contrast with neighboring objects. (3) Lastly, trans-
form these rankings into sampling probabilities (via
a Softmax) to sample object(s) for reference.
Scene Graphs & Disambiguation. When refer-
ring to an item in a cluttered environment, its sur-
roundings often serve as good candidates to dis-
ambiguate items that may share similar attributes
(often useful when users under-specify items). In
light of this, for each object within the same scene,
we build a local scene-graph to include the clos-
est three objects to its left, right, top, bottom (four
main directions). An object can then be referred
to with its neighbors when further clarification is
needed (e.g. "Not that one, I mean the white hat
below the red coat.").
Scene Metadata. To facilitate templated utterances
for paraphrasing (Section 2.1.2) and to formulate
a modeling task with visual labels (Section 3), we
compute 2D bounding boxes for all 3D assets in
a particular viewpoint, where each object is cross-
referenced across every frame. As the dense bound-
ing box computation in a 3D environment is time-
consuming (repeated for thousands of frames per di-

1A∗’s distance minimization may lead to excessive turns.
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• Types:
• Colors:
• Patterns:
• Positions:

[complementary, same]
[arbitrary, arbitrary]
[arbitrary, arbitrary]
[far, close]

Agenda for a Shopping Scenario
U: What about a skirt to go with it?
A: We have a nice grey and white skirt.

U: I also want to find something by Uptown Studio.
A: How about the black and grey skirts in store?Unity Engine

(b) Path Planning (& Video Recording)

U: Can you show me how to find it?
A: If you turn to your right, you’ll see ...

(a) Sampling Referential Objects

Color pattern: {left: grey, 
up: black, down: null, right: null}

[1+2C, 3+3C, 2+2C, 4+2C]Rank
Scores Softmax

C: Predefined Constant

(c) Dialog Flow Generation with Meta-Agenda 

U: Could you help me find a jacket?
A: How about this grey jacket?

User Position & Orientation

Main Displacement Path

Active Phase Dialog

Static Phase Dialog

Figure 3: Multimodal dialog generation: (Right most) meta-agenda illustrates an exemplar shopping scenario that concerns
user demanding complementary (i.e. can go with) types for the first two items (jacket ↔ skirt) and the same type between the
2nd and 3rd items. Colors and patterns are not constrained, while the scenario simulates longer traversal is required (far) between
the first two items and the latter two are close-by. (Middle) Path planning: the navigational utterances will be grounded on the
planned path (displacements and orientations) and the referential objects (left most) used to facilitate the guidance are sampled
according to softmax scores on a ranking (via features e.g. eye-gaze, color-contrast) of most suitable landmarks.

Fashion hat, tshirt, jacket, hoodie, sweater, shirt, suit, vest, coat, trousers, jeans, joggers, skirt, blouse,
tank top, dress, shoes

Furniture area rug, bed, chair, couch chair, dining table, coffee table, end table, lamp, shelves, sofa

Table 1: Digital assets categories used in SIMMC-VR for both fashion and furniture domains.

alog), we expedite this process via an approximate
reconstruction. Specifically, we record the camera
position and orientation for each video frame, and
provide the mesh data for each asset and a function
to reconstruct 2D bounding boxes on-the-fly.

2.1.2 Dialog Simulation
In real-life shopping experiences, customers typ-
ically explore a shop with certain product at-
tributes of interest in mind (e.g. clothing colors,
types), thus shopping experiences are often object-
centric (Yinyin, 2011). Inspired by this, we pro-
gram several (extendable) object-centric flows that
focus on certain objects within an environment to
mimic how a user may wander (self-motivated or
guided) around from one product to another.
Dialog Flows. To have full control over the diver-
sity of dialog flows, and to encourage certain pat-
terns of flows to emerge for more interesting user-
AI conversations, we propose an object-centric gen-
eration pipeline. Specifically, to generate an object-
centric flow, we (1) define a meta-agenda, a se-
quence of meta-goals2 defined by certain object
attributes that simulate a complete shopping expe-
rience (e.g. a customer looking for certain types
or colors of clothing, or asking for a complemen-
tary item to match a previously purchased one) and
(2) for each meta-goal, sample an object accord-
ing to a planned traversal route (e.g. short or long
travel distance, traveling back to a previously ob-
served item) and a user-position/orientation to look

2We cap the max sequence length at 3, i.e. 3 meta-goals.

Colors same, arbitrary

Patterns same, arbitrary

Types same, arbitrary,
alternative, complementary

Positions far, close, come_back_to_X

Table 2: Meta-Agenda Programs

at the object (where the path planning can perform
on).3 The meta-agenda is either human-written or
programmatically generated, and diversified while
ensuring a balanced distribution of scenarios. The
traversal route is engineered to ensure user’s naviga-
tion/orientation changes are necessary and natural.

For each of the sampled-objects, a goal gen-
erator will sample a high-level dialog goal to
define the theme of a few turns of utterances
(e.g. COMPARE→ user requesting product compar-
isons). The user simulator then utilized both the
sampled objects and goals to generate correspond-
ing NLU labels following a probability distribution,
consisting of user intents (e.g. INFORM:GET), re-
quest slots (e.g. color, brand) and object references.
The assistant simulator then resolves the user re-
quests, leveraging the multimodal context and the
simulation API (e.g. for info lookup).4

3Each flow is uniquely defined by the sampled object-
sequence. We over-sample totally >1K object-centric flows
evenly across 27 programmed meta-agenda (Figure 3c).

4In contrast, SIMMC 2.0 plans a dialog only by randomly
sampling a sequence of abstract goals (e.g. BROWSE →
GET_INFO→ ...), often resulting in unrealistic scenarios.
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Meta-Agenda. Table 2 lists the candidates that
can be programmed into the meta-agenda. For al-
ternative and complementary item mappings, we
consider: (1) Relations in ConceptNet 5.0 (Speer
et al., 2017) such as distinct_terms (jacket is
distinct_to coat), similar_terms and/or
related_terms (e.g. sofa is related_to
end-table). And (2) Manual inspections and anno-
tations, where we ask internal members to annotate
the alternative and complementary items to a par-
ticular one of interest, and refine the annotated list
with majority vote (e.g. hat is complementary to
both shirt and dress as they can go in pairs, and coat
is alternative to jacket as they share similar func-
tionalities and thus can complement each other).

For the positions agenda, we pre-define a dis-
tance threshold to denote far or close depending on
the environment room layout (differ in fashion and
furniture domains). For the come_back_to_X
program, we engineer that the user will traverse
back to an item that is previously seen and indi-
cated with interests, to simulate relevant shopping
experiences in the real-world.

Templated Utterances. Grounded by the multi-
modal context, we pre-define a few utterance tem-
plates each associated with a specific dialog act,
leaving the specific object-related information (e.g.
object ids, modifiers, pronouns) as placeholders
that are filled-in according to the visuals. This al-
lows us to easily sample an utterance template that
is suitable for a particular situation and the associ-
ated user or AI intention, determined by the dialog
act. We list a few exemplar utterances and their
paraphrases, and highlight the placeholders in Ta-
ble 3. Notice that the local object scene-graphs
(Section 2.1.1) are also useful for generating di-
verse reference expressions for the same object
(second role of the Assistant examples in Table 3).

Manual Paraphrase. Next, we ask human an-
notators to paraphrase the templated utterances to
better match the real-world natural language dis-
tribution. We design an interface that dynamically
displays a multimodal scene that features either a
still image (static dialog phase) or a user egocen-
tric video (active dialog phase). When clicking
on a specific turn of a dialog, the corresponding
visual input is shown in the display panel to help
annotators navigate through the entire dialog flow.
We ask the annotators to pay attention to detailed
and sophisticated spatial-temporal relations of ob-
jects and encourage writing interesting shopping

experiences. The paraphrases are collected from
more than 20 different linguistic experts for diverse
language patterns/usages.

Once manual paraphrases are collected, we per-
form text-to-speech synthesis (TTS) on the utter-
ances, and synchronize the speech with the relevant
motion renders for improved naturalness, making
the rendered user shopping videos more realistic
(and comprehensive). We use an open-sourced tool,
Coqui TTS (Coqui.ai, 2022) to generate the spoken
speech from the paraphrased utterances. This also
helps computing the natural duration of each utter-
ance when spoken so that we can interpolate certain
number of video frames (under a fixed frame-rate)
to fit such utterance would span.

An exemplary dialog is shown in Appendix. A.

Dialog Dataset Structures. Similar to other exist-
ing task-oriented dialog systems (Eric et al., 2019;
Rastogi et al., 2020; Moon et al., 2020), each turn
of SIMMC-VR’s dialog data consists of NLU (and
NLG) intent and slot labels (e.g. "How do their
prices compare?" → REQUEST:COMPARE, slots:
price, objects: [1, 4]), as well as object references
(a unique object ID across the same room envi-
ronment) like SIMMC 2.0. In SIMMC-VR, due to
the newly introduced active dialog phase and the
richer dialog scenarios (object-centric flows), the
list of intents is expanded as compared to SIMMC

2.0 (see Section 2.2 and Appendix. A.2).

2.2 SIMMC-VR Dataset Analysis

Table 4 shows the essential dataset statistics. In
total, SIMMC-VR contains 4K dialogs with the cor-
responding videos (equating to 95.3K utterances).

Videos. We set the frame per second (fps) as 10.0,
which roughly leads to an average of 1.2K frames
per video (∼2 minutes length). On average there
are 24.6 visible objects in the key video frames.

Dialog Acts & Flows. Each algorithmically gen-
erated flow, i.e. the meta-agenda-induced object-
centric flow (Section 2.1.2), is capped to have at
most 5 different dialogs with randomly sampled di-
alog goals and intents. The average number of
utterances is 23.4, significantly larger than that
in SIMMC 2.0 (10.4). Its length distribution over
different turns is shown in Figure 4a. SIMMC-VR

extends SIMMC 2.0’s annotation to a set of 5 dialog
acts (e.g. INFORM, REQUEST) and 17 activities
(e.g. REFINE, DIRECTION_TURN). Figure 4b
shows their frequency breakdown and the complete
lists are in Appendix. A.2. A visualization of dia-
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Role Dialog Goal & Act Example Templates & Paraphrases

User

BROWSE Could you recommend something with {type:blouse}[search-filter]?
REQUEST:GET ⇒ ‘I am looking for a blouse; do you have anything to show me?’

ALTERNATE_SEARCH Do you have alternatives to [OID:34(hoodie,blue)][object] with {color:violet}[search-filter]?
INFORM:ALTERNATE ⇒ ‘Any other options besides that? See if you have anything violet in store.’

REFINE_SEARCH I would like to refine my search to include {type: skirt}[search-filter]. Anything good here?.
INFORM:REFINE ⇒ ‘I want to search more specifically for skirts. What are my options now?’

ADD_TO_CART Please add to cart: [OID:50(hoodie,green), OID:50(hoodie, green)][object].
REQUEST:ADD_TO_CART ⇒ ‘I like the first hoodie the best. Give me two of the green one.’

Assistant

ACTION Go {towards}[direction] it. [OID:100(sweater,red)][object] will be on {far-left}[relation].
INFORM:DIRECTION_STRAIGHT ⇒ ‘Go straight forward until seeing a red and white sweater on your far left.’

ACTION

Turn {around}[direction] and you will be able to see [OID:141(blouse,white)][object],
which is {on-right}[relation] to [OID:154(jacket,black)][object].

INFORM:DIRECTION_TURN ⇒ ‘Turn around and you will see that white and black blouse, on its left is a black jacket.’

GET_INFO Here is the info on size: [OID:49(hat,green)][object]: {size:XS}[slot-values].
INFORM:GET ⇒ ‘That green hat you’re looking at is size XS.’

COMPLEMENTARY_SEARCH How about these: [OID:77(skirt,brown)][object]? They are {type:skirt}[search-filter].
INFORM:COMPLEMENTARY ⇒ ‘Yes we do. How about the brown skirt that is on the far right on the top row?’

* OID stands for object ID.

Table 3: Exemplar utterance template and paraphrases in SIMMC-VR. In each row under the second column, the upper
terms are the goals and the lower terms are the dialog acts (consisting of acts and activities). We show a few representative dialog
acts with their corresponding sample templates (each act may have multiple templates as options) and a sample paraphrase. In
each template, the subscripts denote the type of the placeholders, where the contents are filled-in grounded by the multimodal
contexts (e.g. sampled objects, user eye-gazes) or sampled attributes (e.g. types or colors of the desired item).
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Figure 4: Plots of: (a) utterance lengths in dialogs, (b) acts and activities, and (c) co-reference distance between object mentions.

Total # dialogs 4,075
Total # utterances 95,368
Avg # words per user turns 12.9
Avg # words per assistant turns 16.7
Avg # utterances per dialog 23.4
Avg # objects mentioned per dialog 13.2
Avg # objects in key video frames 24.6
Avg # objects per fashion environment 188.6
Avg # objects per furniture environment 62.0
Avg # frames (under fps = 10.0) 1197.7
Avg # seconds per TTS utterance 4.13

Table 4: SIMMC-VR dataset statistics. On average there
are 13.2 objects mentioned in a dialog and more than 20 visi-
ble in each video frame, making the video-grounded dialogs
diverse and rich in contents. Each video roughly lasts 2 min-
utes, equating to a total of >130 hours long VR streams.

log transition is shown in Figure 5 to illustrate the
diversity and patterns of our generated dialog flows.
Figure 4c plots the coreference distances according
to how many utterances separate the mentions.

2.3 Novel Challenges to SIMMC 2.0
SIMMC 2.0 shares the general goal of achieving
multimodal task-oriented dialog systems for fu-

ture real-world and VR applications. However, the
active and rich multimodal contexts of SIMMC-

VR introduce the following new challenges: (1)
Anchoring egocentric videos as visual contexts,
SIMMC-VR requires the spatial and the additional
temporal multimodal reasoning, posing new cate-
gorical patterns of object coreferences and associ-
ated user/assistant utterances. (2) The novel dialog
simulation pipeline allows for more diverse and re-
alistic interactions (e.g. navigation and localization
scenarios) with a number of transitory dialog ac-
tions and viewpoints, many of which have not been
studied in the previous datasets. This results in
the higher degree of complexities in conversational
tasks – for instance, the coreference resolution task
gets significantly harder with a much larger num-
ber of objects mentioned in a dialog (13.2 vs. 4.7
in 2.0), and with the increased average utterance
counts (23.4 vs. 10.4 in 2.0). (3) SIMMC-VR re-
quires that a perception model maintains object
correspondences across their variations from dif-
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Figure 5: Dialog act(s) transitions for the first four rounds of dialogs in the fashion domain. The acts and activities are denoted
for brevity as ACT:ACTIVITY:[A|U][turn_index] (for full names see Appendix. A.2), where U and A denote user and
assistant, respectively. The shown branching and inter-connectivity justifies the diversity of the synthesized dialog flows.

ferent angles and disjoint viewpoints over time, to
ensure the correctness of their resolution. While
this requirement poses a practical challenge for a
real-world application, a robust solution has not
been explored especially for its use in the context
of the multimodal dialog management.

3 SIMMC-VR Task Formulation
The SIMMC-VR is created to help AI models cope
with realistic shopping scenarios and assist human
users in real-world applications in AR/VR. To in-
vestigate the (multimodal) conversational and as-
sistive abilities of current AI systems in this immer-
sive and situated environment, we propose four
main bechmarking tasks leveraging the created
dataset. Several tasks inherit from SIMMC 2.0 with
additional challenges brought by the nature of ac-
tive user scenes and expanded dataset annotations.

3.1 Multimodal Dialog State Tracking
Following SIMMC 2.0, in SIMMC-VR we retain
the multimodal dialog state tracking (MM-DST)
task, which aims at inferring structured informa-
tion for understanding and planning out dialog poli-
cies/actions, with dialog utterances and/or multi-
modal contexts given. Each DST is required to
resolve both the dialog intents (as a dialog act) and
the user request slots, which is mainly evaluated by
the F1 scores of the predicted slots and intents.

3.2 Multimodal Coreference Resolution
It is crucial for an assistant to be able to recognize
objects that a user is referencing, either within the
current visual context, or any previously men-
tioned items.Therefore, for each environment, a
canonical ID is uniquely assigned to each object as
the target for multimodal coreference (MM-Coref)
resolutions, where the mentions can be resolved by
both the dialog context (e.g. "Add the shirt I liked
to the cart.") and the multimodal context (e.g.
"How does the red shirt next to the jeans com-

pared to the one before?"). Following SIMMC 2.0,
we allow the models to take ground-truth bound-
ing boxes as inputs to bypass the needs for perfect
visual detectors. The evaluation metric is the F1
scores for the predicted object IDs. Note that as
the multimodal contexts are videos, the models
are implicitly conditioned to identify the frames
that likely contain the target objects, leading to
comprehensive multimodal spatial-temporal rea-
soning. Additionally, while there are no explicit
textual coreference annotations, the models are still
implicitly required to perform textual coreference
resolution for those utterances mentioning the same
objects from prior dialogue turn(s).

3.3 Failure-Mode Prediction
SIMMC-VR features user failure-modes that simu-
late users accidentally failing to correctly follow
the assistant guidance. In this task, given a dia-
log snippet (consisting of utterances in the active
phase) and the video frames surrounding it, we ask
the model to predict whether the current user ac-
tions correctly follow the instructions or not (i.e.
binary classification evaluated by F1 scores). The
task is highly multimodal as the model needs to
understand the sophisticated active grounding of
the visual and dialog contexts. During the training
time, we pre-sample the same amount of negative
samples to make the labels balanced.

3.4 Dialog Response Generation
This task requires a trained dialog agent to gen-
erate the assistant responses (measured in BLEU-
4 (Papineni et al., 2002)), given user utterances
as well as the resolved multimodal information
(belief states and referred canonical object IDs).
Note that even though the aforementioned infor-
mation is given as ground-truths, the generation
still needs to conform to natural language re-
sponses that do not contain flattened DSTs or ob-
ject IDs (e.g. INFORM:COMPARE, (OBJ_ID:
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MM Belief States

Dialog Context
(User-Assistant)

e.g.
A: …
U: How much is the red one? 

Multimodal Context
(Flattened Strings)

e.g.
O1 {color: red, type: hat}
O2 {pattern: dotted, type: shirt}

Multimodal Context
(Image & Descriptors)

Img1 Obj11 Obj1N…

Video-Language GPT-2/BERT

Prediction Target

Visual Inputs

Textual Inputs

System Response

e.g.
ASK:GET:HAT.price
[obj = O1] <EOB>

1 0

e.g.
A: That hat costs $350 

dollars. <EOS>

Dense Obj. Descriptors

Figure 6: Baseline models: The inner grey box (denoted
“GPT-2/BERT”) is the language model either as (is) the MM-
DST model or the language encoder of the video-language
model (VIOLET adopts BERT). The video-language model
predicts MM-Coref via dense object descriptors, while MM-
DST model generates (via GPT-2) the flattened target strings.

5,9)→ "The white and blue shirts differ by ...").

4 Modeling & Experimental Analysis
In this section, we introduce the investigated base-
line models to perform a preliminary benchmarking
of the proposed dataset, where we hope to inspire
more sophisticated and tailored modeling efforts
from the community for future research.
Dataset Split. For the empirical modeling analysis
and performance benchmarking, we randomly split
the dataset into 3 sets: train (70%), dev (5%), and
test (25%) sets, while ensuring both domains (fash-
ion and furniture) have the same split distributions.
Baselines. To benchmark the dataset, we adopt:
(a) MM-DST Model is a 12-layered multi-task
GPT-2 model (Radford et al., 2019; Kottur et al.,
2021) trained with joint supervision signals from
MM-Coref, MM-DST, and response generation
tasks, inspired by causal language modeling ap-
proach to dialog systems (Peng et al., 2020;
Hosseini-Asl et al., 2020). The inputs to the model
include both the dialog context (utterances) and the
multimodal contexts flattened as structurally for-
matted text strings, where the outputs are the pre-
dicted DST labels. This baseline has two versions:
one uses the ground-truth multimodal contexts pro-
vided from the scene generator (hence a soft oracle)
to simulate the outputs from a robust object detec-
tor or from a controlled VR environment, whereas
the other has to infer visual descriptors from raw
videos, simulating real-world scenarios.
(b) Adapted-VIOLET Model is a multimodal
video-language model based on VIOLET (Fu
et al.), adapted to fit our task structure (Figure 6).
Due to computational limitations, we randomly
sub-sample 10 − 15 video frames during train-

Model DST Coref Fail. Gen.
Slot / Int. / Joint F1↑ F1↑ F1↑ BLEU↑

(Label Distribution) 19.4 / 9.39 / 8.73 0.66 34.1 —

MM-DST 72.4 / 78.6 / 33.9 17.1 — 0.117
MM-DST (no-gt.) 71.7 / 77.3 / 30.8 0.71 — 0.120
Adapt.-VIOLET 75.0 / 80.4 / 37.7 9.69 46.4 0.119

SIMMC 2.0 Performance (for comparison)
MM-DST 89.6 / 94.5 / 44.6 36.6 — 0.192

Table 5: Baseline performances for Multimodal (1) Dialog
State Tracking (DST), (2) Object Coreference (Coref.), (3)
Response Generation (Gen.), and (4) Failure Mode Prediction
(Fail.). In the lower half, we report the corresponding perfor-
mance from SIMMC 2.0 with the MM-DST model.

ing (while ensuring a proportion of these frames
contain objects of ground-truth coreferences), and
sweep through the entire video for test-time infer-
ence with a fixed window-size. In addition to the
frame-level whole image feature, we feed the dense
object descriptor features extracted in each ground-
truth bounding boxes (assuming a perfect object
detector) to the model for the MM-Coref task.5

All baseline models are trained for ten epochs,
and the best model on the dev set is used for test.

4.1 Experimental Results
Table 5 summarizes the model performance and
the probabilistic guess performance (proportional
to training label distributions) for each sub-task.
Main Results. The baselines show strong over-
all performances especially in the DST task. The
MM-Coref is understandably a very challenging
task (resolving tens of items over moving frames),
as evidenced in the relatively low scores – suggest-
ing areas for future research. It is worth noting
that without the ground truth multimodal contexts
for assistant turns, the MM-DST model performs
close to zero, indicating that the created dataset
does not leak unintended artifacts for the object
mentions (that language-only models can easily ex-
ploit without visual contexts). For the failure mode
prediction, we prepare a test-set that focuses on the
active scene utterances, where the random guess
roughly equates to the amount of the failure prob-
abilities (30%). We expect the future modeling
efforts can better perceive discrepancies between
the visual behaviors and the instructed guidance.
Effects of Temporal Grounding. We break down
the MM-Coref performance by identifying coref
utterances with temporal dependencies. With the
Adapted-VIOLET model, we get an F1 of 10.5 for

5Here to simplify the task, our dataset can also be ap-
proached without assuming any perfect vision modules.
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utterances without temporal dependencies, and a
significantly lower 2.81 for the others – suggesting
the difficulty in encoding long-standing contexts.
Comparison with 2.0. We also include the MM-
DST model performance for the SIMMC 2.0 dataset
as a reference, to signify the new challenges
that SIMMC-VR brings with the active VR-streams
and the complex multimodal dialog flows.

5 Related Work
The proposed work addresses unique requirements
for a task-oriented assistant on smart glasses, mak-
ing it a first-of-its-kind – while complementing
other related works within multimodal NLP.

SIMMC (Moon et al., 2020; Kottur et al., 2021)
is a class of research areas that the proposed work
builds upon, which addresses using virtual envi-
ronments to simulate a co-observing multimodal
dialog agent. Moving away from the sanitized
and static scenes that they concern for the limited
use cases, SIMMC-VR introduces several additional
challenges as summarized in Section 2.3.

Several models (Kung et al., 2021; Senese et al.,
2021; Lee and Han, 2021; Huang et al., 2021b)
are proposed for the SIMMC benchmark tasks –
primarily focusing on grounding dialogs on visual
objects from a single image. Taking inspirations
from these works, we extend the models to accom-
modate temporal dependencies within frames.

Multimodal Dialog Datasets. Many of the exist-
ing literature in multimodal dialogs (Das et al.,
2017b; Hori et al., 2018; Kottur et al., 2019;
de Vries et al., 2017, 2018; Le et al., 2021) typ-
ically assume asymmetric visual information be-
tween two observers, i.e. questioner and answerer,
where conversational goals are limited to reducing
information asymmetry (similar to VQA). In con-
trast, we study task-oriented dialog scenarios – an
assistant co-observes the same scene as a user does,
thus focusing on serving user requests to achieve
functional goals (e.g. giving recommendations).

The embodied AI dialog systems (Gao et al.,
2022; Padmakumar et al., 2022), on the other hand,
study the scenarios where a human participant
teaches an AI agent a set of skills or gives navi-
gational directions – hence posing an opposite role
to an AI agent. While it is an important area to
study, its distribution of utterance patterns is com-
pletely different and therefore not applicable for
our target domain – building a situated AI assistant.

Egocentric Video Datasets. With the popularity

of wearable devices, several datasets (Grauman
et al., 2022; Lv et al., 2022; Damen et al., 2021) are
released to study the unique properties of egocen-
tric videos. Our work also features similar visual
properties, while adding conversational layers that
showcase an assistant use case of such videos.
Task-Oriented Dialog Systems (Henderson et al.,
2014; Rastogi et al., 2019; Budzianowski et al.,
2018b; Eric et al., 2019) have long been studied to
support various assistant scenarios (e.g. booking
hotels). Our work takes its roots in this line of
work – focusing on predicting user belief states
and dialog acts to achieve functional goals – and
extends it to a unique multimodal setting.

A popular thread in the task-oriented dialog sys-
tem modeling is to fine-tune end-to-end causal
LLMs (Hosseini-Asl et al., 2020; Peng et al., 2020;
Chao and Lane, 2019; Gao et al., 2019; Crook et al.,
2021). We extend this line of work and propose a
multimodal extension to account for visual inputs.

6 Conclusions
We present SIMMC-VR, a situated and interactive di-
alog dataset that features immersive VR streams as
multimodal contexts, simulating realistic shopping
scenarios along with user-assistant dialog interac-
tions. The dataset consists of 4K user-egocentric
videos paired with densely annotated dialog utter-
ances. We build a novel meta-agenda generator
for automatically synthesizing rich interactive di-
alogs grounded on active and diverse visual scenes,
paraphrased manually for more natural speech. We
propose four sub-tasks on SIMMC-VR which aims
at inspiring future dialogue modeling endeavors on
high-fidelity egocentric (user POV) environments;
where the baseline performance highlights many
challenges the dataset brings forth towards actual-
izing the real-world-ready VR/AR assistant. With
rich annotations it provides, SIMMC-VR can as well
expand beyond the proposed tasks to spur relevant
future research, which includes (but not limited to):
(1) augmented with speech-like spoken utterance
interventions to enrich the naturalness of the di-
alogues, and (2) environments and room layouts
beyond ones used under the scope of this paper.

Acknowledgments

Many thanks to Renato Sanchez and Becka Silvert
for their help on coordinating the paraphrases col-
lection; the linguists from the Appen tool company
for the high-quality paraphrases; and the anony-
mous reviewers for their constructive feedback.

6281



7 Limitations

We hereby discuss the current limitations of our
work: (1) The SIMMC-VR dataset, similar to the
SIMMC 2.0 version, focuses on shopping scenar-
ios (clothing and furniture purchasing domains),
one of the most common everyday activities that
virtual reality could enable users to do from any-
where, anytime. We have not tested whether the
models would generalize to domains outside of the
shopping experiences, thus we cannot speak to the
transferability of our results to environments with
very different visual properties than what our vir-
tual environments provide. (2) In this dataset, we
hand-design several possible dialog acts that we
assume are common for human buyers, as well as
their associated scenarios. This may not exhaust all
the possible interactions a shopper can do with the
assistant. However, we emphasize that the coverage
should be sufficient for common shopping experi-
ences. Additionally, although most of our proposed
subtasks should be modeling generic user-assistant
multimodal dialogue interaction and thus could be
transferred well to other domains, the (our) domain
specific MM-DST may not generalize as much.
Nevertheless, they should still be transferable to
similar (shopping) environments. (3) The audio of
the SIMMC-VR videos are generated by automatic
TTS, which may fall short to represent the natural
human speech. However, we do not foresee this
causing problems for multimodal dialog modeling,
which this work mostly focuses on.

8 Ethics and Broader Impacts

We hereby acknowledge that all of the co-authors
of this work are aware of the provided ACM Code
of Ethics and honor the code of conduct. This
work is mainly about collecting a multimodal task-
oriented dialog dataset with primary applications in
actualizing a virtual assistant in the AR/VR world.
The following gives the aspects of both our ethi-
cal considerations and the potential impact to the
community.

Dataset. While most parts of our created dataset
are automatable, our main human annotation ef-
forts lie in the paraphrasing phase of our templated
synthetically constructed dialog utterances. We ask
in total 20 workers that possess linguistic exper-
tise to paraphrase our templated utterances with
carefully designed guidance and examples. We en-
courage the diversity where we do not pose any
limits on the background of the paraphrasor as long

as English proficiency and linguistic domain exper-
tise is possessed.

The main annotation task is conducted via the
Appen6 provided interface, where we ensure that
all the personal information of the workers involved
(e.g., usernames, emails, urls, demographic infor-
mation, etc.) is discarded in our dataset. The de-
signed virtual environment scenes are not intended
to have any bias towards any communities, where
we aim at constructing generic domain and diverse
scenes.

Overall, we ensure our pay per task is well
above the annotator’s local minimum wage (ap-
proximately $30-35 USD / Hour). In this work,
we primarily consider English speaking regions for
setting up the initial benchmark, though our dataset
can be easily extended to contain multilingual an-
notations for learning virtual AI assistants that are
capale of different languages. This research has
been reviewed by the IRB board and granted the
status of an IRB exempt.
Techniques. We benchmark the constructed
dataset with modern strong large-scale pretrained
language and multimodal models with our own de-
signs to adapt them to suit our formulated tasks.
Due to the nature of our dataset (assistant AI that
focuses on the needs of the human users and the
surrounding environments), as well as the proposed
main challenges this dataset feature (i.e. mainly fo-
cusing on resolving multimodal coreferences, track-
ing dialog states, and generating useful assistive
responses to human users), we do not anticipate
production of harmful outputs, especially towards
vulnerable populations, after training models on
our SIMMC-VR dataset/tasks.
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A Details of the Dataset

A.1 Digital Assets

Table 6 lists the asset categories used for construct-
ing the SIMMC-VR dataset.

Inventories & Scenes. As the base environment
inherits from SIMMC 2.0, there are around 290 and
110 digital assets for fashion and furniture items. 7
seed fashion scenes are manually created for fash-
ion and 1 seed scene for furniture, with each seed
scene rearranged 20 times (Section 2.1) to create
(randomized) diverse shopping environments. We
do so by randomly swapping an asset from either
the same or semantically similar asset category (Ta-
ble 6) to retain spatial appropriateness (e.g. avoid-
ing collisions or over-sized to a container) of the
replacement object.

The user traversal video is then planned and
recorded in these environments. The number of vis-
ible distinct objects in key video frames of static dia-
log phase is 24.6 (Table 4), which implies quite rich
multimodal contents are presented in the recorded
videos.

A.2 Dialog Goals & Acts

Table 7 lists all the sub-goals during the high-level
agenda for planning the overall dialog flows, with
their detailed explanations.

Table 8 lists all the used dialog acts and ac-
tivities. Recall that a full dialog act is com-
posed by the act term and the activity term,
e.g. REQUEST:COMPARE. Most of the activi-
ties are self-explainable. Navigational activities
are separated to DIRECTION_STRAIGHT and
DIRECTION_TURN, etc., to make the utterance
template sampling more straightforward (as we
most likely will use different ways to speak about
moving straight as opposed to making turns.) The
PRE_CONDITION and POST_CONDITION ac-
tivities are for querying referential objects dur-
ing key action points, with the former query-
ing the objects before the action (e.g. "Turn
right when you see a pair of blue jeans."), and
the latter during the ending of the action (e.g.
"Turn right and then you should see a pair of
blue jeans."). SPATIAL_RELATIONS are for re-
ferring objects within a local object-scene-graph
when sampling corresponding utterance templates,
while REMEDIAL_* activities indicate that the cur-
rent assistant speech is trying to get the user back
on the correct track (towards an item(s) of interest).

A.3 Other Details

Failure Modes for Dialog Simulation. In real-
ity, the user may not always perfectly follow an
instruction. We model such behaviors in SIMMC-

VR by (with 30% probability) deliberately failing
an instructed action during the path planning stage
(e.g. making a wrong turn, moving further from a
desired spot). We achieve this by randomly select-
ing one (or a few) key action points along a proper
traversal path and record the opposite actions in
the user video. The correct action path will then
be used to derive the original instructed utterance
(where the user fails to follow) and we additionally
perform remedial path planning to guide the user
back to the right track.
Bootstrapping from Sparse Scenes. While most
of the dialogs from SIMMC 2.0 have a single static
image, the dataset contains a small proportion of di-
alogs with two randomly sampled (sparse) scenes
as multimodal contexts. We propose to recover
and re-purpose these sparse scenes to add onto
our dataset by connecting the two scenes with a
newly collected active phase navigating the user
from one scene to another, with augmented con-
versations along the traversal. This step essentially
adds diversity and depth to conversations in our
dataset. For the static phase (the original two snap-
shots of SIMMC 2.0), we animate the scenes with
user’s eye-gaze movements combined with a small
amount of local wandering movements to appear
more natural. We use ∼1.4K static phase conver-
sations from SIMMC 2.0, ensuring that at least one
turn of user↔assistant conversation exists in the
second scene snapshot.
TTS Utterances. To make the rendered user shop-
ping videos more realistic (and comprehensive),
we also perform an automatic text-to-speech syn-
thesis (TTS) on each user and assistant utterance
using an open-sourced tool, Coqui TTS (Coqui.ai,
2022). The TTS helps compute the natural duration
of each utterance when spoken, which is then used
to calculate the number of video frames (under a
fixed frame-rate) an utterance would span. The ran-
dom eye-gaze movements mentioned in Section 2.1
extend the sparsely rendered scene snapshots to the
continuous video frames, synchronized with the
aforementioned speech.

A.4 Data Examples

Figure 7 shows a sample sub-sampled video frames
for both the fashion and furniture domains, for
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Fashion hat, tshirt, jacket, hoodie, sweater, shirt, suit, vest, coat, trousers, jeans, joggers, skirt, blouse,
tank top, dress, shoes

Furniture area rug, bed, chair, couch chair, dining table, coffee table, end table, lamp, shelves, sofa

Table 6: Digital assets categories used in SIMMC-VR for both fashion and furniture domains.

Goals Explanation

UNKNOWN Default.
BROWSE Browse the shop, asking for recommendation etc.
REFINE_SEARCH Refine the previous search for objects in the current scene with additional criteria.
GET_SIMILAR Get similar item to a specific one, in the current scene.
GET_INFO Get information about an item.
COMPARE Compare two or more items.
ADD_TO_CART Add item(s) to cart.
ALTERNATE_SEARCH Search in the current scene for objects alternative to a specific one.
COMPLEMENTARY_SEARCH Search in the current scene for objects complementary to a specific one.
GLOBAL_GET_SIMILAR Get similar items to a specific one within the entire environment.
GLOBAL_REFINE_SEARCH Refine the previous search but objects can be anywhere in the environment.
GLOBAL_ALTERNATE_SEARCH Alternative search but objects can be anywhere in the environment.
GLOBAL_COMPLEMENTARY_SEARCH Complementary search but objects can be anywhere in the environment.
ACTION Indicates physical actions (navigation, viewpoint movements etc.)

Table 7: Dialog Goals for Agenda

Dialog Acts (5) INFORM, REQUEST, CONFIRM, ASK, CONDITION

Activities (17)

GET, REFINE, COMPLEMENTARY, ALTERNATE, PREFER,
DISPREFER, COMPARE, ADD_TO_CART, DISAMBIGUATE
DIRECTION_STRAIGHT, DIRECTION_TURN, DIRECTION_TURN_AROUND
PRE_CONDITION, POST_CONDITION, SPATIAL_RELATIONS
REMEDIAL_TURN, REMEDIAL_STRAIGHT

Table 8: Dialog Acts & Activities for Agenda: A full dialog act comprises of an act and an activitiy, e.g. INFORM:GET.

Models Batch Size Initial LR # Training Epochs Gradient Accu- # Paramsmulation Steps

MM-DST 4 5× 10−5 10 1 117M
MM-DST (no-gt.) 4 5× 10−5 10 1 117M
Adapt.-VIOLET 4 1× 10−5 10 1 214M

(a) Hyperparameters

Type Batch Size Initial LR # Training Epochs Gradient Accumulation Steps

Bound (lower–upper) 2–8 5× 10−5–5× 10−6 6–10 1–1

Number of Trials 2–4 2–3 2–4 1–1

(b) Search Bounds

Table 9: (a) Hyperparameters in this work: Initial LR denotes the initial learning rate. All the models are trained with Adam
optimizers (Kingma and Ba, 2015). We include the number of learnable parameters of each model in the column: # params. (b)
Search bounds for the hyperparameters of all the models.

qualitative purpose.

Figure 8 shows full-scale example of one of the
data instance in SIMMC-VR – with some naviga-
tional utterances from the assistant shortened for
brevity.

B Details of Modeling

B.1 General Modeling

The respective author-released pretrained weights
for both models (GPT-2 and VIOLET) are used for
model initializations.

As described in Section 4, we use VIOLET (Fu
et al.) due to the model’s architectural simplic-
ity and convenience to adapt to our task (as well
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as its remarkable performances on various video-
language tasks). The multi-framed vision trans-
former stream of video encoder is suitable for
the SIMMC-VR task, where we further engineer it
to be able to take on dense object descriptors and
dialog structures. For MM-DST, MM-Coref, and
Failure Mode Prediction tasks, we mainly adopt
the original VIOLET’s BERT module as its lan-
guage encoder, while for response generation, we
replace the BERT with GPT-2 and train the model
from scratch directly on our dataset (with the visual
streams initialized from pretrained weights).

B.2 Hyper-Parameters
Table 9a and Table 9b report the hyper-parameters
used in this work for model training and their
search bounds, respectively. We simply perform a
manual search trials.

B.3 Implementation Details & Hardware
The implementations of the transformer-based mod-
els are extended from the HuggingFace7 code
base (Wolf et al., 2020) and other cited authors’
released code-bases. Our entire code-base is imple-
mented in PyTorch.8 All the models in this work
are trained on a single Nvidia A100 GPU9 on a
Ubuntu 20.04.2 operating system.

7https://github.com/huggingface/transformers
8https://pytorch.org/
9https://www.nvidia.com/en-us/data-center/a100/
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Frame = 1 Frame = 173 Frame = 176 Frame = 236

Frame = 268 Frame = 287 Frame = 343 Frame = 391

Frame = 1 Frame = 194 Frame = 254 Frame = 266

Frame = 286 Frame = 371 Frame = 772 Frame = 956

Fashion Domain

Furniture Domain

Figure 7: Sample videos for both the fashion (upper half) and furniture (lower half) domains. The frames are sub-sampled
(with fps=10.0) to show qualitative and representative visuals of our dataset.
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UTTERANCES ANNOTATIONS

U: Could you help me find a jacket?

A: How about this grey jacket?

U: What about a grey jacket made by North Lodge?

A: Sorry, I couldn't find anything, do you want to see something 
else?

U: What about a skirt to go with the grey jacket in front of me?

A: We have a nice grey and white skirt in stock.

U: Can you show me where I could find something like that?

A: If you turn to your right, you'll see a pair of gray pants 
ahead and partially obscured by the checkout counter.

A: Try to spot the black and white patterned top that's 
hanging to the upper left of a pair of gray pants. Once you've 
spotted it, walk over towards it.

…
A: Also further down that left hand wall will be a hanging, 
black dress. Walk towards the dress. On your right will be a 
purple, folded shirt on the lowest tier of a display table.

A: You're almost there now! Finally, turn to your right and 
find the gray and white skirt that's hanging on the opposite 
wall behind the clothing rack in front of you. It should be to 
the left of a black dress that's hanging on an angled rack to 
your right. I hope you like that skirt!

REQUEST:GET, slots: {'type': 'jacket'}, objects: []

INFORM:GET, slots: {'type': 'jacket'}, objects: [76]

INFORM:REFINE, slots: {'type': 'jacket', 'color': 
'grey', 'brand': 'North Lodge'}, objects: []

INFORM:GET, slots: {'type': 'jacket', 'color': 'grey', 
'brand': 'North Lodge'}, objects: []

INFORM:COMPLEMENTARY, slots: {'type': 'skirt'}, 
objects: [76]

INFORM:GET, slots: {'type': 'skirt'}, objects: [46]

REQUEST:LOCATE, slots: {}, objects: []

INFORM:DIRECTION_TURN, slots: {'turn': 'right', 
'displacement': None}, objects: [44]

ASK:VISIBLE, slots: {'turn': None, 'displacement': 
'forward'}, objects: [18]

…
INFORM:DIRECTION_STRAIGHT, slots: {'turn': None, 
'displacement': 'forward'}, objects: [37]

INFORM:DIRECTION_TURN, slots: {'turn': 'right', 
'displacement': None}, objects: [46]

U: What brand is that grey jacket?

A: It is North Lodge.

U: Okay, I'll take one of the grey and white skirt on the other 
side of the rack.

A: I'm adding it to your cart now.

U: I also want to find something by Uptown Studio.

A: How about the black and grey skirt in store?

U: Could you help me find what I'm looking for?

…

ASK:GET, slots: {}, objects: [76]

INFORM:GET, slots: {'Object ID: 76': {'brand': 'North 
Lodge'}}, objects: [76]

REQUEST:ADD_TO_CART, slots: {}, objects: [46]

CONFIRM:ADD_TO_CART, slots: {}, objects: [46]

INFORM:REFINE, slots: {'brand': 'Uptown Studio'}, 
objects: [46]

INFORM:GET, slots: {'brand': 'Uptown Studio'}, 
objects: [62]

REQUEST:LOCATE, slots: {}, objects: []

…
U: How does this black and grey skirt compare to the grey 
and white one?

A: They are both short skirts.

U: I want to find a plain skirt.

A: I have this plain black skirt, and a grey and white option as 
well.

U: I'll take the grey and white option.

A: Okay, I will add it for you.

REQUEST:COMPARE, slots: {}, objects: [62, 46]

INFORM:COMPARE, slots: {'Object ID: 62': 
{'assetType': 'skirt', 'sleeveLength': 'short'}, 'Object ID: 
46': {'assetType': 'skirt', 'sleeveLength': 'short'}}, 
objects: [62, 46]

INFORM:REFINE, slots: {'type': 'jacket', 'pattern': 
'plain'}, objects: []

INFORM:GET, slots: {'type': 'jacket', 'pattern': 'plain'}, 
objects: [65, 70]

REQUEST:ADD_TO_CART, slots: {}, objects: [46]

CONFIRM:ADD_TO_CART, slots: {}, objects: [46]

Figure 8: Dataset example. Dialog labels include intent, slots, and multimodal co-references. The key static phase frames are
shown with the corresponding conversations, along with a few sub-sampled frames during the traversals. U denotes user and A
denotes the assistant. For simplicity, we omit some over-lengthy navigational instruction from the assistant.
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