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Abstract

We study grammar induction with mildly
context-sensitive grammars for unsupervised
discontinuous parsing. Using the probabilistic
linear context-free rewriting system (LCFRS)
formalism, our approach fixes the rule structure
in advance and focuses on parameter learning
with maximum likelihood. To reduce the com-
putational complexity of both parsing and pa-
rameter estimation, we restrict the grammar for-
malism to binary LCFRS with fan-out two and
further discard rules that require O(ℓ6) time
to parse, reducing inference to O(ℓ5). We
find that using a large number of nontermi-
nals is beneficial and thus make use of tensor
decomposition-based rank-space dynamic pro-
gramming with an embedding-based parame-
terization of rule probabilities to scale up the
number of nonterminals. Experiments on Ger-
man and Dutch show that our approach is able
to induce linguistically meaningful trees with
continuous and discontinuous structures.

1 Introduction

Unsupervised parsing aims to induce hierarchical
linguistic structures given only the strings in a lan-
guage. A classic approach to unsupervised parsing
is through probabilistic grammar induction (Lari
and Young, 1990), which learns a probabilistic
grammar (i.e., a set of rewrite rules and their proba-
bilities) from raw text. Recent work has shown that
neural parameterizations of probabilistic context-
free grammars (PCFG), wherein the grammar’s rule
probabilities are given by a neural network over
shared symbol embeddings, can achieve promising
results on unsupervised constituency parsing (Kim
et al., 2019; Jin et al., 2019, 2021; Yang et al.,
2021b, 2022).

However, context-free rules are not natural for
modeling discontinuous language phenomena such
as extrapositions, cross-serial dependencies, and

Code: https://github.com/sustcsonglin/TN-LCFRS.

S(1)

VP(2)

PP(1) PP(1)

APPR NN VAFIN NE APPR NE VVPP

Im Oktober wurde Passent in Berlin operiert
In Octobor surgery Passent in Berlin underwent

Figure 1: An example of a discontinuous parse tree in German.
Each non-leaf node’s fan-out is marked in brackets.

wh-movements. Mildly context-sensitive grammars
(Joshi, 1985), which sit between context-free and
context-sensitive grammars in the classic Chom-
sky–Schützenberger hierarchy (Chomsky, 1959;
Chomsky and Schützenberger, 1963),1 are pow-
erful enough to model richer aspects of natural
language including discontinuous and non-local
phenomena. And despite their expressivity they en-
joy polynomial-time inference algorithms, making
them attractive both as cognitively plausible mod-
els of human language processing and as targets
for unsupervised learning.

There are several weakly equivalent formalisms
for generating the mildly context-sensitive lan-
guages which might serve as potential targets
for grammar induction: tree adjoining grammars
(Joshi, 1975), head grammars (Pollard, 1985), com-
binatory categorial grammars (Steedman, 1987),
and linear indexed grammars (Gazdar, 1988). In
this paper we work with linear context-free rewrit-
ing systems (LCFGS, Vijay-Shanker et al., 1987),

1This hierarchy does not necessarily extend to proba-
bilistic grammars. For example Icard (2020) show that in a
particular probabilistic version of the hierarchy in which a
probabilistic grammar over a one-letter alphabet induces a dis-
tribution over the integers via its unary representation, the set
of distributions that can be expressed by probabilistic mildly
context-sensitive grammars (such as linear indexed grammars)
is not a proper subset of the set of distributions that can be
expressed by probabilistic context-sensitive grammars.
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which generalize the above formalisms and are
weakly equivalent to multiple context-free gram-
mars (Seki et al., 1991). Derivation trees in an
LCFRS directly correspond to discontinuous con-
stituency trees where each node can dominate a
non-contiguous sequence of words in the yield, as
shown in Fig. 1.

We focus on the LCFRS formalism as it has pre-
viously been successfully employed for supervised
discontinuous constituency parsing (Levy, 2005;
Maier, 2010; van Cranenburgh et al., 2016). The
complexity of parsing in a LCFRS is O(ℓ3k|G|),
where ℓ is the sentence length, k is the fan-out
(the maximum number of contiguous blocks of text
that can be dominated by a nonterminal), and |G|
is the grammar size. While polynomial, this is
too high to be practical for unsupervised learning
on real-world data. We thus restrict ourselves to
LCFRS-2, i.e., binary LCFRS with fan-out two,
which has been shown to have high coverage on
discontinuous treebanks (Maier et al., 2012). Even
with this restriction LCFRS-2 remains difficult to
induce from raw text due to the O(ℓ6|G|) dynamic
program for parsing and marginalization. However
Corro (2020) observe that a O(ℓ5|G|) variant of
the grammar that discards certain rules can still
recover 98% of real world treebank constituents.
Our approach uses with this restricted variant of
LCFRS-2 (see Sec 2.2). Finally, following recent
work which finds that that overparameterizing deep
latent variable models is beneficial for unsuper-
vised learning (Buhai et al., 2020; Yang et al.,
2021b; Chiu and Rush, 2020; Chiu et al., 2021), we
scale LCFRS-2 to a large number of nonterminals
by adapting tensor-decomposition-based inference
techniques—originally developed for PCFGs (Co-
hen et al., 2013; Yang et al., 2021b, 2022)—to the
LCFRS case.

We conduct experiments German and Dutch—
both of which have frequent discontinuous and
non-local language phenomena and have available
discontinuous treebanks—and observe that our ap-
proach is able to induce grammars with nontrivial
performance on discontinuous constituents.

2 Approach

2.1 Background: Scaling PCFGs with
low-rank neural parameterizations

Inference in PCFGs is cubic with respect to the
number of nonterminals in the general case, which
can make it difficult to scale up PCFGs to a large

number (e.g., thousands) of nonterminals. How-
ever, under certain parameterizations it is possible
to exploit low rank factorizations of the rule prob-
ability tensor to enable faster inference. For ex-
ample, given a PCFG with m nonterminals Cohen
et al. (2013) use canonical-polyadic decomposition
(CPD, Rabanser et al., 2017) to decompose the 3D
binary rule probability tensor T ∈ Rm×m×m as,

T =

r∑

q=1

uq ⊗ vq ⊗ wq,

where uq, vq, wq ∈ Rm, r is the tensor rank (a hy-
perparameter), and ⊗ is the outer product. Letting
U, V,W ∈ Rr×m be the matrices resulting from
stacking all uq, vq, wq, Cohen et al. (2013) give the
following recursive formula for calculating the in-
side tensor α ∈ R(ℓ+1)×(ℓ+1)×m for a sentence of
length ℓ:

αL
i,j = V αi,k, αR

j,k = Wαk,j ,

αi,j = UT
j−1∑

k=i+1

αL
i,j ◦ αR

j,k.

Here αL, αR ∈ R(ℓ+1)×(ℓ+1)×r are auxiliary ten-
sors for storing intermediate values, and ◦ is the
Hadamard product. The resulting complexity of
this version of the inside algorithm is O(ℓ3r +
ℓ2mr), which removes the cubic dependence on m.
Based on this formula, Yang et al. (2021b) propose
a low-rank neural parameterization which uses a
neural network over shared symbol embeddings
to produce unnormalized score matrices Ū , V̄ , W̄ .
Then, Ū is softmax-ed across columns to obtain U ,
while V̄ , W̄ are softmax-ed across rows to obtain
V,W . The difference between Cohen et al. (2013)
and Yang et al. (2021b) is that the former performs
CPD on an existing probability tensor T for faster
(supervised) parsing, whereas the latter directly pa-
rameterizes and learns U, V,W from data without
actually instantiating T.

Yang et al. (2022) build on Yang et al. (2021b)
and further pre-compute matrices J = V UT ,K =
WUT to rewrite the above recursive formula as:

αL
i,j = Jα′

i,j ,αR
i,j = Kα′

i,j

α′
i,j =

j−1∑

k=i+1

αL
i,j ◦ αR

j,k

where α′ ∈ R(n+1)×(n+1)×r is an auxiliary inside
score tensor. The resulting complexity of this ap-
proach is O(ℓ3r + ℓ2r2), which is smaller than
O(ℓ3r + ℓ2mr) when r ≪ m, i.e., in the setting
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with a large number of nonterminals whose proba-
bility tensor is of low rank. In this paper we adapt
this low rank neural parameterization to the LCFRS
case to scale to a large number of nonterminals.

2.2 Restricted LCFRS

In an LCFRS, a single nonterminal node can domi-
nate a tuple of strings that need not be adjacent in
the yield. The tuple size is referred to as the fan-
out. We mark the fan-out of each non-leaf node in
Fig. 1. The fan-out of an LCFRS is defined as the
maximal fan-out among all its nonterminals, and
influences expressiveness and parsing complexity.
For a binary LCFRS (i.e., LCFRS with derivation
rules that have at most two nonterminals on the
right hand side) with fan-out k, the parsing com-
plexity for a sentence of length ℓ is O(ℓ3k).2 In
this paper we work with binary LCFRS with fan-
out 2 (Stanojević and Steedman, 2020, LCFRS-2),
which is expressive enough to model discontinu-
ous constituents but still efficient enough to enable
practical grammar induction from natural language
data. This choice is also motivated by Maier et al.
(2012) who observe that restricting the fan-out to
two suffices for capturing a large proportion of dis-
continuous constituents in standard treebanks.3

However, LCFRS-2’s inference complexity of
O(ℓ6|G|) is still too expensive for practical unsu-
pervised learning. We thus follow Corro (2020) and
discard all rules that require O(ℓ6) time to parse,
which reduces parsing complexity to O(ℓ5|G|).4
Formally, this restricted LCFRS-2 is a 6-tuple
G = (S,N 1,N 2,P,Σ,R) where: S is the start
symbol; N 1,N 2 are a finite set of nonterminal
symbols of fan-out one and two, respectively; P is
a finite set of preterminal symbols; Σ is a finite set
of terminal symbols; and R is a set of rules of the
following form (where M ≜ N 1 ∪ P):

S(x) → A(x) A ∈ N 1

A(xy) → B(x)C(y) A ∈ N 1, B,C ∈ M
A(yxz) → B(x)C(y, z) A ∈ N 1, B ∈ M, C ∈ N 2

A(x, y) → B(x)C(y) A ∈ N 2, B,C ∈ M

2A binary CFG is thus a special case of a binary LCFRS
with fan-out one, and parsing in this case reduces to the classic
CKY algorithm.

3For instance, Stanojević and Steedman (2020) report
that LCFRS-2 can cover up to 87% of the gold discontinuous
constituents in the NEGRA treebank. We refer readers to
Table 1 of Corro (2020) for more details.

4These correspond to rules (d), (i), (j), (k), and (l) in
Figure 3 of Corro (2020).

Item form:
[A, i, j]: fan-out-1 node A spanning [i, j)

[A, i, j, k, n]: fan-out-2 node A spanning [i, j), [k, n)

Axioms: [A, i, i + 1], 0 ≤ i < ℓ + 1, A ∈ N 1

Goals: [S, 0, n]
Deductive rules:

[B, i, k] [C, k, j]

[A, i, j]

A(xy) → B(x)C(y)

i < k < j
1a

[B, i, j] [C,m, n]

[A, i, j,m, n]

A(x, y) → B(x)C(y)

i < j < m < n
1b

[B,m, n] [C, i,m, n, j]

[A, i, j]

A(yxz) → B(x)C(y, z)

i < m < n < j
2a

[B, i, k] [C, k, j,m, n]

[A, i, j,m, n]

A(xy, z) → B(x)C(y, z)

i < k < j < m < n
2b

[B, k, j] [C, i, k,m, n]

[A, i, j,m, n]

A(yx, z) → B(x)C(y, z)

i < k < j < m < n
2c

[B,m, k] [C, i, j, k, n]

[A, i, j,m, n]

A(y, xz) → B(x)C(y, z)

i < j < m < k < n
2d

[B,m, k] [C, i, j, k, n]

[A, i, j,m, n]

A(y, zx) → B(x)C(y, z)

i < j < m < k < n
2e

Table 1: Chart parsing algorithm described in the parsing-as-
deduction framework. Here ℓ is the sentence length and we
use interstice indices (not word indices) as in Corro (2020).

A(xy, z) → B(x)C(y, z) A,C ∈ N 2, B ∈ M
A(yx, z) → B(x)C(y, z) A,C ∈ N 2, B ∈ M
A(y, xz) → B(x)C(y, z) A,C ∈ N 2, B ∈ M
A(y, zx) → B(x)C(y, z) A,C ∈ N 2, B ∈ M
T (w) → w, T ∈ P, w ∈ Σ.

Here A(x) indicates that A has a fan-out 1; A(x, y)
indicates that A has a fan-out 2 and x and y are non-
adjacent contiguous strings in the yield of A. Each
nonterminal is annotated with lower-case letters
that stand for strings, and xy denotes the concate-
nation of x and y, which are adjacent, into a single
string s ≜ xy.

i k

B(x) C(y, z)

A(xy, z)

j m n

x y z

Illustrative Example. As an example of how this
LCFRS can model discontinuous spans, we depict
the rule A(xy, z) → B(x)C(y, z) above. B is a
fan-out-1 node whose yield is x = wi · · ·wk−1

and C is a fan-out-2 node whose first span is
y = wk · · ·wj−1 and whose second span is z =
wm · · ·wn−1. A is the parent node of B,C, and
inherits the yields of B and C, where x is concate-
nated with y to form a contiguous span and z is a
standalone span.

Parsing. Table 1 gives the parsing-as-
deduction (Pereira and Warren, 1983) description
of the CKY-style chart parsing algorithm of our
restricted LCFRS-2.
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2.3 Tensor decomposition-based neural
parameterization

We now describe a parameterization of LCFRS-
2 that combines a neural parameterization with
tensor decomposition, which makes it possible
to scale LCFRS-2 to thousands of nonterminals.
Let m1 = |N 1|,m2 = |N 2|, p = |P|, and
m = m1 + p. The rules involving A ∈ N 1 on the
left hand side are 1a and 2a , whose probabilities
can be represented by 3D tensors C1 ∈ Rm1×m×m

and D1 ∈ Rm1×m×m2 . For A ∈ N 2, the relevant
rules are 1b , 2b , 2c , 2d , 2e , whose proba-
bilities can be represented by 3D tensors C2 ∈
Rm2×m×m and D3, D4, D5, D6 ∈ Rm2×m×m2 .
We stack D3, D4, D5, D6 into a single 4D tensor
D2 ∈ Rm2×m×m2×4 to leverage the structural sim-
ilarity of these rules. Since these tensors are proba-
bilities, we must have∑

j,k

C1
ijk +

∑

j,k

D1
ijk = 1, ∀i, (1)

∑

j,k

C2
ijk +

∑

j,k,d

D2
ijkd = 1, ∀i. (2)

Tensor decomposition. To scale up the LCFRS-
2 to a large number of nonterminals, we first apply
CPD on all the binary rule probability tensors,

C1 =

r1−1∑

q=0

U1
:,q ⊗ V 1

:,q ⊗W 1
:,q

C2 =

r2−1∑

q=0

U2
:,q ⊗ V 2

:,q ⊗W 2
:,q

D1 =

r3−1∑

q=0

U3
:,q ⊗ V 3

:,q ⊗W 3
:,q

D2 =

r4−1∑

q=0

U4
:,q ⊗ V 4

:,q ⊗W 4
:,q ⊗ P:,q

where U:,q denotes the q-th column of U . The
dimensions of these tensors are U1 ∈ Rm1×r1 ,
V 1,W 1 ∈ Rm×r1 , U2 ∈ Rm1×r2 , V 2 ∈ Rm×r2 ,
W 2 ∈ Rm2×r2 , U3,W 3 ∈ Rm2×r3 , U4,W 4 ∈
Rm2×r4 , V 3 ∈ Rm×r3 , V 4 ∈ Rm×r4 , and P ∈
R4×r4 . Here r1, r2, r3, r4 are the ranks of the
tensors that control inference complexity. To en-
sure these factorizations lead to valid probability
tensors, 1), we additionally impose the follow-
ing restrictions: (1) all decomposed matrices are
non-negative; (2) P, V i,W i are column-wise nor-
malized where i ∈ {1, 2, 3, 4}; (3) ∀i,∑j U

1
ij +∑

k U
2
ik = 1; and (4) ∀i,∑j U

3
ij +

∑
k U

4
ik = 1. It

is easy to verify that Eq. 1 and 2 are satisfied if the
above requirements are satisfied.

Rank-space dynamic programming. For unsu-
pervised learning, we need to compute the marginal
likelihood of a sentence p(w1w2 · · ·wℓ). We give
the rank-space dynamic program (i.e., the inside
algorithm) for computing p(w1w2 · · ·wℓ) in this
tensor decomposition-based LCFRS-2 in App. A.
The resulting complexity is dominated by O(ℓ5r4+
ℓ4(r3+r4)(r2+r4)). We thus set r4 to a very small
value, which greatly improves runtime.

Parameterization. Following prior work on neu-
ral parameterizations of grammars (Jiang et al.,
2016; Kim et al., 2019), we parameterize the com-
ponent matrices to be the output of neural networks
over shared embeddings.

The symbol embeddings are given by: E1 ∈
Rm×d where the first m1 rows correspond to fan-
out-1 nonterminal embeddings and the last p rows
are the preterminal embeddings; E2 ∈ Rm2×d for
the fan-out-2 nonterminal embedding matrix; r ∈
Rd for the start symbol embedding. We also have
four sets of “rank embeddings” R1 ∈ Rr1×d, R2 ∈
Rr2×d, R3 ∈ Rr3×d, and R4 ∈ Rr4×d. Given this,
the entries of the U, V,W matrices are given by,

Uo
ij ∝ exp{(Ro

j)
⊤fo

U (E
1
i )}, o ∈ {1, 2}

Uo
ij ∝ exp{(Ro

j)
⊤fo

U (E
2
i )}, o ∈ {3, 4}

V o
ij ∝ exp{(Ro

j)
⊤fo

V (E
1
i )}, o ∈ {1, 2, 3, 4}

W o
ij ∝ exp{(Ro

j)
⊤fo

W (E1
i )}, o ∈ {1, 2}

W o
ij ∝ exp{(Ro

j)
⊤fo

W (E2
i )}, o ∈ {3, 4}

where fo
U , f

o
V , f

o
W are one-layer ReLU MLPs with

output size d. Uo, V o,W o are normalized accord-
ing to the requirements described in the previous
subsection. We share the parameters of the fol-
lowing MLP pairs: (f1

U , f
2
U ), (f

3
U , f

4
U ), (f

1
V , f

3
V ),

(f2
V , f

4
V ), (f

1
W , f3

W ), (f2
W , f4

W ) as they play similar
roles (e.g., f1

V and f3
V are both applied to left chil-

dren). For the D2 tensor we also require the matrix
P ∈ R4×r4 , and this is given by P⊤ = fP (R

4),
where fP is a one-layer residual network with out-
put size 4 that is normalized via a softmax across
the last dimension.

Finally, for the starting and the terminal distribu-
tions we have

s = fs(r), Q = fQ(E
1
m1:),

which results in s ∈ Rm1 (i.e., the probabil-
ity vector for rules of the form S → A) and
Q ∈ Rp×v (i.e., probability matrix for rules of
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the form T (w) → w). Here E1
m1: is the last p

rows of E1, and fs and fQ are residual MLPs with
softmax applied in the last layer to ensure that s
and Q are valid probabilities.

Decoding. While the rank-space inside algorithm
enables efficient computation of sentence likeli-
hoods, direct CKY-style argmax decoding in this
grammar requires instantiating the full probability
tensors and is thus computationally intractable. We
follow Yang et al. (2021b) and use Minimal Bayes
Risk (MBR) decoding (Goodman, 1996). This pro-
cedure first obtains the posterior probability of each
span’s being a constituent via the inside-outside al-
gorithm (which has the same complexity as the
inside algorithm). Then, these posterior probabili-
ties are used as input into CKY in a grammar that
only has a single nonterminal. The complexity of
this approach is thus independent of the number
of nonterminals in the original grammar, and takes
O(ℓ5). This strategy can be seen as finding the tree
that has the largest number of expected constituents
(Smith and Eisner, 2006). See App. A for details.

3 Empirical Study

Data. We conduct experiments with our Tensor
decomposition-based Neural LCFRS (TN-LCFRS)
on German and Dutch, where discontinuous phe-
nomena are more common (than in English). For
German we concatenate TIGER (Brants et al.,
2001) and NEGRA (Skut et al., 1997) as our train-
ing set, while for Dutch we use the LASSY Small
Corpus treebank (van Noord et al., 2013). The data
split can be found in App. B.1. For processing
we use disco-dop5 (van Cranenburgh et al., 2016)
and discard all punctuation marks. We further take
the most frequent 10,000 words for each language
as the vocabulary, similar to the standard setup in
unsupervised constituency parsing on PTB (Shen
et al., 2018, 2019; Kim et al., 2019).

Grammar size. To investigate the importance of
using a large number of latent variables (which has
previously been shown to be helpful for structure in-
duction (Buhai et al., 2020; Yang et al., 2021b)), we
train TN-LCFRSs of varying sizes. We first choose
the number of preterminals |P| ∈ {45, 450, 4500}
and set the number of fan-out one and fan-out two
nonterminals to be |N 1| = |N 2| = 1

3 |P|. The
rank of the probability tensors are set to r1 = r3 =
400, r2 = r4 = 4, and the dimensionality of the

5https://github.com/andreasvc/disco-dop

embedding space is d = 512. Model parameters
are initialized with Xavier uniform initialization.
More training details and hyperparameters can be
found in App. B.3 and App. B.4.

Baselines. Our baselines include: the neural
PCFG (N-PCFG) and the compound PCFG (C-
PCFG) (Kim et al., 2019), which cannot directly
predict discontinuous constituents6 but still serve
as strong baselines for overall F1 since the major-
ity of spans in these treebanks are continuous; and
their direct extensions, neural LCFRS (N-LCFRS)
and compound LCFRS (C-LCFRS), which do not
employ the tensor-based low-rank factorization.
These non-low-rank models have high computa-
tional complexity and hence we set |P| = 45 for
these models. When |P| = 4500, we also compare
against the tensor decompositional-based neural
PCFG (TN-PCFG) from Yang et al. (2021b).

Evaluation. We use unlabeled corpus-level F1 to
evaluate unsupervised parsing performance, report-
ing both overall F1 and discontinuous F1 (DF1).
For all experiments, we report the mean results and
standard deviations over four runs with different
random seeds. See App. B.2 for further details.

3.1 Main results

Table 2 shows the main results. With smaller
grammars (|P| = 45), we find that both neu-
ral/compound LCFRSs have lower F1 than their
PCFG counterparts, despite being able to predict
discontinuous constituent spans. On the other hand,
TN-LCFRS achieves better F1 than N-LCFRS even
though it is a more restricted model (since it as-
sumes that the rule probability tensors are of low
rank), showing the benefits of parameter sharing
through low rank factorizations. As we scale up
TN-LCFRSs with |P| ∈ {45, 450, 4500} we ob-
serve continuous improvements in performance,
with TN-LCFRS4500 achieving the best F1 and DF1
on all three datasets. These results all outperform
trivial (left branching, right branching, and random
tree) baselines.

As an upper bound we also train a supervised
model with TN-LCFRS4500.7 We also show the

6But these models could implicitly model discontinuous
constituents with a large number of nonterminals (in the neural
PCFG case) and/or with a sentence-level random vector (in
the compound PCFG case).

7For supervised training we use the optimal binarization
from Gildea (2010) to binarize treebanks and remove all trees
that are unrecognizable by our restricted LCFRS. We fixed
the tree topology (provided by gold binarized tree) and used
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NEGRA TIGER LASSY
Model |P| F1 DF1 F1 DF1 F1 DF1

N-PCFG 45 40.8±0.5 − 39.5±0.4 − 40.1±3.9 −
C-PCFG 45 39.1±1.9 − 38.8±1.3 − 37.9±3.4 −
N-LCFRS 45 33.7±2.8 2.0±0.8 32.7±1.8 1.2±0.8 36.9±1.5 0.9±0.8

C-LCFRS 45 36.7±1.5 2.7±1.4 35.2±1.2 1.7±1.1 36.9±3.7 2.2±1.0

TN-LCFRS 45 41.1±1.2 3.1±2.8 40.2±1.1 2.3±2.3 41.6±3.0 2.3±2.3

TN-LCFRS 450 45.0±1.8 5.6±2.7 44.1±1.7 4.4±2.3 42.9±3.8 2.8±3.3

TN-PCFG 4500 45.4±0.5 − 44.7±0.6 − 44.3±6.4 −
TN-LCFRS 4500 46.1±1.1 8.0±1.1 45.4±0.9 6.1±0.8 45.6±2.3 8.9±1.5

Supervised 4500 54.4±0.3 38.1±1.1 50.7±0.2 32.1±1.0 − −
Left branching − 7.8 − 7.9 − 7.2 −
Right branching − 12.9 − 14.5 − 24.1 −
Random trees − 7.0±0.1 − 7.1±0.2 − 9.1±0.4 −
Oracle bound − 64.3 88.5 65.0 86.2 73.7 68.0

Table 2: Results on test sets of German (NEGRA, TIGER) and Dutch (LASSY) treebanks for the various models. |P| indicates
the number of preterminals, which also determines the number of nonterminals (|N 1| = |N 1| = 1

3
|P|), and thus grammar

size. F1 is the overall F1 for both continuous and discontinuous spans, while DF1 is the F1 on discontinuous spans only. These
results are averaged across four seeds, and ± indicates standard deviation. Oracle bound shows the upper bound obtainable from
binarized trees.

NP PP VP AP PN

count 10236 8471 3312 1375 1249

N-PCFG45 71.5 78.4 37.5 31.5 44.1
C-PCFG45 67.3 79.4 31.1 29.0 51.2
N-LCFRS45 60.9 70.5 25.8 29.9 40.8
C-LCFRS45 58.6 72.6 28.6 33.0 24.0
TN-LCFRS45 73.3 76.1 34.1 27.7 69.7
TN-LCFRS450 77.6 84.2 30.6 42.8 72.1
TN-PCFG4500 76.5 81.8 51.4 41.3 67.9
TN-LCFRS4500 78.7 83.7 46.1 55.8 73.6

Supervised 78.8 86.1 60.9 74.3 79.0

Table 3: Recall (%) of the most five frequent constituent
labels on the TIGER test set.

maximum possible performance with oracle binary
trees with this optimal binarization.

While the discontinuous F1 of our unsupervised
parsers are nontrivial, there is still a large gap be-
tween the unsupervised and supervised scores (and
also between the supervised and the oracle scores),
indicating opportunities for further work in this
area.

3.2 Analysis

Recall by constituent label. Table 3 shows the
recall by constituent tag for the different models
averaged over four independent runs. Overall the
unsupervised methods do well on noun phrases
(NP), prepositional phrases (PP) and proper nouns
(PN), with some of the models approach the super-
vised baselines. Verb phrases (VP) and adjective

dynamic programming to sum out all possible nonterminals for
each node, resulting in the joint log probability of unlabeled
binarized tree and sentence. This was then maximized during
training. As for the oracle bound, we emphasize that the gold
trees are nonbinary while our model can only predict binary
trees.

VP NP PP AP AVP

count 1195 395 172 84 71

N-LCFRS45 10.3 4.8 1.9 2.4 2.1
C-LCFRS45 11.8 2.2 1.0 2.7 0.4
TN-LCFRS45 6.0 3.0 1.2 0.3 1.1
TN-LCFRS450 11.9 2.2 0.3 1.2 0.4
TN-LCFRS4500 19.9 2.5 0.0 0.9 0.4

Supervised 23.7 14.1 31.7 18.5 25.4

Table 4: Recall (%) of the most five frequent discontinuou
constituent labels on the TIGER test set.

phrases (AP) remain challenging. Table 4 has recall
by label for discontinuous constituents only, where
we observe that most discontinuous constituents
are VPs. In App. C , we also show F1/DF1 broken
down by sentence length.

Approximation error. Approximation error in
the context of unsupervised learning arises due to
the mismatch between the EM objective (i.e., log
marginal likelihood) and structure recovery (i.e.,
F1), and is related to model misspecification (Liang
and Klein, 2008). Figure 2 (left column) plots the
training/dev perplexity as well as the dev F1/DF1
as a function of the number of epochs. We find
that larger grammars result in better performance
in terms of both perplexity and structure recovery,
which ostensibly indicates that the unsupervised
objective is positively correlated with structure in-
duction performance.

However, when we first perform supervised
learning on the log joint likelihood and then switch
to unsupervised learning with log marginal likeli-
hood (Figure 2, right), we find that while perplex-
ity improves when we switch to the unsupervised
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Figure 2: On the rows we have the German (TIGER) training
set perplexities, dev set perplexities, overall F1, and discontin-
uous F1 (DF1) for TN-LCFRSs of various sizes as a function
of training epochs. Colored regions indicate min/max val-
ues across four runs. Left column shows pure unsupervsed
learning, while right column shows case where we train with
supervised learning for 10 epochs and then switch to unsuper-
vised learning (indicated by dashed lines).

objective, structure induction performance deteri-
orates.8 Still, the difference in F1 before and af-
ter switching to the unsupervised objective is less
for larger models, confirming the benefits of using
larger grammars.

Even more restricted LCFRS formalisms.
There are even more restricted versions of LCFRSs
which have faster parsing (e.g. O(ℓ3),O(ℓ4)) but

8It is worth noting that the phenomenon of mismatch be-
tween log marginal likelihood objective and parsing accuracy
is quite common in unsupervised grammar induction (and
latent variable modeling approaches to structured induction
more generally). Many previous works have observed this
phenomenon, e.g., Merialdo (1994) in the context of HMMs,
and Johnson et al. (2007) and Liang and Klein (2008) in the
context of PCFGs. This is partially attributed to the fact that
generative grammars often make some unreasonable inde-
pendence assumptions to make the training process tractable,
which does not fully comply with the true generative process
of human languages and their underlying structures.

Model NEGRA TIGER
F1 DF1 F1 DF1

TN-LCFRS4500 46.1 8.0 45.4 6.1
w/o O(n5) rules 46.4 4.0 45.3 3.0
w/o shared MLPs 44.4 6.7 43.6 5.3
w/o shared emb. 45.4 0.9 44.5 0.5

Table 5: Ablation studies on the German (TIGER) treebank.

can still model discontinuous constituents. In the
supervised case, these restricted variants have been
shown to perform almost as well as the more ex-
pressive O(ℓ5) and O(ℓ6) variants (Corro, 2020).
In the unsupervised case however, we observe in
Table 5 that disallowing O(ℓ5) rules ( 2b , 2c ,

2d , 2e ) significantly degrades discontinuous F1
scores. We posit that this phenomena is again
related to empirical benefits of latent variable
overparameterization—while in theory it is pos-
sible to model most discontinuous phenomena with
more restricted rules, making the generative model
more expressive via “overparameterizing” in rule
expressivity space (i.e., using more flexible rules
than is necessariy) empirically leads to better per-
formance.

Parameter sharing. As shown in Table 5, it was
important to share the symbol embeddings across
the different rules. Sharing the parameters of the
MLPs as described in Sec. 2.3 was also found to
be helpful. This highlights the benefits of working
with neural parameterizations of grammars which
enable easy parameter sharing across rules that
share symbols and/or have similar shapes.

Qualitative analysis. In Fig. 3, we show some
examples trees in German. For each sentence, we
show the gold, TN-LCFRS4500, and TN-PCFG4500

trees. In the first sentence, the crossing depen-
dency occurs due to the initial adverb (“So”)’s
being analyzed as a dependent of the non-finite
verb phrase at the end of the sentence which oc-
curs due to German V2 word order. Our parser
correctly predicts this dependency, although the
subject NP (which itself is correctly identified)
has the wrong internal structure. The second sen-
tence highlights a case of partial success with right-
extraposed relative clauses. While our model is
able to correctly predict the top-level discontinu-
ous constituent “[Für 15 200 Mark]−[Lampen ein-
bauen lassen die mutwilligen Zerstörungen stand-
halten]”, the parser does not adopt a discontinuous-
constituency analysis of the right-extraposed rel-
ative clause itself (“[Lampen]–[die mutwilligen
Zerstörungen standhalten]”). Instead it makes the
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Figure 3: Examples of two sentences from the German NEGRA tree bank. In each example, the gold tree is shown at the top,
the TN-LCFRS4500 is shown bottom left, and the TN-PCFG4500 tree is shown bottom right.

relative clause a part of the non-finite verb com-
plex, which does not conform to the annotation
guidelines but resembles an alternative analysis that
has been proposed for extraposed relative clauses
(Baltin, 1983).

Sentence initial adverbs in the context of aux-
iliary verb constructions and right-extraposed rel-
ative clauses describe two common instances of
discontinuous phenomena in German. Wh- ques-
tions constitute another potential class of discontin-
uous phenomena; however, these are not treated as
discontinuous in TIGER/NEGRA. See App. D for
more examples trees (including on Dutch).

4 Related work

Mildly context-sensitive grammars. Given the
evidence against the context-freeness of natural
language (Shieber, 1985), mildly context-sensitive
grammars such as tree adjoining grammars were
thought to be just flexible (but still constrained)
enough to model natural language (Joshi, 1985).
Prior work on inducing mildly context-sensitive
grammars has generally focused on combinatory
categorial grammars (Bisk and Hockenmaier, 2012,
2013), and we are unaware of any work on in-

ducing LCFRSs from observed yields alone. Our
work is also related to the rich line of work on
supervised discontinuous parsing (Kallmeyer and
Maier, 2010; Maier et al., 2012; Maier, 2015;
Corro, 2020; Vilares and Gómez-Rodríguez, 2020;
Fernández-González and Gómez-Rodríguez, 2020,
2021, 2023), though we are unaware of any prior
work on unsupervised discontinuous parsing.

Neural grammars. Early work on probabilistic
approaches to grammar induction was largely neg-
ative (Lari and Young, 1990; Carroll and Charniak,
1992). However, recent work has shown that neural
parameterizations of classic grammars can greatly
improve structure induction. Our work adds to the
line of work on neural parameterizations of depen-
dency models (Jiang et al., 2016; Han et al., 2017;
He et al., 2018; Yang et al., 2020), context-free
grammars (Kim et al., 2019; Jin et al., 2019; Zhu
et al., 2020; Yang et al., 2021a), and synchronous
grammars (Kim, 2021; Wang et al., 2022; Fried-
man et al., 2022). Neural parameterizations make
it easy to share parameters and condition on addi-
tional side information (images/audio/video) which
has shown to be particularly useful for multimodal
grammar induction (Zhao and Titov, 2020; Jin and
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Schuler, 2020; Su et al., 2021; Hong et al., 2021;
Zhang et al., 2021).

Scaling latent variable models. Buhai et al.
(2020) study the empirical benefits of overparame-
terization in learning latent variable models. Other
works have explored parameterizations of latent
variable models that make it especially amenable
to scaling (Chiu and Rush, 2020; Chiu et al., 2021;
Yang et al., 2021b, 2022). Relatedly, Peharz et al.
(2020) and Liu et al. (2022) show the benefits of
scaling probabilistic circuits (Choi et al., 2020).

5 Conclusion

This work studied unsupervised discontinuous con-
stituency parsing with mildly context-sensitive
grammars, focusing on the formalism of linear
context-free rewriting systems. By using a tensor
decomposition-based neural parameterization of
linear context-free rewriting systems, our approach
was able to induce grammars that had nontrivial
discontinuous parsing performance on German and
Dutch. Whether even more expressive grammars
will eventually lead to models learn linguistically
meaningful structures and are at the same time
competitive with pure neural language models (as
a language model) remains an open question.

Limitations

There are several limitations of our work. We tried
training the TN-LCFRS on the discontinuous ver-
sion of the English Penn Treebank (DPTB, Evang
and Kallmeyer, 2011) but failed to induce any
meaningful discontinuous structures. This is possi-
bly because discontinuous phenomena in English
are much less common than in German and Dutch.
For example, while 5.67% of the gold constituents
are discontinuous in NEGRA, only 1.84% gold con-
stituents are discontinuous in DPTB (Corro, 2020).

The neural LCFRS was also quite sensitive to
hyperparameters and parameterization. The insta-
bility of unsupervised structure induction is widely
acknowledged and could potentially be mitigated
by a large amount of training data, as suggested
by Liang and Klein (2008) and Pate and Johnson
(2016). Due to this sensitivity, we rely on dev sets
for some modeling choices (e.g., rank of the prob-
ability tensors). Hence, our approach is arguably
not fully unsupervised in the strictest sense of the
term, although this is a common setup in unsu-
pervised parsing due to the mismatch between the

unsupervised learning objective and structure re-
covery. (However see Shi et al. (2020) for a critical
discussion of this approach.)

Finally, while we observed significant increases
in performance as we scaled up the number of non-
terminals, we also observed diminishing returns.
Further scaling up the grammar is thus unlikely to
close the (large) gap that still exists between the
unsupervised and supervised parsing results.
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A Fast LCFRS Inference with CPD

Yang et al. (2022) propose a family of CPD-based
algorithms for fast inference in B-FGGs which
combine B-graphs (Klein and Manning, 2001) and
factor graph grammars (FGG, Chiang and Riley,
2020). Inference in LCFRS is subsumed by B-
FGG because for each rule, the number of variables
in the left-hand side is always one. As such, we
can adopt the method of Yang et al. (2022) to per-
form fast dynamic programming inference in “rank
space” for our restricted LCFRS-2.

Concretely, for a length-ℓ sentence x0, . . . xn−1

(xj is the index in the terminal vocabulary), let
N = n+ 1. The inside scores defined in the rank-
space (similar to Sec. 2.1) are,

• αA1 , αB1 , αC1 ∈ RN×N×r1 : corresponding
to A,B,C in rule 1a .

• αA2 ∈ RN×N×r2 , αB2 ∈ RN×N×N×N×r2 ,
αC2 ∈ RN×N×r2 : corresponding to A,B,C

in rule 2a .

• αA3 ∈ RN×N×N×N×r3 , αB3 , αC3 ∈
RN×N×r3 : corresponding to A,B,C in rule

1b .

• αA4 ∈ RN×N×N×N×r4 , αB4 ∈ RN×N×r4 ,
αC4 ∈ RN×N×N×N×r4 : corresponding to
A,B,C in rule 2b , 2c , 2d , 2e .

The base cases are,

αBo
i,i+1 = (Q:,xi)

TV o
m1: o ∈ {1, 2, 3, 4}

αCo
i,i+1 = (Q:,xi)

TW o
m1: o ∈ {1, 3}

where Q:,xi is the xi-th column of Q. The recursive
DP computation formulas are,

αA1
ij =

∑

i<k<j

αB1
ik ◦ αC1

kj

αA2
ij =

∑

i<m<n<j

αB2
mn ◦ αC2

imnj

αA3
imnj = αB3

im ◦ αC3
nj (3)

αA4
imnj =

∑

i<k<m

αB4
ik ◦ αC4

kmnj ◦ P0

+
∑

i<k<m

αB4
km ◦ αC4

iknj ◦ P1

+
∑

n<k<j

αB4
nk ◦ αC4

imkj ◦ P2

+
∑

n<k<j

αB4
kj ◦ αC4

imnk ◦ P3 (4)

Items:

I [i, j]: accumulated scores for continuous spans.

II [i, j, k, n]: accumulated scores for discontinuous spans.

Deductive rules:

[i, k] [k, j]

[i, j]
Xij

[i, j] m,n]

[i, j,m, n]
Yijmn

[m,n] [i,m, n, j]

[i, j]
Xij

[i, k] [k, j, n, j]

[i, j,m, n]
Yijmn

[k, j] [i, k,m, n]

[i, j,m, n]
Yijmn

[m, k] [i, j, k, n]

[i, j,m, n]
Yijmn

[m, k] [i, j, k, n]

[i, j,m, n]
Yijmn

Table 6: CKY-style parsing with span marginals.

αBo
ij = F oαA1

ij +GoαA2
ij o ∈ {1, 2, 3, 4}

αCo
ij = HoαA1

ij + IoαA2
ij o ∈ {1, 3}

αCo
imnj = JoαA3

imnj +KoαA4
imnj o ∈ {2, 4}

(5)

where

F o = V o
:m1

(U1)T o ∈ {1, 2, 3, 4}
Go = V o

:m1
(U2)T o ∈ {1, 2, 3, 4}

Ho = W o
:m1

(U1)T o ∈ {1, 3}
Io = W o

:m1
(U2)T o ∈ {1, 3}

Jo = W o(U3)T o ∈ {2, 4}
Ko = W o(U4)T o ∈ {2, 4}

can pre-computed before inference. The partition
function Z (i.e., the sentence likelihood) is then
given by,

Z = R1α
A1
0n +R2α

A2
0n

where R1 = sTU1 and R2 = sTU2.

Time complexity. From the above we can see
that Eq. 3 takes O(ℓ4r3), Eq. 4 takes O(ℓ5r4), and
Eq. 5 takes O(ℓ4(r2+ r4)(r3+ r4)). Therefore the
total time complexity is dominated by O(ℓ5r4 +
ℓ4(r2 + r4)(r3 + r4)).

MBR decoding. MBR decoding aims to find
the best parse with maximum expected number
of constituent spans, which can be decomposed
into two steps: i) span marginal estimation, and ii)
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Model |P| NEGRA TIGER LASSY
F1 DF1 F1 DF1 F1 DF1

N-PCFG 45 41.3 − 40.0 − 45.5 −
C-PCFG 45 40.2 − 39.8 − 40.9 −
N-LCFRS 45 37.0 3.4 35.6 2.0 39.4 1.7
C-LCFRS 45 38.2 4.3 36.4 3.0 42.4 3.7
TN-LCFRS 45 42.5 5.5 41.3 4.4 44.4 4.6
TN-LCFRS 450 47.1 8.4 45.9 6.4 47.0 8.1
TN-LCFRS 4500 47.2 9.7 46.6 7.3 48.0 10.2
TN-PCFG 4500 46.2 − 45.5 − 50.0 −
Supervised 4500 54.8 39.2 50.9 33.3 − −

Table 7: Maximum F1 results across four random seeds on the German (NEGRA, TIGER) and Dutch (LASSY) test sets.

CKY-style parsing with marginals. Denote contin-
uous and discontinuous span marginals as X ∈
RN×N and Y ∈ RN×N×N×N with

∑
ij Xij +∑

ijmn Yijmn = 2ℓ − 1. Span marginals can be
estimated via inside-outside, or equivalently, back-
progation on the inside algorithm (Eisner, 2016,
Sec. 6.2), i.e.,

Xij =
∑

r

∑

o∈{1,2}

∂ logZ

∂ logαAo
ijr

,

Yimnj =
∑

r

∑

o∈{3,4}

∂ logZ

∂ logαAo
imnjr

.

The second-stage CKY-style parsing is similar to
the description in Table 1, except that the grammar
rule probabilities are replaced with span marginals,
as described in Table 6. The total time complexity
is dominated by the first stage of marginal estima-
tion, whose complexity is the same as that of the
inside algorithm (Eisner, 2016).

B Experimental Details

B.1 Data split

For German, we follow Corro (2020) and use the
NEGRA treebank (Skut et al., 1997) with the split
proposed by Dubey and Keller (2003), and the
TIGER treebank (Brants et al., 2001) with the split
provided by the SPRML 2014 shared task (Seddah
et al., 2014). For Dutch, there is no standard split
in the discontinuous parsing literature. We follow
UD-Dutch-Alpino (Bouma and van Noord, 2017)
and use a hybrid training dataset that comprises the
whole Alpino treebank (van der Beek et al., 2001)
and a subset of LASSY Small Corpus (van Noord
et al., 2013). We further use the whole WR-P-P-H
section and WR-P-P-L section as the development
and test sets, respectively.

B.2 Evaluation metric details

Following standard practice in unsupervised pars-
ing evaluation, we ignore all trivial continuous
spans, i.e., whole-sentence spans and single-word
spans. In addition, we ignore all discontinuous
spans of fan-out greater than two. Finally, we eval-
uate only on sentences of length up to 40 due to
computational considerations.

B.3 Training details

For training, we use a curriculum training strat-
egy (Bengio et al., 2009) where we train only on
sentences of length up to 30 in the first epoch,
and increase the maximum length by five for each
epoch until we reach the maximum sentence length
(60 for Dutch and 40 for German). We use the
Adam optimizer (Kingma and Ba, 2015) with
β1 = 0.75, β2 = 0.999, learning rate 0.002, batch
size 20, and a maximum gradient norm limit of 3.
We train for 20 epochs and perform early stopping
strategy based on the performance of development
set with maximum patience 5.

B.4 Choice of hyperparameters

We assumed a 1:1 ratio between the numbers of fan-
out one and fan-out two nonterminals and tuned the
ratio of the number of fan-out one nonterminals to
preterminals from {1

2 ,
1
3 ,

1
4}. Since C-LCFRS and

N-LCFRS are computationally expensive without
tensor decomposition, we could only use up to 45
preterminals and 15 fan-out one/two nonterminals.
We then scaled up our approach by a factor of 10
and 1000 to study the benefits of overparameteriza-
tion, which resulted in our final choice.

Regarding rank size, we used as much as we
could while keeping the ratio of r1

r3
= r2

r4
= 100.

To save tuning time, we assumed r1 = r2 and
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Model |P| TIGER-10 TIGER-20 TIGER-30
F1 DF1 F1 DF1 F1 DF1

N-PCFG 45 47.7±0.9 − 42.5±0.2 − 40.5±0.2 −
C-PCFG 45 48.1±1.1 − 41.7±1.3 − 39.7±1.2 −
N-LCFRS 45 41.7±2.4 3.2±1.4 36.3±2.4 2.7±1.0 34.5±2.5 2.2±0.8

C-LCFRS 45 42.5±1.6 2.7±1.6 37.7±1.2 2.3±1.3 36.0±1.1 1.9±1.0

TN-LCFRS 45 48.3 ±1.4 1.9±2.3 42.8±0.9 1.6±1.9 41.0±1.0 1.4±1.6

TN-LCFRS 450 51.4±1.8 6.1±1.7 46.1±1.7 5.5±1.9 44.5±1.7 4.8±1.8

TN-PCFG 4500 52.4±0.4 0.0±0.0 47.6±0.5 − 45.8±0.5 −
TN-LCFRS 4500 52.9±1.3 8.2±2.0 47.9±1.1 7.4±1.1 46.3±0.9 6.4±1.0

Oracle bound 64.3 88.5 65.0 86.2 73.7 68.0

Table 8: Results on TIGER test set by broken down by sentence length.

r3 = r4. Due to the high computational complex-
ity, we used r1 up to 400. It is important to note
that we cannot use a ratio of r1

r3
or r2

r4
arbitrarily,

such as 80:20 or 50:50. We observed much lower
total F1 scores (much more discontinuous spans
would be predicted) when using such ratios in our
experiments. This is because r3

r1+r3
can be regarded

as the prior probability (when the network is ran-
domly initialized) of having a discontinuous child
for a fan-out-1 parent node. If the ratio of r3

r1+r3
is too high, the model will predict many discon-
tinuous spans from the beginning. Unsupervised
learning will use the expected counts from the start
for feedback self-supervised learning, resulting in
the grammar learned at the end predicting many
more discontinuous spans.

C Additional results

Table 7 shows the maximum performance across
four seeds, while Table 8 gives the F1 broken down
by sentence length on TIGER.

D Additional example trees

We show some additional trees on German in Fig. 4
and on Dutch in Fig. 5.
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NT
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Informationen zur Geschichte des Schlosses können die Besucher einem Schild entnehmen

(b)
S

VP
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Dem Appell ihre Waffen abzuliefern sind die Aufständischenbisher offenbar nicht gefolgt
NT
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NT NT

NT NT

NT NT NT NT

P P P P P P P P P P P P

Dem Appell ihre Waffen abzuliefern sind die Aufständischenbisher offenbar nicht gefolgt

(c)

Figure 4: Examples of gold (top) and predicted (bottom) trees in Germain. NT and P denote predicted nonterminals and
preterminals.

5763



SMAIN

WHSUB

CONJ

SSUB

PP INF SSUB

NP NP INF

NP NP PP NP

n n ww vz lid n n bw vnw ww n vz n ww ww vg adj n ww ww

Yens moeder leert in een paar gesprekken
hoe

ze gewenst
gedrag

van Yen kan belonen en ongewenst gedrag kan bijsturen

NT

NT

NT

NT

NT NT

NT NT NT

NT NT NT NT

NT NT NT NT NT NT

P P P P P P P P P P P P P P P P P P P P

Yens moederleert in een paar gesprekken
hoe

ze gewenst gedrag van Yen kan belonen en ongewenst gedrag kan bijsturen

(a)
SMAIN

CONJ

PP WHSUB

NP WHSUB SSUB

PP NP SSUB INF

NP PP INF NP

vz lid n vz lid n ww lid n vz n bw vnw n ww ww vg bw vnw adj n ww ww

Dankzij de adviezenvan de Vroeghulp
weten

de ouders van Harm hoe ze Harm kunnen
begeleiden

en waarvoorze diverse hulpverleners
kunnen

inschakelen

NT
NT

NT
NT

NT NT
NT NT NT

NT NT NT
NT NT NT NT

NT NT NT NT NT NT
P P P P P P P P P P P P P P P P P P P P P P P

Dankzij
de

adviezen
van de

Vroeghulp
weten de ouders van Harmhoe ze Harm kunnen

begeleiden
en

waarvoor
ze diverse

hulpverleners
kunnen

inschakelen

(b)
SMAIN

INF

NP PPART

PP PP PP PP

NP NP NP NP

lid adj n vz lid n ww vz adj n vz vnw n vz adj n ww ww

Het uniform deel van het Basistakenpakket
moet

in heel Nederlandaan alle kinderen op dezelfde wijze worden aangeboden

NT

NT

NT

NT NT

NT NT

NT NT NT NT NT

NT NT NT NT NT

P P P P P P P P P P P P P P P P P P

Het uniform deel van het
Basistakenpakket

moet in heel Nederlandaan alle kinderen op dezelfde wijze worden aangeboden

(c)

Figure 5: Examples of gold (top) and predicted (bottom) trees in Dutch. NT and P denote predicted nonterminals and
preterminals.
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