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Abstract

While the problem of hallucinations in neural
machine translation has long been recognized,
so far the progress on its alleviation is very
little. Indeed, recently it turned out that with-
out artificially encouraging models to halluci-
nate, previously existing methods fall short and
even the standard sequence log-probability is
more informative. It means that internal char-
acteristics of the model can give much more
information than we expect, and before using
external models and measures, we first need to
ask: how far can we go if we use nothing but
the translation model itself ? We propose to use
a method that evaluates the percentage of the
source contribution to a generated translation.
Intuitively, hallucinations are translations “de-
tached” from the source, hence they can be
identified by low source contribution. This
method improves detection accuracy for the
most severe hallucinations by a factor of 2 and
is able to alleviate hallucinations at test time on
par with the previous best approach that relies
on external models. Next, if we move away
from internal model characteristics and allow
external tools, we show that using sentence sim-
ilarity from cross-lingual embeddings further
improves these results. We release the code of
our experiments.1

1 Introduction

Hallucinations in machine translation (MT) are
cases when the model generates output that is par-
tially or fully unrelated to the source sentence.
While generally this phenomenon is not frequent
and has low impact on corpus-level automatic met-
rics, the impact of hallucinations on user experi-
ence can be rather dramatic. For example, if a trans-
lation system generates The staff were very friendly
and helpful in response to an input sentence about
e.g. a marvelous view from the window, a user is
unlikely to trust this system in future.

1
https://github.com/facebookresearch/stopes/tree/

main/demo/alti/detecting_hallucinations

While the problem of hallucinations is known,
addressing it remains challenging. Firstly, halluci-
nations are very rare. This is why previous work
mostly resorted to settings where models are en-
couraged to hallucinate, by e.g. artificially per-
turbing source sentence (Lee et al., 2019; Raunak
et al., 2021), adding specific types of noise to the
training data (Raunak et al., 2021), working under
domain shift (Wang and Sennrich, 2020; Müller
et al., 2020), among others (Zhou et al., 2021). Sec-
ondly, hallucinations are hard to identify with auto-
matic metrics. Often, hallucinations were defined
as translations with low quality according to some
metric such as adjusted BLEU or chrF (Lee et al.,
2019; Raunak et al., 2021; Müller and Sennrich,
2021) or translations satisfying some heuristic con-
dition (Berard et al., 2019; Raunak et al., 2021).
Overall, it is not clear whether proposed methods
detect naturally occurring hallucinations well.

Recently, when revisiting previous work in a rel-
atively clean setting, Guerreiro et al. (2022) found
that existing detection methods fall short and the
standard sequence log-probability is the most in-
formative. To show this, the authors gathered a
large dataset with professional annotations of trans-
lations that, according to 10 previously proposed
methods, are likely to be hallucinations. This data
(hallucinations along with the model that generated
them) made it possible to first, evaluate the perfor-
mance of various detection methods and second, to
work on alleviating hallucinations at test time. For
the latter, the idea is “detect-then-rewrite”: after
flagging a translation as likely to be pathological,
generate several alternative hypotheses and pick
the best one relying on some measure. So far, the
best realization of this general framework uses se-
quence log-probability – Seq-Logprob – for detec-
tion, Monte Carlo dropout (Gal and Ghahramani,
2016) to generate several alternative translation
hypotheses, and COMET-QE to pick the final can-
didate (see Guerreiro et al. (2022) for the details).
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We use the same test bed and substantially improve
previous results.

Regarding hallucination detection, we view the
observation that Seq-Logprob outperforms previ-
ous (specifically targeted to hallucinations) meth-
ods as follows: internal model characteristics may
contain much more information than we expect.
Therefore, before developing or using external
models and measures, we ask: how far can we
go if we use nothing but the translation model
itself ? We propose to use a method that evalu-
ates the percentage of the source contribution to a
generated translation. Intuitively, since hallucina-
tions are translations that are “detached” from the
source, low source contribution should be able to
identify hallucinations. Despite the fact that under-
standing hallucinations was one of the motivations
behind the first method evaluating relative source
and target contributions, both existing methods
only looked at highly artificial hallucinations (Voita
et al., 2021; Ferrando et al., 2022). We propose to
use ALTI+ by Ferrando et al. (2022), the method
that aggregates layer-wise tokens attributions, for
both hallucination detection and reranking in the
“detect-then-rewrite” pipeline. For detection of the
most severe hallucinations, it is twice more accu-
rate than Seq-Logprob. For reranking, it performs
on par with the previous best COMET-QE. All
in all, we improve the overall pipeline results by
relying on internal model characteristics alone.

When allowing external tools, previous work
mostly focused on different ways to automatically
evaluate quality of a translation example, either
with string-based methods or neural quality esti-
mation systems. This idea (the better we estimate
translation quality, the better we are at detecting
hallucinations) is natural: hallucinations are low-
quality translations in the first place. However,
implementing this idea in practice is challenging:
even state-of-the-art quality estimation system sub-
stantially fails (Guerreiro et al., 2022). We hypoth-
esize that instead of targeting quality evaluation,
it might be beneficial to use models trained with
a rather different objective. Indeed, as we show
in this paper, similarity between the source and
a translation estimated via cross-lingual sentence
embeddings outperforms the best internal method.
Apart from cross-lingual sentence similarity (which
is expected to be sensitive to highly incorrect trans-
lations), we find that cross-lingual natural language
inference models (less anticipated in the context of

machine translation) also perform quite well. To
the best of our knowledge, we are the first to apply
these models for hallucination detection.

Overall, we show that:
• by using only the model’s inner workings, we

◦ detect the most severe type of hallucina-
tions with twice better precision;

◦ alleviate hallucinations at test time with
results on par with the best previous
method that relies on an external model;

• models focused on semantic similarity of sen-
tences detect all types of hallucinations with
precision 80% higher than previous methods.

2 Background and Setting

In this section, we describe the framework and data
we use for evaluation of hallucination detection
and mitigation methods. This framework was pro-
posed by Guerreiro et al. (2022) and consists of a
large dataset of annotated translations along with
the model that produced them. To the best of our
knowledge, this is the only released data that can be
used to analyze hallucinations in a “clean” setting.

2.1 Model

The model is Transformer base (Vaswani et al.,
2017) from fairseq (Ott et al., 2019) with the
standard hyperparameters setting. It was trained
on the WMT’18 German-English news translation
data excluding Paracrawl (Bojar et al., 2018) – to-
talling 5.8M sentence pairs. Since Guerreiro et al.
(2022) used randomly chosen 1/3 of the dataset as a
held-out set for analysis, the model was trained on
the remaining 2/3 of the dataset. We use the model
released by Guerreiro et al. (2022) that has been
used to generate the hallucinations we analyze.

2.2 Hallucination Dataset

The hallucination dataset released by Guerreiro
et al. (2022) contains fine-grained manual annota-
tions of 3415 German-to-English translations gen-
erated by the model above. These translations are
chosen from a set of 1.8M translations of held-
out data as the ones that are likely to be patho-
logical. The criteria used to flag the translations
include 10 methods ranging from previously pro-
posed heuristics (Lee et al., 2019; Berard et al.,
2019; Raunak et al., 2021) to quality estimation
models (Rei et al., 2020b) and uncertainty detec-
tors (Fomicheva et al., 2020; Zerva et al., 2021;
Guerreiro et al., 2022).
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Figure 1: Taxonomy of translation types (based on the
dataset by Guerreiro et al. (2022)).

The taxonomy of translation pathologies in the
dataset is shown in Figure 1. Here, hallucinations
are defined as severe translation errors that are de-
tached from the source. These can be either oscil-
latory (i.e. contain erroneous repetitions of words
and phrases) or largely fluent. The latter is further
split by severity of an error into fully detached (the
whole content is not supported by the source) and
strongly, but not fully, detached (significant propor-
tion of output is not supported by the source).2 Ad-
ditionally, the annotated data contains translation
errors that are deemed not detached from the source
(Figure 1). Overall, 323 examples are judged to
be hallucinations, 1044 are less severe translation
errors and the rest are correct translations.

Note that so far, there is no “canonical” halluci-
nation taxonomy and previous work used various,
mostly overlapping, definitions (Lee et al., 2019;
Raunak et al., 2021; Zhou et al., 2021; Ji et al.,
2022; Raunak et al., 2022; Guerreiro et al., 2022).
We follow the taxonomy by Guerreiro et al. (2022)
for consistency with the dataset and the evaluation
framework we use and because this taxonomy is
general enough for our purposes.

3 Hallucination Detection Methods

Generally, methods for handling hallucinations can
be either internal, i.e. using only information com-
ing from the translation model itself, or external,
i.e. using auxiliary models. In addition to these, we
also consider “oracles” relying on reference trans-
lation. Note that these cannot be used in preventive
settings when references are not available; here we
use them only for analysis.

2Guerreiro et al. (2022) mention that oscillatory halluci-
nations can also be either fully or strongly detached, but they
do not divide this category into smaller groups because the
overall number of such translations is rather small.

3.1 Reference-Based Oracles
Following previous work (Müller and Sennrich,
2021; Guerreiro et al., 2022), we use:

• chrF: character n-gram F score of the transla-
tion with respect to the reference. We use the
CHRF++ version that also takes into account
word unigrams and bigrams (Popović, 2017);

• COMET: a neural quality estimation met-
ric by Rei et al. (2020a) which was shown
to be the state-of-the-art reference-based
method (Kocmi et al., 2021).

3.2 Internal Measures
Baseline: Seq-Logprob. This is the standard
length-normalized sequence log-probability. Com-
pared to previously introduced methods specifi-
cally targeting hallucinations, this simple metric
performs the best (Guerreiro et al., 2022).

We use ALTI: percentage of source contribution.
We compute the percentage of source impact on the
generated translation using the recently introduced
ALTI+ (Ferrando et al., 2022). At a high level, it
decomposes each transformer block into a sum of
functions of individual tokens and views an output
representation as a summation of transformed in-
put vectors. Then it evaluates contribution of these
vectors to the resulting sum. Among other things,
ALTI+ (as well as an earlier Layerwise Relevance
Propagation (LRP) -based method by Voita et al.
(2021)) was used to show that for artificially cre-
ated hallucinations, source influence is much lower
than for “healthy” translations. Our work is the
first to test this intuition in a real setting where
hallucinations are generated naturally.3

Formally, for a model and its generated trans-
lation, we compute the total source contribution
as the sum of contributions of all source tokens.
We do it for each target token individually and
then average across target tokens. The scores are
computed by the same model that produced the
translations (Section 2.1).

3.3 External models
Baseline: COMET-QE. For a reference-free
model, we use the state-of-the-art COMET-
QE (Rei et al., 2020b) for its superior performance

3Note that of the two methods that can evaluate relative
source and target contributions we choose ALTI+ by Ferrando
et al. (2022) over LRP-based method by Voita et al. (2021)
because the latter is more computationally expensive.
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compared to other quality estimators (Mathur et al.,
2020; Freitag et al., 2021; Kocmi et al., 2021).

We use: sentence similarity. Overall, we con-
sider three measures based on pretrained models
that evaluate semantic similarity of two sentences:

• LASER: cosine similarity of source and trans-
lation sentence embeddings from LASER2.
LASER2 (Heffernan et al., 2022) improves
LASER (Artetxe and Schwenk, 2019) by re-
placing LSTM encoder with a Transformer
and using teacher-student training;

• LaBSE: cosine similarity of source and
translation sentence embeddings from
LaBSE (Feng et al., 2022). LaBSE is a
dual-encoder approach based on pretrained
transformers and fine-tuned for translation
ranking with an additive margin softmax loss;

• XNLI: product of the entailment probabili-
ties of source to translation and translation
to source. We compute entailment scores
with RoBERTa (Conneau et al., 2020) fine-
tuned on a combination of NLI data in 15
languages (Conneau et al., 2018).4

4 Detection Experiments

4.1 Main results
Overall results are shown in Table 1. We report
ROC AUC and precision at 90% recall.5 In addi-
tion to overall results, we also report metrics for
fully detached hallucinations separately.

First, let us look at internal methods. While for
all hallucinations ALTI performs comparably to
Seq-Logprob, for fully detached hallucinations it
has twice better precision. Since ALTI averages
the source contributions over all generated tokens,
it is more effective at detecting the most severe
hallucinations rather than the ones where only part
of the tokens are detached. Note also that for fully
detached hallucinations, internal ALTI performs
almost on par with the best external methods.

Among external methods, LaBSE and XNLI sub-
stantially outperform previous best detector: for

4https://huggingface.co/joeddav/xlm-r
oberta-large-xnli

5This is different from Guerreiro et al. (2022) who compare
recall at thresholds cutting off a specific percentage of the
dataset. Instead, we rely on two metrics: ROC AUC that does
not rely on specific thresholds and PR@R90 that covers a
specific percentage of the hallucinations (in this case, 90%)
and then reports the resulting precision.

All hall. Fully detached
Metric AUC P@R90 AUC P@R90

ChrF 75.4 14.4 89.6 16.6
COMET 83.4 19.2 87.7 12.6
Seq-Logprob 83.0 13.9 93.5 31.0
ALTI 84.9 12.5 98.7 67.4
COMET-QE 70.2 14.2 66.1 6.0
LASER 79.4 14.4 91.2 20.8
LaBSE 91.7 25.9 98.5 70.3
XNLI 90.9 24.1 98.7 60.4

Table 1: Hallucination detection quality. Metrics: ROC
AUC (↑) and P@R90 (↑). Methods: oracle, internal,
external. Changes in scores are highlighted compared
to Seq-Logprob.

both all and fully detached hallucinations, their pre-
cision at 90% recall is roughly twice better than that
of Seq-Logprob. While such a good performance
might be expected for LaBSE that evaluates cross-
lingual sentence similarity (in a way, this might be
seen as a measure of translation quality), results
for XNLI are rather surprising: to the best of our
knowledge, models optimized for XNLI have not
been used in the context of machine translation.

Note also the large difference between LaBSE
and LASER: while the former shows big improve-
ments compared to Seq-Lobprob, the latter notice-
ably lags behind. This is not surprising when look-
ing at training objectives of the underlying models.
LaBSE is trained on a translation ranking task and
thus explicitly encourages ordering translations by
severity of an error; for LASER, this is not the case.

To further understand differences between detec-
tors, we look at the distributions of the detection
scores in Section 4.2 and the detected pathology
types in Section 4.3.

4.2 Analysing Distributions of the Scores

For each of the methods, Figure 2 shows distribu-
tions of the scores for fully detached hallucinations,
strongly detached hallucinations, less severe errors
and correct translations.

Internal methods: partial hallucinations are bi-
modal. ALTI and Seq-Logprob show similar be-
havior: errors are distributed similarly to correct
translations, and the scores for partial (strongly de-
tached) hallucinations have bimodal distribution.
At a high level, for the model, some partial hallu-
cinations “look” more like full hallucinations, and
some – like errors. This can motivate future work:
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Figure 2: Kernel density estimation of the distribution of the detection criteria by translation pathology type.
For each method, the X axis shows the values of the criterion (higher are better), and the Y axis shows the density.

it would be interesting to understand whether it
depends on detachment or on more simple patterns
such as e.g. the proportion of hallucinated tokens.

COMETs: blind to error severity. COMET and
COMET-QE scores6 do not separate hallucinations
from less severe errors. This agrees with previous
work noting that since quality estimation models
are mostly trained on data that lacks negative ex-
amples, COMETs may be inadequate at evaluating
poor translations in general (Takahashi et al., 2021;
Sudoh et al., 2021) and hallucinations in particu-
lar (Guerreiro et al., 2022). What is also expected,
is that compared to reference-free COMET-QE,
the overlap between the scores for correct and incor-
rect translations is much lower for reference-based
COMET. ChrF behaves similarly to COMET.

LaBSE: ranks hallucination severity best.
LaBSE is the only detector with a clear order be-
tween full, partial hallucinations, and non-halluci-
nations. Once again, this is expected because only
LaBSE is trained for ranking. Interestingly, for
LASER, modes for the three distributions are also
ordered; unfortunately, the distributions themselves
overlap significantly which makes it not suitable as
a detector. Both LaBSE and LASER ignore most
of the non-hallucinated translation errors.

6The targets for COMET and COMET-QE models were
calibrated with z-score transformation, so their outputs, while
being unbounded, typically fall between -1 and 1. However,
the dataset from Guerreiro et al. (2022) consists of translations
preselected with flags of potential pathologies, so even for
correct translations the scores are often highly negative.

XNLI: no middle ground. Finally, XNLI distri-
butions are very peaky and concentrated around 0
and 1. This is expected: XNLI’s decision is al-
ways binary. While this provides good separation
between fully detached hallucinations and correct
translations, it is hard to estimate error severity.

4.3 Detected Pathology Types

Now we come to fine-grained categories and look
at detected pathology types. For each method, we
flag a translation as “detected” if it belongs to a
fraction (e.g. 10%) of the hallucination dataset cor-
responding to the lowest scores.7 Then we look at

• the distribution of pathology types contained
among detected examples (Figure 3);

• recall for different translation types with re-
spect to the whole dataset (Figure 4).

The three best methods are similar. Figure 3
shows that ALTI, LaBSE and XNLI select similar
pathology types. For them, flagged examples con-
sist mostly of fully detached and strongly detached
hallucinations, along with other errors.

LASER is an outlier. Instead of focusing on pa-
thological translations, LASER behaves differently
and flags correct translations more. This explains
its poor detection performance mentioned above.

7Note that we take such a large percentage because in the
hallucination dataset we use, about 10% of translations are
hallucinations and about 30% more are errors.

40



Figure 3: Distribution of translation types when se-
lecting the worst 10% of the dataset according to each
metric. While in the original dataset the annotations are
multilabel (e.g. a translation could be annotated both
as oscillatory hal. and as a NE error), we label with the
most severe pathology type (with severity increasing
clockwise from “Correct” to “Fully detached”).

XNLI flags undergenerations. Figure 4 shows
that XNLI (and, to a lesser extent, LaBSE) flags a
large proportion of undertranslations. This makes
sense: these criteria are symmetric, and if we swap
the source and the undergenerated translation, the
longer source can be seen as a hallucination.

Fully detached are the easiest to detect. As ex-
pected, fully detached hallucinations are the easiest
to detect: all methods detect them entirely when
taking 20% of the hallucination dataset (Figure 4),
and they are the most frequent among the examples
flagged by the best performing methods (Figure 3).
This agrees with Guerreiro et al. (2022) that oscilla-
tory and strongly detached hallucinations are more
difficult to detect, and shows that improvements
with our methods mostly come from these types.

5 Mitigating Hallucinations at Test Time

Finally, let us come to the second part of the “detect-
then-rewrite” pipeline: for a flagged translation,
generate several alternative hypotheses and rerank
them (Guerreiro et al., 2022) 8. This general frame-
work has two degrees of freedom: (i) generation of
hypotheses, (ii) reranking approach. We show that

• for generating hypotheses, simply applying
MC dropout (as done in Guerreiro et al.
(2022)) outperforms more involved methods
such as diverse beam search (Section 5.2);

• for reranking, we can match COMET-QE with

8We try only N-best reranking methods. Other generation
methods, such as MBR, have also been shown to mitigate
hallucinations, but we do not consider them here. Fernandes
et al. (2022) recently showed that N-best reranking performs
comparably or better than MBR decoding.

Figure 4: Recalls by translation types when selecting
the worst 20% of the dataset according to each metric.
Here, the types are presented in a multilabel manner, i.e.
one translation may contribute to multiple axes.

internal ALTI and decrease the hallucination
rate by using LaBSE (Section 5.3).

5.1 Evaluation methodology
In this section, we explain the setup for the exper-
iments with automatic evaluation in Sections 5.2
and 5.3. The setup for manual annotation is ex-
plained later in Section 5.3.2.

Metrics. In our experiments, we use several met-
rics. First, we use quality evaluation metrics com-
monly used by the community, i.e. COMET (Rei
et al., 2020b) and BLEU. Additionally, we use
the two best metrics for hallucination detection:
LaBSE and XNLI. We show some of the metrics
in the main text and the rest in the appendix.

Data. First, we analyze the impact of our method
on translations of different quality levels. For
this, we randomly sample 150 sentences from
each of the following groups of the hallucination
dataset (Section 2.2): fully detached hallucinations,
strongly detached hallucinations, all other transla-
tion pathologies, and correct translations (to make
sure that our mitigation does not accidentaly ruin
them). We apply all versions of the hallucination
mitigation algorithm to these 600 sentences.

Note that in a practical application, we would
apply the mitigation techniques only to the trans-
lations labeled by a detection algorithm as poten-
tial hallucination. We simulate this later in Sec-
tion 5.3.2 when performing manual annotation.

5.2 Generation Strategies
To generate alternative hypotheses, Guerreiro et al.
(2022) use Monte Carlo dropout (Gal and Ghahra-
mani, 2016). This means they leave standard beam
search inference intact and achieve variability in
translations via activating model dropout at infer-
ence. A natural question is whether using other
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Figure 5: For all combinations of a generation strategy and a reranker,
heatmaps show scores for the final translations (darker is better).

Figure 6: COMET scores for each
generation method and number of
hypotheses. For each group of gen-
eration strategies, we show the best
representative.

generation strategies can give better results. For
example, if we use e.g. beam search specifically
designed to produce diverse translations, can we
get better hypotheses?

To test this, we use the following methods:
• DEFAULT: standard decoding without rerank-

ing, i.e. beam search with size 5, where we
pick only the top 1 candidate;

• BEAM SEARCH: beam search with size n;
• sampling from the predicted distribution:

◦ SAMPLING: from the whole distribution;
◦ SAMPLING P=80: from the top p = 80%

of the distribution, i.e. nucleus sam-
pling (Holtzman et al., 2020);

• diverse beam search:
◦ DBS_N: method by Vijayakumar et al.

(2016) with beam widths s = 1, 3, 10;
◦ D_DEC_R: diverse decoding with diver-

sity rates r = 1, 3, 10 (Li et al., 2016);
• Monte Carlo dropout:

◦ MC GREEDY: n iterations of greedy
search with dropout;

◦ MC BEAM: the method used in Guerreiro
et al. (2022), i.e. n iterations of beam
search with dropout, each with size 10.

Unless stated otherwise, n = 10 in all experiments.

5.2.1 The Impact of Generation Strategy
The results are shown in Figure 5. To disentangle
the effect of generation strategy from the subse-
quent reranker performance, we show the results
for all combinations. As rerankers, we considered
COMET-QE used in Guerreiro et al. (2022) and the
methods proposed in Section 3.

We see that the MC BEAM method clearly out-
performs all the other. This is interesting for two
reasons. First, MC dropout is easy to use: one has
to apply standard inference with dropout on with-

out other changes to the implementation. Next, dif-
ferently from modifying decoding strategies, here
variability in hypotheses comes from model pre-
dictive uncertainty (Gal and Ghahramani, 2016;
Zerva et al., 2021; Guerreiro et al., 2022). This is
one more evidence that understanding model inner
characteristics can be beneficial in various settings.

Based on these results, in what follows we gener-
ate hypotheses with beam search with MC dropout.

5.2.2 The Impact of Number of Hypotheses
We also check whether generating more than 10
hypotheses can improve the overall results. Fig-
ure 6 shows the final COMET scores depending on
the number of hypotheses. We see that the scores
increase with more hypotheses and do not saturate
at 10. This implies that in cases when the quality of
a translation is much more important than its com-
putational cost, one can potentially improve the
quality by generating more candidate hypotheses.

5.3 Reranking Approaches
Apart from detecting hallucinations, the methods
we propose can be applied as rerankers in the
“detect-than-rewrite” pipeline.

5.3.1 Automatic Evaluation
Figure 5 shows that, regardless of the generation
method, LaBSE is the best reranker and it performs
notably better than the strong COMET-QE baseline.
Apart from the average results, Table 2 also shows
COMET scores for each pathology type. We can
see that reranking with any method is better than
no reranking for all groups of original translations.
Compared to the COMET-QE baseline, LABSE
improves the scores for hallucinations and correct
translations, but drops quality for other pathologies.

The only internal method ALTI performs better
than COMET-QE for fully detached hallucinations,
but is inferior when looking at other translations: it
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Pathologies Cor. Avg.
Reranker F. S. O.

No reranking -1.23 -0.97 -0.59 0.27 -0.63
Baseline

COMET-QE -0.21 -0.13 -0.14 0.35 -0.03
Ours

ALTI -0.17 -0.24 -0.39 0.25 -0.14
LASER -0.11 -0.23 -0.35 0.27 -0.11
LaBSE -0.07 -0.12 -0.26 0.39 -0.01
XNLI -0.12 -0.18 -0.28 0.30 -0.07

Table 2: Average COMET scores (↑) after reranking MC
dropout hypotheses by various methods. Pathologies:
fully detached hallucinations (F.), strongly detached
hallucinations (S.), other pathologies (O.). See Table 3
in the appendix for XNLI scores.

is very sensitive to the most severe pathology, but
is not capable to rank relatively good translations.

Note that for former pathologies, the average
COMET scores are negative even after mitigation.
As we saw in Figure 2, this may be normal even for
correct translations, and may reflect the fact that,
while being technically correct, they are far from
being perfect.

5.3.2 Human evaluation
Data. To confirm the results of automatic evalu-
ation, we perform a human evaluation. With each
method, we translate the same 200 source sen-
tences. They are randomly sampled from the hallu-
cination dataset with the distribution of pathologies
roughly mimicking outputs of the best detectors
(Figure 3). Overall, for 55% of the sentences their
original translations are labeled as hallucinations,
25% as errors and 20% as correct translations.9

We compare the original translations and three
reranking methods: the baseline COMET-QE used
in Guerreiro et al. (2022), the best overall reranker
LaBSE, and the only internal method ALTI.

Annotation. For each of the 200 source sentence,
we deduplicate and shuffle the four translations
to mitigate annotator bias. The 602 resulting sen-
tence pairs are labeled by 3 annotators into three
categories: Correct, Error, and Hallucination. We
aggregate the labels by majority vote; in case of
ties (20 out of the 602 sentence pairs after dedupli-
cation) we pessimistically assume a hallucination.

9We select these sentences randomly rather than using
proposed detection methods because the latter would affect
the results of evaluating these methods as rerankers.

Figure 7: Human annotation results: percentages of
translation pathologies for different reranking methods.
For hallucinations, all the differences are significant, ex-
cept the one between ALTI vs COMET-QE. For correct
translations, the difference between LaBSE and ALTI is
statistically significant.

We evaluate the statistical significance of the pair-
wise differences in the proportions of correct and
hallucinated translations using two-sided Student
test for two related samples with 5% confidence
level. We provide more details on the annotation
guidelines and inter-annotation agreement in Ap-
pendix C.

Results. Human evaluation results are shown in
Figure 7. All reranking methods reduce hallucina-
tory rate by a factor of 2.5 to 3. Interestingly, when
looking at hallucinations, internal ALTI performs
on par with COMET-QE: the differences between
these two methods are not statistically significant.
COMET-QE, however, has less errors. This is ex-
pected as it was trained to distinguish correct trans-
lations from errors. Coming to LaBSE, we find
that it produces slightly less hallucinations than
other reranking methods and more correct transla-
tions than ALTI; these differences are significant
at 5% confidence level. Overall, by using sentence
similarity from LaBSE, we improve both on hallu-
cinations detection and mitigation at test time.

Surprisingly, LaBSE and ALTI outperform
COMET-QE with a large margin for hallucination
detection, but not for hypotheses reranking. As we
explain in Section 4.2, quality estimation models
are mostly trained on data that lacks negative ex-
amples. Therefore, COMETs may be inadequate at
evaluating poor translations in general and halluci-
nations in particular (Takahashi et al., 2021; Sudoh
et al., 2021; Guerreiro et al., 2022). For reranking,
the goal is the opposite: finding the best transla-
tions (as opposed to the worst), which is closer to
the COMET training objective.

Note that since COMET-QE is the state-of-the-
art quality estimator, it is a very strong baseline
for the reranking stage where the goal is to find a
better translation. The fact that we can match its
hallucinatory rate reduction by analyzing model in-
ner workings has value from different perspectives.
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For research, it can motivate future work on model
understanding; for practitioners, it means that hallu-
cination mitigation is not limited to language pairs
where external models such as COMET-QE exist:
model understanding might be enough.

6 Conclusions

We start by asking how far we can go at detecting
and mitigating hallucinations if we use nothing but
the translation model itself. Turns out, we can im-
prove the results of the overall “detect-then-rewrite”
pipeline by evaluating the percentage of source
contribution to a generated translation: translations
with low source contribution are likely to be “de-
tached” from the source, i.e. hallucinations. For
detecting the most severe type of hallucinations,
this method improves previous results twice; for
mitigating hallucinations at test time, it matches
the hallucination reduction rate of the previous best
external method. We believe this can motivate fu-
ture research on model analysis. When allowing
external models, we expand the methods for han-
dling hallucinations from models specialized for
quality estimation to a broader set of objectives, e.g.
sentence similarity from cross-lingual embeddings.
Apart from showing that LaBSE improves previous
results significantly, we also find that models so far
overlooked in the context of machine translation
(e.g. natural language inference) can be beneficial.
We hope future work will build on this idea.

7 Limitations

Our analysis and conclusions have been based only
on a single translation direction (German to En-
glish), a single dataset, and a single transformer-
based model. The generalization to other lan-
guages, data and models is yet to be verified.

Even in this setup, we have seen that some of
the proposed methods are very good at detecting
fully detached hallucinations. However, none of
them were able to well separate strongly detached
hallucinations (when only a part of the generated
translation is unrelated to the source) from correct
translations. Perhaps, such partial hallucinations
should be detected on the level of individual tokens
instead of the whole sentence.

One of the metrics that we propose, average
ALTI source contribution, has an advantage of not
requiring any external models except the transla-
tion model itself. However, the two best detection
metrics (based on LaBSE and on XNLI model) re-

quire additional encoders trained on the source and
target languages, which limits their applicability
for lower-resourced languages or in the settings
with limited computational resources.

Being an internal method is an advantage of
ALTI, but it is also a limitation: this method is suit-
able only for transformer-based translation models.
In principle, it can be adapted to other neural archi-
tectures, but not to non-neural approaches, such as
statistical machine translation.

8 Ethical statement

We do not foresee any considerable risks associ-
ated with our work. In principle, our framework
for hallucination mitigation could be intentionally
reversed to produce lower-quality translations. But
there are easier ways to produce a bad translation,
such as just sampling the output text randomly, so
we do not think that our work poses any additional
risks.

This work is based on the open source dataset
and model released by Guerreiro et al. (2022) and
thus inherits all their potential biases.

We will make our code publicly available to en-
sure reproducibility of our experiments.
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Ma, and Ondřej Bojar. 2020. Results of the WMT20
metrics shared task. In Proceedings of the Fifth Con-
ference on Machine Translation, pages 688–725, On-
line. Association for Computational Linguistics.

Mathias Müller, Annette Rios, and Rico Sennrich. 2020.
Domain robustness in neural machine translation. In
Proceedings of the 14th Conference of the Associa-
tion for Machine Translation in the Americas (Volume
1: Research Track), pages 151–164, Virtual. Associa-
tion for Machine Translation in the Americas.

Mathias Müller and Rico Sennrich. 2021. Understand-
ing the properties of minimum Bayes risk decoding
in neural machine translation. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 259–272, Online. Asso-
ciation for Computational Linguistics.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for
sequence modeling. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics (Demonstrations),
pages 48–53, Minneapolis, Minnesota. Association
for Computational Linguistics.
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A Implementation and computing

All our experiments were carried out on a single
server with one NVIDIA Quadro GP100 GPU. The
total computation time for generating and scoring
translations was less than 24 hours.

To compute BLEU and ChrF++, we use the
SacreBLEU package10 with the default parame-
ters. For COMET and COMET-QE, we use the
COMET package11 with the wmt20-comet-da
and wmt20-comet-qe-da-v2 models, respec-
tively. The translation hypotheses, Seq-Logprob,
and LASER are computed using the Fairseq frame-
work12. To compute ALTI+, we adapt the code13 by
Ferrando et al. (2022). For the inference of LaBSE
and the XNLI model, we use the transformers
package14.

B Mitigating Hallucinations at Test Time

Table 3 shows XNLI scores after reranking MC
dropout hypotheses by various methods. Note that
since here XNLI was used both to rerank and well
as evaluate quality, in the experiment XNLI can be
viewed as an oracle.

C Manual Evaluation

In this appendix we describe the manual evaluation.
First, we detail the simple guidelines that were pre-
sented to manual annotators. Second, we report the

10https://github.com/mjpost/sacrebleu
11https://github.com/Unbabel/COMET
12https://github.com/facebookresearch/

fairseq
13https://github.com/mt-upc/transformer

-contributions-nmt
14https://github.com/huggingface/trans

formers
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Pathologies Correct Avg.
Reranker F. S. O.

No reranking 2 30 80 93 51
Baseline

COMET-QE 59 69 85 93 77
Ours

ALTI 64 73 92 91 80
LASER 72 73 92 92 82
LaBSE 74 80 92 94 85
XNLI (oracle) 75 83 98 97 88

Table 3: Average XNLI scores after reranking MC
dropout hypotheses by various methods. Pathologies:
fully detached hallucinations (F.), strongly detached hal-
lucinations (S.), other pathologies (O.).

number of annotators and inter-annotation agree-
ment. Third, we report the results of statistical
sigificance tests for comparing all the methods.

Guidelines Annotators were provided with the
guidelines shown in Table 4. For the reporting pur-
poses, “Partial hallucination” was grouped together
with “Full hallucination”, and “Undertranslation”
with “Other”.

Inter-annotation agreement We evaluated inter-
annotation agreement by Fleiss’ Kappa. For the
three annotators and the three aggregated labels,
it equals 0.57 on the 602 sentence pairs that were
labeled (with the 5 original labels, it is 0.55). This
may be interpreted as moderate agreement.

The differences The Tables 5 and 6 compare
proportions of correct and hallucinated translations
for each of the manually evaluated methods. The P-
values are computed with paired two-sided Student
test (scipy.stats.ttest_rel).
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Each row of the data consists of the German source sentence, its reference English translation (it is not always accurate!),
and 1 to 4 machine translation outputs. The machine translation outputs are presented in a random order, to exclude the
possibility of bias toward any specific method.
For each of the machine translations, you need to assign one of the following labels:

• OK: An acceptable translation; it conveys the main meaning correctly and does not introduce extra meaning. Some
details still may differ, and minor errors are acceptable.

• Partial hallucination: a part of the translation is unrelated to the source, or is related very indirectly, such as via a
common topic.

• Full hallucination: most or all of the translation is unrelated to the source, or is related very indirectly.

• Undertranslation: there is no hallucinations, but a significant part of the source is not translated at all.

• Other: there are no hallucinations or undertranlsations, but there are other translation errors that make the translation
unacceptable.

Table 4: Human annotations Guidelines

Method 1 Method 2 Rate 1 Rate 2 P-value

LABSE COMET-QE 0.56 0.54 0.53
LABSE ALTI 0.56 0.49 0.02
LABSE Default 0.56 0.20 0.00
COMET-QE ALTI 0.54 0.49 0.12
COMET-QE Default 0.54 0.20 0.00
ALTI Default 0.49 0.20 0.00

Table 5: Comparison between manually annotated rates
of correct translation.

Method 1 Method 2 Rate 1 Rate 2 P-value

LABSE COMET-QE 0.16 0.22 0.01
LABSE ALTI 0.16 0.22 0.01
LABSE Default 0.16 0.53 0.00
COMET-QE ALTI 0.22 0.22 1.00
COMET-QE Default 0.22 0.53 0.00
ALTI Default 0.22 0.53 0.00

Table 6: Comparison between manually annotated rates
of hallucinated translation.
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� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
Not applicable. We used an existing published dataset.

�7 D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
We did not collect any data, except of annotating an already existing dataset

�7 D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Left blank.
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