
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 5428–5443

July 9-14, 2023 ©2023 Association for Computational Linguistics

BLEURT Has Universal Translations: An Analysis of Automatic Metrics
by Minimum Risk Training

Yiming Yan1∗, Tao Wang2, Chengqi Zhao2, Shujian Huang1†,
Jiajun Chen1, Mingxuan Wang2

1 National Key Laboratory for Novel Software Technology, Nanjing University, China
2 ByteDance AI Lab, China

yanym@smail.nju.edu.cn, {huangsj, chenjj}@nju.edu.cn
{wangtao.960826, zhaochengqi.d, wangmingxuan.89}@bytedance.com

Abstract
Automatic metrics play a crucial role in ma-
chine translation. Despite the widespread use
of n-gram-based metrics, there has been a re-
cent surge in the development of pre-trained
model-based metrics that focus on measuring
sentence semantics. However, these neural met-
rics, while achieving higher correlations with
human evaluations, are often considered to be
black boxes with potential biases that are diffi-
cult to detect. In this study, we systematically
analyze and compare various mainstream and
cutting-edge automatic metrics from the per-
spective of their guidance for training machine
translation systems. Through Minimum Risk
Training (MRT), we find that certain metrics ex-
hibit robustness defects, such as the presence of
universal adversarial translations in BLEURT
and BARTScore. In-depth analysis suggests
two main causes of these robustness deficits:
distribution biases in the training datasets, and
the tendency of the metric paradigm. By
incorporating token-level constraints, we en-
hance the robustness of evaluation metrics,
which in turn leads to an improvement in the
performance of machine translation systems.
Codes are available at https://github.com/
powerpuffpomelo/fairseq_mrt.

1 Introduction

Automatic metrics are crucial for the training of
machine translation models, as they can measure
translation quality at low cost. Currently, the most
widely used translation evaluation metric is still
the n-gram-based BLEU (Papineni et al., 2002;
Marie et al., 2021). However, it is acknowledged
that BLEU, which relies on the surface-level vo-
cabulary matching, exhibits significant limitations
(Smith et al., 2016; Reiter, 2018; Mathur et al.,
2020; Kocmi et al., 2021). For instance, BLEU fails
to differentiate between errors of varying severity
and assigns equal weight to each word.

*Work was done during internship at ByteDance AI Lab.
†Corresponding author.

Figure 1: An example of a universal adversarial trans-
lation of BLEURT. hypo means the translation sen-
tence and ref means the reference sentence. BLEURT
needs to compare hypo and ref to judge the quality of
hypo. This figure shows that the universal translation
can achieve high BLEURT scores when calculated with
each ref , even if hypo and ref are completely unre-
lated.

In recent years, the advent of pre-trained mod-
els (Devlin et al., 2018; Liu et al., 2019; Conneau
et al., 2019; Yang et al., 2019; Lan et al., 2019) has
led to significant advancements in the development
of metrics such as BLEURT (Sellam et al., 2020)
and COMET (Rei et al., 2020), which employ pre-
trained language models (PLM) to assess the se-
mantic meaning of sentences. These approaches
have been shown to outperform metrics that rely
on superficial word matching and have a more con-
sistent correlation with human annotation. Despite
these advances, it is important to note that neural
metrics are characterized by opaque decision bases
and may be subject to biases that are more difficult
to detect (Sun et al., 2022). Therefore, we aim to
conduct an analysis of the properties of various
metrics in order to gain a deeper understanding.
While there have been recent studies on the analy-
sis of metrics (Kocmi et al., 2021; Hanna and Bojar,
2021; Sun et al., 2022), these works primarily fo-
cus on examining metric scores on specific datasets.
To the best of our knowledge, this paper is the first
to analyze metrics from the perspective of their
guidance for training machine translation systems.

In this paper, we employ Minimum Risk Train-
ing (MRT) (Shen et al., 2015) to train translation
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Metrics Supervised Paradigm Based PLM Considered input forms
BLEU ✗ Match - <hyp, ref>

BERTScore ✗ Match RoBERTa / BERT <hyp, ref>
BARTScore ✗ Generation BART <hyp, ref> / <src, hyp>

BLEURT ✓ Regression BERT <hyp, ref>
COMET ✓ Regression XLM-RoBERTa <hyp, src, ref>
UniTE ✓ Regression XLM-RoBERTa <hyp, ref> / <hyp, src, ref>

Table 1: Summary of metrics considered in this paper.

models. Compared to Maximum Likelihood Esti-
mation (MLE), MRT can reduce the gap between
training and evaluation, resulting in higher qual-
ity translations (Shen et al., 2015; Edunov et al.,
2017). In addition, since MRT uses metrics to opti-
mize translation models, we can explore the impact
of metrics on translation by observing the MRT
training process.

Our experiment results show that MRT reveals
the robustness defects in some metrics: the training
collapses and the generated translations, despite
getting high metric scores, show poor translation
quality. For instance, we find universal adversarial
translations of BLEURT and BARTScore, which
are capable of obtaining high scores when evalu-
ated against any reference sentence. An example
is presented in Figure 1. Further analysis shows
that the robustness defects are rooted in the distri-
bution biases of the training corpora, as well as in
the tendency of the metric modeling paradigm. In
addition, we explore methods for optimizing met-
rics and translation models: word-level information
constraints are introduced by combining MRT with
NLL loss and metric ensemble.

Our main contributions are as follows:

• We present a systematic analysis of automatic
metrics for machine translation from the per-
spective of guidance for training machine
translation systems.

• We provide analytical conclusions, including
metric robustness deficiencies, as well as an
analysis of the underlying causes.

• We explore methods to improve metric robust-
ness and translation quality and demonstrate
their effectiveness.

2 Analyze Metrics with MRT

We train translation models in two stages: in the
MLE training phase, the model is trained with con-

ventional negative log-likelihood (NLL) loss; then
in the MRT training phase, we fine-tune the model
with each metric, so as to obtain translation mod-
els with various metric styles. In this way, the
characteristics of different metrics can be analyzed
through observing the changes in the training pro-
cess and the translation results.

2.1 Considered metrics

Given the translated sentence hyp, the automatic
evaluation metric evaluates hyp by comparing it
with the reference sentence ref (and sometimes
with the source sentence src). This paper selects
the most mainstream and cutting-edge six metrics
for comparison and analysis, including three unsu-
pervised metrics: BLEU (Papineni et al., 2002),
BERTScore (Zhang et al., 2019), BARTScore
(Yuan et al., 2021), and three supervised metrics:
BLEURT (Sellam et al., 2020), COMET (Rei et al.,
2020), UniTE (Wan et al., 2022). The specific in-
formation is shown in Table 1.

We use SacreBLEU1 and F1-score2 as a mea-
sure of text quality to calculate BLEU and
BERTScore respectively. Following the instruc-
tions of Yuan et al. (2021), we use the CNNDM
version of BARTScore3 to calculate the F1-score of
⟨hyp, ref⟩ for translate-to-English language pairs,
and multilingual BART to obtain the faithfulness
by calculating P (hyp | src) for the other language
pairs. As recommended, we use BLEURT-204 and
WMT20-COMET-MQM5 to compute BLEURT
and COMET respectively. For UniTE, since
our task is multilingual, we use UniTE-MUP6 in
our experiments. It is worth noting that, for a
fair comparison, we consider two input forms of

1https://github.com/mjpost/SacreBLEU
2https://github.com/Tiiiger/bert_score
3https://github.com/neulab/BARTScore
4https://github.com/google-research/bleurt
5https://github.com/Unbabel/COMET
6https://github.com/NLP2CT/UniTE
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Train Valid Test
En⇔De 4.3M 3000 3003
En⇔Zh 1.3M 1797 4534
En⇔Fi 2.5M 2500 2507

Table 2: Statistics of datasets on three language pairs.

UniTE: one uses ⟨hyp, ref⟩ to calculate the trans-
lation quality, which we denote as UniTE_ref; the
other uses ⟨src, hyp, ref⟩, which we denote as
UniTE_src_ref.

2.2 Minimum Risk Training
Minimum Risk Training (MRT) is a sequence-level
objective that aims to minimize the expected risk on
the training data. Given a training set D = {(x,y)},
MRT uses the loss function ∆(ŷ, y) to compute the
discrepancy between the ground truth y and the
model prediction ŷ.

Different from conventional MLE training meth-
ods, MRT allows the use of arbitrary non-
differentiable loss functions. Therefore, automatic
metrics can be introduced to train machine trans-
lation systems. While an MLE-trained model may
not translate authentically, MRT can produce more
natural translation results by reducing the gap be-
tween training and evaluation (Shen et al., 2015;
Edunov et al., 2017; Wang and Sennrich, 2020).

In MRT training, risk is defined as the expected
loss with respect to the posterior distribution:

R(θ) =
∑

(x,y)∈ D

∑

ŷ∈Y(x)

P (ŷ|x; θ)∆(ŷ, y) (1)

in which Y(x) is the set of all possible translations
of x. Since the full search space is intractable, we
choose a certain number of candidate translations
as a subset to approximate the posterior distribu-
tion.

2.3 Experiment Setup
Dataset With reference to datasets and language
pairs that are widely used in machine translation
and neural metrics studies, we conduct experi-
ments on six language directions: English-German
(En⇔De), English-Chinese (En⇔Zh), English-
Finnish (En⇔Fi). We use the WMT14 training
corpus for En⇔De, and the newstest13 and new-
stest14 are the validation set and the test set, re-
spectively. For En⇔Zh, we use the LDC corpus
as training data, and the NIST 2002, 2003 are used
for validation, while NIST 2004, 2005, 2006 are

used as the test sets. For En⇔Fi, the datasets are
from the training-parallel-ep-v8 and rapid2016 sec-
tions of WMT17, where the validation set and the
test set are split at a rate of 0.1% respectively. The
statistics of the datasets are shown in Table 2.

Implentation Details We train Transformer Base
setting (Vaswani et al., 2017) using the fairseq7

toolkit, where the model consists of 6 layers of
encoder and 6 layers of decoder with hidden size
of 512. In the MLE training phase, the batch size
is 65,536. The best checkpoint is selected based
on the BLEU scores on the validation set. For
evaluation, we average the last ten checkpoints
and use beam search for inference. In the MRT
training phase, each batch contains 8,000 tokens.
Following previous work on MRT (Edunov et al.,
2017), we use beam search to generate candidates,
and the beam size is set to 12. The best check-
point is selected based on the corresponding metric.
We list the training duration for MLE and MRT
in Appendix B. For all language pairs, sentences
are encoded using byte pair encoding (Sennrich
et al., 2015) with 32,000 merge operations, jointly
learned from both the source and target side of the
training data. We use Adam (Kingma and Ba, 2014)
optimization and the same learning rate schedule as
described in Vaswani et al. (2017) with the warm-
up step of 4,000.

2.4 Main Results

The MLE stage is the main factor in improving
translation performance of the model, whereas
MRT fine-tuning directs the model towards specific
metrics. The SacreBLEU scores of the translation
models after MLE training are shown in Table 3.
Then in the MRT fine-tuning phase, we use six
metrics separately on each language pair to guide
the training. Figure 2 shows the evaluation results
of the translations by optimizing each metric on
Zh⇒En during this phase 8.

We investigate the changes in the MRT curve
for each metric and language pair. The remaining
of the metrics generally improve along with the
optimized metrics, followed by a slight decrease,
indicating that there are differences in the quality
evaluation criteria of different metrics. In general,
all metrics remain basically stable during the MRT

7https://github.com/pytorch/fairseq
8Due to space limitations, please refer to Appendix C

for the complete graph of training states on each metric and
language pair.
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En⇒De De⇒En En⇒Zh Zh⇒En En⇒Fi Fi⇒En
MLE Training 28.4 31.4 37.2 45.4 28.7 38.1

Table 3: SacreBLEU scores on the test sets obtained by training Transformer-base with MLE.

Figure 2: The training process of MRT optimized by each metric on Zh⇒En. The horizontal axis represents the
training steps, and the vertical axis is the score of each metric (except for BARTScore on the right axis, which is a
negative number because it calculates the logarithmic probability of translations); metrics other than BARTScore
and BLEU are mostly distributed between 0 and 1, and we multiply them uniformly by 100 for ease of observation.
The asterisk represents the highest value achieved by the optimized metric.

process.
However, we find several exceptions, such as

optimizing BLEURT on the En⇒De and En⇒Zh
language pairs, where the rest of the metrics experi-
ence a severe drop. As shown in Table 4, BLEURT
remains basically stable, but the rest of the met-
rics drop to particularly low or even negative val-
ues. The same situation occurs when optimizing
BARTScore, as shown in Table 4 and Figure 2.

MRT Exposes the Robustness Defects of Met-
rics We find deficiencies in some metrics when
MRT collapses. For example, we find that there are
universal adversarial translations in both BLEURT
and BARTScore.

(1) Universal translations of BLEURT. We
take the checkpoint of the translation model on
En⇒De where BLEURT reaches the highest point
to generate translations on the test set. The de-
coded results show that the translation quality does
indeed collapse severely. Table 5 shows the two
most frequently decoded translations. It can be
seen that the translation model generates many sim-
ilar sentences with high frequency, regardless of the
source sentences. This shows that decoding such
sentences can get high BLEURT scores. The exam-
ple of calculating the BLEURT scores of universal
translations is also shown in Figure 1.

(2) Universal translations of BARTScore. We
also generate translations with the checkpoint on
De⇒En which gets highest BARTScore. As shown
in Table 5, the translation model also decodes many

similar sentences, but unlike BLEURT, the form
of the high-frequency decoded sentences is only
repetition of simple words.

The phenomenon of universal adversarial trans-
lations shows that BLEURT and BARTScore are
flawed, and a high metric score does not mean high
translation quality. If the metric is not good enough,
it actually leads the translation model in the wrong
direction.

2.5 Analysis

2.5.1 Why Universal Translations Exist
We examine the WMT14 En⇔De parallel corpora,
and find that there are many sentences with similar
semantics in the training set, including a large cor-
pus of hotel reviews that are semantically similar to
universal translations of BLEURT 9. This indicates
that the patterns of universal translations are related
to the translation training set, and they come from
the high frequency samples in the training corpora.
Raunak et al. (2021) also mentions the problem of
corpus bias, whose study on NMT hallucinations
shows that specific noise patterns in the training
corpora lead to specific hallucination patterns. Due
to high frequency samples in the translation train-
ing set, it becomes easy for the translation model to
decode certain sentences (even if they have nothing
to do with the source sentences).

Moreover, the high score of the metric condones
the model to decode such sentences, leading to

9Some examples can be found in Appendix E.
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Optimized Metric Change Range of Metrics During MRT on En⇒De
BLEU BERTScore BARTScore BLEURT COMET UniTE_ref UniTE_src_ref

BLEU 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
BERTScore 0.70% 0.69% -0.24% 0.71% 4.61% 4.31% 3.98%
BARTScore -100.00% -176.84% 92.15% -79.78% -574.39% -397.07% -385.80%

BLEURT -100.00% -107.48% -20.33% 14.96% -435.00% -423.12% -408.72%
COMET -14.79% -3.01% -0.92% 1.65% 13.38% 10.86% 9.90%

UniTE_ref -31.69% -11.51% -3.12% -0.37% 2.66% 19.11% 18.06%
UniTE_src_ref -39.08% -15.27% -4.16% -2.39% -4.28% 21.99% 21.72%

Table 4: The change range of all metrics when one metric is optimized to the highest value during MRT on En⇒De.
0.00% means that the optimized metric does not continue to improve, and the highest value remains the same as the
result of MLE training; a negative number means that the metric score goes from positive to negative, which means
it decreases a lot. (For the results of the remaining five language directions, see Appendix D)

Frequency Decoded Translations with Top2 Frequency

Optimize
BLEURT on

En⇒De

689
Lage vom Hotel war grundsätzlich bestens Hotelpersonal weitgehend zuvorkommend

bzw. ggf. hilfehilfsbereit. Vor allem die Lage des Hotels war gut, Hotelmitarbeiter
grundsätzlich äußerst lieb bzw. gegebenenfalls auch durchaus hilfehilfsbereit.

386
Lage vom Hotel war grundsätzlich bestens HotelPersonal weitgehend zuvorkommend

bzw. ggf. hilfehilfsbereit. Vor allem die Lage des Hotels war gut, Hotelmitarbeiter
grundsätzlich äußerst lieb bzw. gegebenenfalls auch durchaus hilfehilfsbereit.

Optimize
BARTScore on

De⇒En

141
! Mallorca! Mallorca! Mallorca! Mallorca! Mallorca! Mallorca! Mallorca! Mallorca!
Mallorca! Mallorca! Mallorca! Mallorca! Mallorca! Mallorca! Mallorca! Mallorca!

Mallorca! Mallorca!

137 Mallorca! Mallorca! Mallorca! Mallorca! Mallorca! Mallorca! Mallorca! Mallorca!
Mallorca! Mallorca! Mallorca! Mallorca!

Table 5: Examples of decoded translations of BLEURT and BARTScore. Due to space limitations, only the top2
frequency translations are listed.

the creation of universal translations. BLEURT
uses metric data and generates a large amount of
pseudo-data for supervised training, and the metric
data comes from the translation training corpus.
Since data augmentation may introduce noise and
amplify hallucinations (Raunak et al., 2021), we
suggest that its indulgence of universal translations
is also related to the training corpus.

The universal translations of BARTScore con-
tain repetitions of simple words, which is similar
to the hallucination phenomena that occurs in the
early stages of translation model training. We not
only use the F1 score, but also experiment with the
Recall of BARTScore (computing P (ref |hyp))
to guide the training, and find that this setting can
produce universal suffixes, that is, even if the cor-
rect translation is followed by a specific suffix, it
does not reduce the BARTScore. Therefore, we
suggest that the vulnerability of BARTScore may
be due to the fact that it uses model generation
probabilities to determine translation quality, and
this generation-based metric tends to assign high
scores to easily generated sentences. In short, the
defects may stem from the tendency of the metric

modeling paradigm 10.
The phenomenon of universal adversarial trans-

lations suggests that, on the one hand, we need to
optimize the translation and metric datasets to bal-
ance their distributions, avoiding high-frequency
samples; on the other hand, we need to optimize
the metrics so that they are as little affected by the
distribution bias of the dataset as possible. For ex-
ample, sentence-level metrics can be constrained by
incorporating word-level information. We present
this experiment in Section 3.

2.5.2 Comparison of Metrics
We observe and compare the changes in the train-
ing effect of translation models guided by each
metric on each language pair, and the summary is
as follows:

BLEU converges quickly. This is as expected,
since the translation model is selected by BLEU in
the general MLE training phase, there is almost no
continuous optimization during MRT. BERTScore
also converges in a few steps. When BERTScore
is optimized, other metrics remain relatively stable

10Metrics can be categorized into different modeling
paradigms, including matching, regression, generation, and so
on (Sun et al., 2022; Yuan et al., 2021).
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and sometimes show an upward trend.
The consistency between BLEURT and other

metrics shows language pair differences: for
translate-to-English language pairs, the other met-
rics change steadily and show high consistency
with BLEURT. All three to-En language pairs
show an increase in COMET, UniTE_ref, and
UniTE_src_ref. However, on the language pairs
that translate from English, the consistency be-
comes very poor, where the other metrics drop
significantly when optimizing translation models
with BLEURT.

The metric that is least consistent with other
metrics is BARTScore. On all language pairs, the
rest of the metrics decrease when BARTScore is
used to train translation models.

COMET, UniTE_ref, and UniTE_src_ref are
similar and can improve each other. However,
when optimizing with these metrics, a decrease
in BLEU is observed for all language pairs. This
may indicate that the translation model is gradually
trained to be more inclined towards translations that
are semantically close to the reference sentences,
but the specific words may not be the same. In
addition, other metrics also show a smooth trend
of change, indicating that these metrics may be
superior and more robust.

Figure 3: Pairwise correlation of metrics on translate-to-
English language pairs. All metrics are significantly pos-
itively correlated (p < 0.001). Ignoring self-relevance,
the correlations between COMET and UniTE, BLEURT
and BERTScore are particularly strong.

Same Pre-trained Model Leads to Similar Met-
rics. We also find a pattern that metrics that are
based on the same pre-trained model have similar

trends in the variation of the training effect of MRT.
We count the pairwise correlation of each metric,
and find that the correlation between BERTScore
and BLEURT (both based on BERT), and the corre-
lation between COMET and UniTE (both based on
XLM-Roberta) are higher than other metric pairs
for translate-to-English language pairs, as shown
in Figure 3. For language pairs translated from
English, the robustness bias of BLEURT weakens
its correlation with BERTScore, but the Pearson
correlation coefficient still reaches 0.82 and is sig-
nificantly correlated. This indicates that metrics
based on the same pre-trained model have more
consistent criteria for the evaluation of translation
quality.

Robust Metrics can Drive Improvement in
Other Metrics. MRT experiments show that the
optimization process of BARTScore as well as
BLEURT (on translation-from-English language
pairs) is accompanied by a strong decrease of
the other metrics, and we find metric robustness
deficits in these cases. Therefore, we suggest that
robust metrics may drive other metrics to improve
together during MRT. (However, the converse in-
ference does not hold. The ability to drive other
metrics to improve is not sufficient to conclude
that the metrics are robust enough, because metrics
may have common deficits that have not yet been
discovered.)

3 Optimize Metrics and Translations

The analysis of the MRT training process allows us
to understand the impact of each metric on transla-
tion quality. Our goal is both to exploit the advan-
tages of the MRT training approach and to avoid
training collapse due to the robustness deficiencies
of the metrics.

MRT needs to sample many translation sen-
tences in advance, and then use sentence-level met-
rics to predict the scores and calculate the loss. If
the metrics that guide translation training do not
take word-level information into account, the trans-
lation model may ignore details and gradually de-
viate during the training process. Therefore, we
try two methods to constrain the training direction
by introducing word-level constraints: combining
MRT and NLL loss, and doing metrics ensemble.

5433



Figure 4: This figure displays two improvement strategies (<a> metrics ensemble and <b> modifying loss), with
each color representing a different training approach. The figure is divided into seven groups from left to right,
representing the range of change in each metric after training with a particular approach. For instance, the green
bar represents the impact of utilizing BLEURT to guide translation model training in MRT, where only BLEURT
improves while the other metrics decline significantly (we only display the range of -20% to 20% ), which is
consistent with the previous charts.

3.1 Combine MRT and NLL Loss

3.1.1 Experiments
We take the fine-grained word-level similarity as a
part of the objective function by incorporating the
NLL loss, which computes the log loss for each
token. We set the hyperparameter λMRT to control
the weights. The formula is as follows:

L = λMRT ∗ LMRT + (1− λMRT ) ∗ LNLL

(2)

We take the MRT training effect of the transla-
tion model optimized with BLEURT on En⇒De
as an example to conduct experiments.

3.1.2 Results
The results are shown in Figure 4 (b). As can be
seen, as the proportion of NLL loss increases, the
decreasing trend of the remaining metrics gradually
disappears.

The optimal result can be achieved when
λMRT = 0.6 or 0.4. At this point, unsupervised
metrics remain stable, and supervised metrics show
an increase. This indicates that combining MRT
and NLL loss can improve the training effect of

the translation model. For a fair comparison, we
also check the results at the beginning of the opti-
mization when using only MRT (before the train-
ing collapses). At this point, the improvement
in BLEURT, COMET and UniTE is more obvi-
ous, but accompanied by a decrease in BLEU and
BERTScore. This suggests that the inclusion of
NLL loss can make training more stable and more
balanced across all metrics.

3.2 Metrics Ensemble

3.2.1 Experiments

Supervised metrics focus more on high-level se-
mantic similarity and are considered to have a
higher correlation with human evaluation (Kocmi
et al., 2021); while unsupervised metrics using
word-level information are relatively stable and
can ensure fine-grained text similarity 11.

We do an ensemble of different metrics in the
hope that the integrated metrics can complement
each other and integrate the advantages of different

11Note that although BARTScore is an unsupervised metric,
it calculates the overall probability of sentence generation and
still focuses more on sentence-level information.
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metrics. Then the ensemble metric is applied to
MRT training on En⇒De.

3.2.2 Results
Supervised and Unsupervised Metrics Ensem-
ble. As can be seen in Figure 4 (a), optimizing
BERTScore alone does not change the remaining
metrics much, while only optimizing BLEURT re-
veals robustness problems. However, optimizing
the ensemble of BERTScore and BLEURT works
well: not only does it preserve the performance of
the unsupervised metrics as much as possible, but it
also leads to significant improvements in COMET
and UniTE.

Supervised Metrics Ensemble. In addition,
combining two sentence-level supervised metrics
can also provide a boost, as the fifth column of Fig-
ure 4 (a) shows the effect of integrating BLEURT
and COMET. Compared to optimizing only a single
metric, we find that the ensemble metric can build
on the strengths of both metrics. While maintaining
the scores of unsupervised metrics, it can further
improve supervised metrics. COMET and UniTE
all improve about 14.5%, which is an increase of
about 7 points. We suggest that this may be due to
the fact that different metrics have different criteria
for evaluating translation quality, and the robust-
ness deficiency of one metric can be compensated
by other metrics.

3.3 Method Validity Analysis
Avoid High-Frequency Decoding Sentences.
We compare the entropy of decoded sentence fre-
quencies on the En⇒De test set for the translation
model trained with single or ensemble metrics. As
shown in Table 6, the entropy is lower for the model
trained with only BLEURT because it decodes a
large number of identical sentences. While the fre-
quency entropy for models trained with ensemble
metrics is similar to that of the gold translations,
indicating that the phenomenon of high-frequency
decoded sentences disappears.

Comparison to MBR Decoding. Minimum
Bayes Risk (MBR) decoding can also get transla-
tions with metric style (Freitag et al., 2022; Müller
and Sennrich, 2021). Both MRT and MBR add
some computational cost because they need to sam-
ple candidate translation sentences. However, MRT
is a training process that can quickly generate trans-
lations at test time once the model has finished
training. MBR, on the other hand, is a decoding

System Entropy

Ref 11.55
Hyp (Only BLEURT) 6.58

Hyp (BLEURT + BERTScore) 11.55
Hyp (BLEURT + COMET) 11.55

Table 6: The entropy of decoded sentence frequencies
on the En⇒De test set. Ref is the gold translation. Low
entropy means that the translation model is damaged
and decodes many identical sentences.

process, which requires more time for each decod-
ing. Therefore, from an application point of view,
MRT is more efficient.

4 Related Work

Automatic Metrics Traditional metrics for ma-
chine translation evaluation including BLEU
(Papineni et al., 2002), METEOR (Lavie and
Denkowski, 2009), and chrF (Popović, 2015) are
based on lexical overlap. Embedding-based met-
rics measure the semantic equivalence between the
reference and translation hypothesis by contextual
representation, such as BERTScore (Zhang et al.,
2019), MoverScore (Zhao et al., 2019). Generation-
based metrics formulate the evaluation of text as a
generation task, such as BARTScore (Yuan et al.,
2021) and PRISM (Thompson and Post, 2020). The
basic idea is that high quality text can be generated
with high probability. Learned metrics, such as
BLEURT (Sellam et al., 2020), COMET (Rei et al.,
2020), and the recently proposed UniTE (Wan et al.,
2022) aim to train neural networks to directly pre-
dict human judgements. These supervised metrics
correlate well with human evaluations, but lack
interpretability and robustness studies, which is
explored by this paper.

Minimum Risk Training Shen et al. (2015) pro-
poses the MRT method and confirms its superior-
ity with experiments. Edunov et al. (2017) com-
pares various objective functions and further ver-
ifies that MRT training can enhance translation
quality. Wang and Sennrich (2020) uses MRT to
avoid exposure bias, thus improving translation
quality in out-of-domain settings. The above MRT
work uses BLEU to guide the training of translation
models, but BLEU is not the optimal metric. Our
work uses various cutting-edge metrics to further
improve translation quality. Wieting et al. (2019)
proposes a new metric, claiming its superiority over
BLEU and suitability for MRT training. Our work,
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on the other hand, focuses on the analysis of met-
rics, with MRT serving as a tool to evaluate the
robustness of various metrics systematically.

Metric Defects Analysis There are also some
papers that start to explore the shortcomings of
metrics. Sai et al. (2021) provides perturbation tem-
plates to measure the performance of metrics on
the constructed challenge set, while our work is to
guide the metrics to generate adversarial samples
(universal translations) by themselves. Amrhein
and Sennrich (2022) does a case study on COMET
through MBR decoding, showing that COMET is
insensitive to numbers and named entities. Differ-
ent from a pure case study, our work shows the
tendency of metrics through MRT, and can draw
more typical conclusions. Sun et al. (2022) shows
that PLM-based metrics, such as BERTScore, lack
fairness and exhibit higher social bias than tradi-
tional metrics. Our work analyzes metrics from a
robustness perspective and complements this work.

5 Conclusion

In this paper, we present the first systematic anal-
ysis of automatic metrics from the perspective of
guidance for training machine translation systems.
We find that MRT reveals the robustness deficien-
cies of some metrics, such as universal adversarial
translations of BLEURT and BARTScore, and we
further analyze the underlying causes. In addition,
we explore methods to improve metric robustness,
thus helping to further enhance the performance of
translation systems.

Limitations

First, we find robustness deficiencies in metrics
by comparing the evaluation differences among
metrics. This applies to the case when there are
metrics that do not have the same robustness flaws.
If there are more latent common defects in the
metrics, they cannot be identified by MRT. We
leave this topic for future research.

Second, we use beam search to generate can-
didates during MRT training, but beam search is
also known to have deficiencies. For example,
beam search suffers from heuristic search biases
and shifts statistics away from those of the data
(Eikema and Aziz, 2020). Different decoding meth-
ods may have an impact on the experiment results.
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A Ethics Statement

This paper finds universal adversarial translations
that can be used to attack metrics and lead to se-
curity risks. However, this paper also proposes
methods to improve metric robustness to avoid this
situation.

B Training Duration for MLE and MRT

We list the training duration for MLE and MRT in
Table 8 and Table 9, respectively. Table 8 shows
the number of training epochs, while Table 9 shows
the number of training steps. It can be seen that the
training duration for MRT is much shorter than that
for MLE. The improvement of translation perfor-
mance of the model mainly lies in the MLE stage,
while MRT fine-tuning makes the model inclined
towards specific metrics.

C MRT Training Process Figures

From Figure 5 to Figure 9, we can see how all
metrics change when the translation model is opti-
mized with each metric on different language pairs.
From the trends of different metrics, we can ob-
serve the differences between the metrics and the
impact of the metrics used for optimization on the
translation model.

In each figure, the horizontal axis represents the
training steps, and the vertical axis is the score
of each metric (except for BARTScore on the
right axis, which is a negative number because
it calculates the logarithmic probability of transla-
tions); metrics other than BARTScore and BLEU
are mostly distributed between 0 and 1, and we
multiply them uniformly by 100 for ease of obser-
vation. The asterisk represents the highest value
achieved by the optimized metric.

D MRT Training Process Statistics

Table 10 to Table 14 display the change range in
all metrics when optimizing the translation model
with a specific metric to the highest point across
different language pairs. The results correspond
to figures in Appendix C. 0.00% means that the
optimized metric does not continue to improve, and
the highest value remains the same as the result of
MLE training; a negative number means that the
metric score goes from positive to negative, which
means it decreases a lot.

Examples of Hotel Review Sentences from
WMT14 En⇔De

The location of the hotel was excellent. The
room was clean and comfortable.

The room was clean and comfortable, the ho-
tel was situated close to the center but in the
tourist center. The food was excellent and the
service second to none.

The location of the hotel is great, the atmo-
sphere is quite pleasant, the staff is efficient
and friendly, the room was clean and com-
fortable, the price was fair. In short words,
everything was perfect.

The room was clean and comfortable.

the location of the hotel is ideal for sightsee-
ing,the room was clean and comfortable, the
staff were helpful.

The room was clean and comfortable. Staff
friendly.

the employees were very helpful at all times
the room was clean and comfortable and the
restaurant was very nice.

The room was clean and comfortable and the
staff friendly and courteous.

This is a great hotel .The room was clean and
comfortable .With small budget but we have
a comfortable stay .Good value, we will rec-
commend this hotel for anyone looking for a
hotel in Hanoi .

Table 7: Examples of Hotel Review Sentences from
WMT14 En⇔De.

E High Frequency Samples

Table 7 displays some hotel review examples in
the WMT14 En⇔De dataset, and the semantics are
very similar to universal translations of BLEURT
on En⇒De. For ease of understanding, English is
shown here.
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En⇒De De⇒En En⇒Zh Zh⇒En En⇒Fi Fi⇒En

MLE 33 28 32 40 55 36

MRT

BLEU 1 1 1 1 1 1
BERTScore 1 1 1 1 1 1
BARTScore 1 1 1 1 1 1

BLEURT 4 1 1 1 1 1
COMET 1 1 1 1 1 1

UniTE_ref 1 1 1 1 1 1
UniTE_src_ref 1 1 1 1 1 1

Table 8: Comparison of the number of epochs trained by MLE and MRT. The number of epochs for MLE is the
epoch number trained until early stop, while the number of epochs displayed in MRT is the epoch number when the
model is optimized to the highest metric score.

En⇒De De⇒En En⇒Zh Zh⇒En En⇒Fi Fi⇒En

Steps in one epoch 2403 2127 7927 7929 10906 10910

MLE 163000 61000 51000 64000 126000 40000

MRT

BLEU 0 50 0 200 100 50
BERTScore 100 50 250 200 250 300
BARTScore 1950 1900 1800 1450 1050 550

BLEURT 5750 100 3500 550 1400 250
COMET 550 450 500 550 800 300

UniTE_ref 400 650 750 750 600 600
UniTE_src_ref 600 350 700 500 800 550

Table 9: Comparison of training steps between MLE and MRT. The number of steps for MLE is the number of
steps trained until early stop, while the number of steps displayed in MRT is the number of steps when the model is
optimized to the highest metric score.

Figure 5: The training process of MRT optimized by each metric on En⇒De.

Figure 6: The training process of MRT optimized by each metric on De⇒En.
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Figure 7: The training process of MRT optimized by each metric on En⇒Zh.

Figure 8: The training process of MRT optimized by each metric on En⇒Fi.

Figure 9: The training process of MRT optimized by each metric on Fi⇒En.

Optimized Metric Change Range of Metrics During MRT on De⇒En
BLEU BERTScore BARTScore BLEURT COMET UniTE_ref UniTE_src_ref

BLEU 0.96% -0.03% -0.32% -0.06% 0.04% 0.14% 0.41%
BERTScore 0.00% 0.12% -0.07% 0.05% 0.65% 0.93% 1.04%
BARTScore -99.68% -154.39% 39.02% -76.08% -547.63% -466.31% -608.53%

BLEURT -1.27% -0.50% -0.91% 0.36% 2.58% 2.72% 3.24%
COMET -5.10% -1.23% -2.57% 0.28% 7.41% 5.45% 7.84%

UniTE_ref -16.56% -5.72% -6.71% -0.64% -1.13% 8.49% 8.76%
UniTE_src_ref -9.55% -2.85% -3.96% -0.01% 1.73% 5.57% 7.99%

Table 10: The change range of all metrics when one metric is optimized to the highest value during MRT on
De⇒En.

Optimized Metric Change Range of Metrics During MRT on En⇒Zh
BLEU BERTScore BARTScore BLEURT COMET UniTE_ref UniTE_src_ref

BLEU 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
BERTScore 0.27% 0.88% -0.86% -0.10% 1.55% 0.73% 0.76%
BARTScore -100.00% -155.17% 88.89% -70.57% -495.64% -450.90% -377.30%

BLEURT -96.77% -95.08% 2.40% 28.97% -349.43% -465.65% -472.03%
COMET -5.91% -1.00% 0.46% 0.67% 6.96% 5.27% 6.05%

UniTE_ref -10.48% -2.54% 0.87% 1.03% 4.01% 9.58% 10.66%
UniTE_src_ref -12.63% -2.90% 1.83% 1.07% 3.90% 9.51% 11.34%

Table 11: The change range of all metrics when one metric is optimized to the highest value during MRT on En⇒Zh.
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Optimized Metric Change Range of Metrics During MRT on Zh⇒En
BLEU BERTScore BARTScore BLEURT COMET UniTE_ref UniTE_src_ref

BLEU 0.44% 0.26% 0.10% 0.29% 2.93% 4.32% 4.77%
BERTScore 0.44% 0.80% -0.10% 0.66% 6.05% 8.16% 10.24%
BARTScore -98.02% -126.46% 37.25% -44.95% -620.81% -825.23% -871.23%

BLEURT -7.05% -0.80% -1.86% 1.65% 11.99% 18.67% 20.28%
COMET -7.05% -0.98% -3.12% 0.77% 16.47% 16.50% 17.67%

UniTE_ref -12.11% -2.45% -3.09% 0.61% 10.25% 26.77% 24.30%
UniTE_src_ref -8.81% -3.01% -5.14% -0.16% 11.75% 21.83% 27.31%

Table 12: The change range of all metrics when one metric is optimized to the highest value during MRT on Zh⇒En.

Optimized Metric Change Range of Metrics During MRT on En⇒Fi
BLEU BERTScore BARTScore BLEURT COMET UniTE_ref UniTE_src_ref

BLEU 0.70% 0.12% 0.17% 0.05% -0.03% 0.17% 0.23%
BERTScore -0.70% 0.42% -0.03% -0.21% -0.12% -0.48% -0.21%
BARTScore -100.00% -140.82% 83.08% -75.93% -264.54% -244.66% -241.44%

BLEURT -51.22% -21.42% 1.14% 2.19% -8.02% -10.43% -9.85%
COMET -12.20% -2.58% 0.04% 0.07% 2.03% 0.86% 0.96%

UniTE_ref -14.63% -5.43% 0.76% -0.21% 0.80% 3.00% 3.02%
UniTE_src_ref -19.51% -8.57% 0.74% -1.05% 0.05% 2.69% 3.11%

Table 13: The change range of all metrics when one metric is optimized to the highest value during MRT on En⇒Fi.

Optimized Metric Change Range of Metrics During MRT on Fi⇒En
BLEU BERTScore BARTScore BLEURT COMET UniTE_ref UniTE_src_ref

BLEU 0.52% 0.01% -0.01% 0.02% 0.09% 0.01% 0.15%
BERTScore -1.84% 0.13% -0.91% 0.02% 0.58% 0.20% 0.55%
BARTScore -7.87% -2.04% 1.20% -1.34% -2.63% -2.97% -2.99%

BLEURT -3.67% -0.58% -2.22% 0.29% 0.98% 1.30% 1.25%
COMET -2.62% -0.46% -1.92% 0.11% 1.53% 1.12% 1.39%

UniTE_ref -10.50% -2.88% -6.33% -0.68% -0.55% 2.39% 1.25%
UniTE_src_ref -6.30% -1.26% -3.53% -0.26% 0.53% 1.73% 2.05%

Table 14: The change range of all metrics when one metric is optimized to the highest value during MRT on Fi⇒En.
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