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Abstract

One of the major challenges of machine trans-
lation (MT) is ambiguity, which can in some
cases be resolved by accompanying context
such as images. However, recent work in mul-
timodal MT (MMT) has shown that obtaining
improvements from images is challenging, lim-
ited not only by the difficulty of building ef-
fective cross-modal representations, but also
by the lack of specific evaluation and training
data. We present a new MMT approach based
on a strong text-only MT model, which uses
neural adapters, a novel guided self-attention
mechanism and which is jointly trained on
both visually-conditioned masking and MMT.
We also introduce CoOMMUuTE, a Contrastive
Multilingual Multimodal Translation Evalu-
ation set of ambiguous sentences and their
possible translations, accompanied by disam-
biguating images corresponding to each transla-
tion. Our approach obtains competitive results
compared to strong text-only models on stan-
dard English—French, English—German and
English—Czech benchmarks and outperforms
baselines and state-of-the-art MMT systems by
a large margin on our contrastive test set. Our
code! and CoOMMuTE? are freely available.

1 Introduction

Multimodal machine translation (MMT) typically
refers to the use of additional non-textual data in
text-based machine translation (MT). Here, we fo-
cus on the case where source texts are accompanied
by images, the idea being to exploit visual data to
improve the translation of ambiguous sentences.
For example, in Figure 1, the English word glasses
can either be translated as French verres ‘drink-
ing vessels’ or lunettes ‘spectacles’, an ambiguity
which is resolved using the image.

A main research direction of MMT has been how
to best exploit image representations and combine

"https://github.com/MatthieuFP/VGAMT
Zhttps://github.com/MatthieuFP/CoOMMuTE
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Figure 1: Visual context resolving the ambiguity of
English word glasses for English-to-French translation.

the image and text modalities (Yin et al., 2020;
Caglayan et al., 2021; Calixto et al., 2017; Li et al.,
2022). It has typically been difficult to surpass
strong text-only baselines, the image modality of-
ten being ignored (Wu et al., 2021). A major issue
holding back progress is that most current state-
of-the-art MMT models (Yin et al., 2020; Elliott
and Kadar, 2017; Wu et al., 2021; Li et al., 2022)
are trained solely on the ~30k examples of the
Multi30k dataset (Elliott et al., 2016), comprising
image captions and their translations. This causes
two issues: (i) the models do not exploit the large
amount of text-only data available and therefore
perform poorly in comparison to state-of-the-art
text-only MT systems, and (ii) we show that very
few examples require images to be correctly trans-
lated, which means that the datasets are ill-adapted
to evaluating the use of the image modality.

In this article, we aim to overcome these prob-
lems by proposing (i) a new MMT approach that
is able to exploit (text-only) monolingual and par-
allel data as well as (multimodal) captioning data,
and that reaches a good balance between main-
taining high MT quality and effectively exploiting
images, and (ii) a test set, CoOMMuTE, containing
contrastive evaluation pairs, where images provide
the necessary context to disambiguate between mul-
tiple meanings of the same source sentence.

Our suggested model is inspired by work on
adapting frozen language models (LMs) to multi-
modal inputs (Sung et al., 2022; Yang et al., 2022;
Eichenberg et al., 2021; Pfeiffer et al., 2022); we
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propose to adapt a strong MT model to multimodal
inputs with lightweight modules (Houlsby et al.,
2019) to exploit the large amount of textual data it
was trained on. We also propose to better exploit
the image by introducing guided self-attention and
by combining the standard MMT objective with a
visually-conditioned masked language modelling
(VMLM) objective (Li et al., 2019; Lu et al., 2019;
Su et al., 2020). Our model obtains competitive
results compared to strong text-only baselines on
standard En— {Fr,De,Cs} MMT benchmarks (El-
liott et al., 2016, 2017; Barrault et al., 2018) and
outperforms them and state-of-the-art MMT mod-
els on our lexically ambiguous contrastive test set.>

2 Related Work

Multimodal MT data. The reference dataset to
train and evaluate MMT models is Multi30k (EI-
liott et al., 2016). However, recent work has shown
that most MMT systems trained and evaluated on
it do not effectively exploit the image information;
Elliott (2018) showed that replacing the ground
truth image with a random one does not lead to the
drop in performance that would be expected, while
Wu et al. (2021) argued that the observed gain in
performance was due to a regularisation effect. It is
also notoriously difficult to beat text-only baselines
on this benchmark (Barrault et al., 2018). This
may be due to (i) some subsets of Multi30k hav-
ing been translated independently from the images
(Elliott et al., 2016) and (ii) most of the time, the
source text being sufficient in theory to produce a
perfect translation (i.e. the image is not necessary;
see Section 5.2 for our own analysis).

Based on this, alternative test sets and evalua-
tion methods have been proposed. Caglayan et al.
(2019) proposed to probe the use of images in
MMT models, while Li et al. (2021) proposed an-
other training corpus and evaluation benchmark
to evaluate MMT systems, but their work is only
based on gender ambiguity and requires specific
training data to train MMT models. Lala and Spe-
cia (2018) released a lexically ambiguous MMT
evaluation dataset to evaluate models ability to dis-
ambiguate source sentences, but we found that text
context is generally sufficient to translate the evalu-
ation dataset correctly.

3CoMMUuTE initially contained 50 lexically ambiguous
sentences in a previous version of the paper. Results are now
computed on the updated version of COMMUTE comprising
155 ambiguous sentences. Conclusions remain the same.

Contrastive MT datasets. Another means of
evaluating (and the one we adopt here) is to tar-
get specific phenomena through the use of con-
trastive test sets. They involve evaluating mod-
els based on their ability to rank pairs of transla-
tions, where one is correct and the other incorrect.
They have been used for the evaluation of differ-
ent linguistic phenomena, including grammaticality
(Sennrich, 2017), multi-sense word disambiguation
(Rios Gonzales et al., 2017; Raganato et al., 2019),
pronoun translation (Miiller et al., 2018; Bawden
et al., 2018; Voita et al., 2019) and lexical coher-
ence/consistency (Bawden et al., 2018; Voita et al.,
2019). Bawden et al. (2018) introduced the idea
of conditioning which of the translations is correct
depending on linguistic context, and we adopt the
same strategy here with our CoOMMUuTE dataset,
composed of lexically ambiguous sentences whose
translations are determined by the visual context.

Adapting pretrained LMs to multimodal inputs.
A lot of progress has been made through the use
of pretrained LMs (Devlin et al., 2019; Conneau
and Lample, 2019; Liu et al., 2020), often trained
on raw text for text-only models or image caption-
ing data for multimodal ones (Radford et al., 2021;
Alayrac et al., 2022; Chen et al., 2022). One of the
most efficient ways to learn multimodal LMs is the
visually-conditioned masked language modelling
(VMLM) objective (Chen et al., 2020; Lu et al.,
2019; Su et al., 2020; Li et al., 2020; Zhou et al.,
2021; Huang et al., 2021a; Li et al., 2019). Inspired
by the masked language modelling (MLM) objec-
tive (Devlin et al., 2019), it consists in randomly
masking input text tokens and predicting them con-
ditionally based on the visual features. A lot of
interest has also been shown in lightweight mod-
ules such as adapters (Houlsby et al., 2019) to adapt
large frozen LMs to multimodal tasks (Eichenberg
et al., 2021; Yang et al., 2022; Pfeiffer et al., 2022;
Tsimpoukelli et al., 2021; Sung et al., 2022) in
order to avoid catastrophic forgetting (De Lange
et al., 2021). Based on these approaches, we pro-
pose to adapt a strong text-only MT model with
lightweight modules in order to exploit the large
amount of data it previously learned.

Which type of visual features in MMT systems?
In terms of how images are represented in mul-
timodal models, different strategies exist. Many
works first proposed to incorporate global visual
features from object recognition models pretrained
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Figure 2: Overview of our approach, multimodal MT (MMT) (left) and visually-conditioned masked language
modeling (VMLM) (right) objectives. We train VGAMT on both objectives jointly.

on ImageNet (Deng et al., 2009), such as ResNet50
(He et al., 2016), either in the form of a single
vector or a set of features (Calixto et al., 2017; El-
liott and Kadar, 2017; Calixto and Liu, 2017; Yao
and Wan, 2020; Helcl et al., 2018). More recent
global features extractor such as CLIP (Radford
et al., 2021) exist, but to our knowledge have not
been used in MMT models. Extending this idea,
other works focused on entities in the image and
extracted bounding boxes using a pretrained Faster
R-CNN (Ren et al., 2015) in order to introduce
more semantic visual information into MT (Gron-
roos et al., 2018; Ive et al., 2019; Caglayan et al.,
2021). Recent efforts have been made to only select
parts of the image that are relevant to the transla-
tion of the sentence. Some proposed to use a more
selective attention mechanism between modalities
(Liu et al., 2021; Ye et al., 2022), while others
suggested extracting other types of visual features
(Huang et al., 2021b; Fang and Feng, 2022). Based
on this, Yin et al. (2020) decided to exploit local
image-text correspondences in their model Graph-
MMT. Similar to their approach, we use a simpler
method to extract relevant visual features, using
the output queries from a state-of-the-art free-form
text object detector MDETR (Kamath et al., 2021)
as our local visual features (in addition to global
features from CLIP).
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Figure 3: Example of an MDETR alignment matrix.

3  Our approach: VGAMT

The two main aims of our approach are to (i) ex-
ploit a maximum available data (not just multi-
modal parallel text data) and to (ii) provide an
effective way to combine image and text modal-
ities. Our approach, shown in Figure 2, consists in
taking a strong text-only MT model* and adapt-
ing it to multimodal MT. To adapt this strong
text-only model to multimodal inputs, we add
several lightweight modules—bottleneck adapters
(Houlsby et al., 2019) and linear visual projection
layers—to the otherwise frozen initial model. The
bottleneck adapters are lightweight linear layers
introduced after each attention block and each feed-
forward layer to project embeddings down before
projecting them up.

In terms of representing visual information, we
choose to use two types of representation. We
concatenate local (MDETR) features and global

*In practice, our starting point is mBART, which we fine-
tune on a large parallel corpus (see Section 5 for more details).

5396



(CLIP) features to the text inputs. We choose to
use global features too, since the source sentence
can describe more general aspects of the image
than mere objects (such as scenes). We jointly train
the non-frozen parts of our model on two distinct
objectives: multimodal MT (MMT) and visually-
conditioned masked language modelling (VMLM),
as described in Section 3.1. We also introduce a
guided self-attention to exploit image information
in a straightforward manner (see Section 3.2) in the
encoder (while the decoder uses regular self- and
cross-attentions and can only attend to embeddings
related to text positions). We call our approach
Visually Guided and Adapted Machine Translation
(VGAMT).

3.1 Combining training objectives

As shown in Figure 2, we jointly train VGAMT on
two objectives: visual masked language modelling
(VMLM) and multimodal MT (MMT). VMLM
(resp. MMT) consists in predicting masked tokens
(resp. translating the sentence) conditioned on the
image.’ The use of the VMLM objective in addi-
tion to MMT ensures that the model does not learn
to ignore the visual inputs when translating (since
Multi30k is mainly composed of very standard and
unambiguous parallel sentences). We make sure
to mask a high percentage (25%) of the text inputs
so that the model is forced to attend to the image
when producing translations.

3.2 Guided self-attention

The backbone of VGAMT is an encoder-decoder
MT model, in which image features are concate-
nated to textual input embeddings and shared self-
attention is used over the two input modalities
(see Figure 2). Instead of using full self-attention
(Caglayan et al., 2021) (connections between all im-
age parts and all text tokens), we introduce guided
self-attention. Guided self-attention consists in
masking irrelevant connections between text and
image representations; each text (resp. image) em-
bedding can attend to itself and all other text (resp.
image) positions, but can only attend to image (resp.
text) positions conditioned on pre-extracted text-
image alignments. We obtain these alignments (in
the form of a cross-modal correspondence matrix)
using MDETR (Kamath et al., 2021), which detects
image regions and corresponding text spans based

SDuring training, we randomly draw batches from a paral-

lel multimodal dataset (for MMT) and a monolingual multi-
modal one (for VMLM) with equal probability.

on a free-form text (see Figure 3 and Appendix B
for more details).

Concretely, let Q, K and V denote the learn-
able query, key and value parameters of a stan-
dard self-attention mechanism. Attention can be
defined as Attention(Q, K,V) = A -V, where
the attention matrix A = (a;;) is defined as
A = softmax (QKT/\/dy), where dj, is the di-
mension of the key vector, i.e.:

eQiK]T/\/CTk

S, QT IV 1

aij =

The idea behind our guided self-attention mech-
anism is that we want to allow subwords to attend
to all subwords, all bounding boxes to attend to
all bounding boxes, but to only allow cross-modal
attention between a subword and bounding boxes
that are linked by MDETR (see Figure 3). We
therefore define a binary masking matrix C' = (c¢;;)
where (i) ¢;; = 1 if indices ¢ and j correspond to
embeddings coming from the same modality, and
(i1) ¢;; is provided by the MDETR matrix other-
wise: it is 1 if MDETR has created a link between
subword (resp. bounding box) ¢ and bounding box
(resp. subword) j. Once this guiding matrix C' is
defined, we can replace the standard attention (1)
with our guided attention:

T /
CijeQZKj/ dk

S, @Kl Vs @

CLij =

The main advantage of guided self-attention over
full self-attention is that the model does not have
to learn to ignore irrelevant text-image correspon-
dences since alignments are introduced as a prior.

4 Contrastive Multilingual Multimodal
Translation Evaluation (CoMMuTE)

To overcome the flaws of existing benchmarks
(see Section 5.2), we introduce CoMMuTE, a Con-
trastive Multilingual Multimodal Translation Eval-
uation dataset®. It is composed of 155 lexically
ambiguous sentences in English, each associated
with two translations corresponding to two of the
possible meanings of each sentence and two images
that determine which of the translations is correct.
It covers English—French, English—German and
English—Czech. An example is given in Figure 4.

SCoMMUTE is distributed under Creative Commons Attri-
bution Share Alike 4.0 International license.
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Data collection. The test set contains 155 am-
biguous sentences constructed around 155 lexically
ambiguous words: 29 of the examples are from
Bawden et al. (2018), and we created the remaining
ones.” We collected two images for each sentence
under Creative Commons license (either Google
Images or our own photos), so that the image illus-
trates without ambiguity one of the two meanings
of the sentence. We do not restrict the image-text
relation to be strictly descriptive (as for image cap-
tions) in order to have a more general evaluation
dataset. Each sentence was translated into two pos-
sible translations (each corresponding to one of the
images) by a native speaker of the target language.
Appendix A provides some basic statistics.

The idea of COMMUTE is to use MMT models to
rank each of the two translations based on image in-
formation. The perplexity of a sentence for a given
model is defined as: PPL,(y) = Hfil q(yi)_%,
where ¢ is the probability distribution output by the
model, N is the sequence length and y1, ..., yn is
the sequence of tokens. Now, let y1, ..., yn, be the
sequence of tokens of the correct translation and
Y1, - - - Yy, the sequence of tokens of the incorrect
translation, a model makes a correct prediction if
PPLy(y) < PPLy(y'). i.e. the model considers
the correct translation more likely than the incor-
rect one. For each example, we rank each of the
translations based on each of the images (2 compar-
isons per example), and report the accuracy over all
the examples. As CoOMMUTE is perfectly balanced,
a text-only model will get exactly 50% accuracy
on this task.

En—Fr En—De En—Cs
size  #sents. size  #sents. size  #sents.
OpenSubtitles  2.2GB  24.2M 1.2GB 13.IM 22GB 24.7M
Ted Talks 108MB 535K 83MB 414K 30MB 158K
Books 29MB 119K 12MB 47K -
Wikipedia 187MB 769K  493MB 22M 3.2MB 19K
Total 25GB  25.6M 18GB 158M 22GB 249M

Table 1: Parallel corpus sizes.

5 Experiments

5.1 Text-only data

All our experiments are based on the strong MT
model mBART® (Liu et al., 2020), which we fine-
tune on parallel text (see Table 1). We use Open-

"We could not take the entirety of the examples in (Bawden
etal., 2018) as some examples were not adapted to disambigua-
tion using visual (as opposed to linguistic) context.

SmBART is pretrained on CC25 (Wenzek et al., 2020).

N L

We’ll have to get rid of that mole.

I I Il va falloir enlever ce grain de beauté.

I I Il va falloir se débarrasser de cette taupe.

Figure 4: Example from CoMMuTE. The English word
‘mole’ can refer either to ‘a small dark, raised lump on
a the skin’ (1) or ‘a small burrowing mammal’ (2).

Subtitles2018° (Lison et al., 2018), Wikipedia
(Wotk and Marasek, 2014), Ted Talks (Reimers and
Gurevych, 2020) and the Books datasets (Tiede-
mann, 2012). We preprocess the data using Moses
scripts (Koehn et al., 2007).10

5.2 Multimodal data

Test2016  Test2017 MSCOCO
21 (2.1%) 20 (2%) 6 (1.3%)

Ambiguous (%)

Table 2: Number (and percentage) of ambiguous exam-
ples in the En—Fr test sets.

Multi30k. We train our frozen MT model on the
Multi30k dataset (Specia et al., 2016; Elliott et al.,
2016) composed of English sentences, each ac-
companied by an image and French, German and
Czech translations. It contains 29K train, 1014 dev
and 1000 test examples (Test2016). Elliott et al.
(2017) and Barrault et al. (2018) released two ad-
ditional related test sets (Test2017 and Ambiguous
Coco). However, on analysis of these sets and as
shown in Table 2, we found that very few exam-
ples are image-dependent (i.e. the source sentence
is ambiguous and the image is required to solve
the ambiguity in the target language),'! meaning
that an MMT system is unlikely to perform better
than a text-only system. Moreover, most of these
ambiguities are semantically similar and they only
cover a few multi-sense words. Although Ambigu-
ous Coco (Elliott et al., 2017) is designed to be an

9ht’cp: //www.opensubtitles.org

l0remove—non-printing—char. pl, normalization-
punctuation.pl, and clean-corpus-n.pl (4-100 tokens).

Uwe queried WordNet (Fellbaum, 1998) for all nouns and
verbs in the English sentences. An example was considered
image-dependent if, on manual assessment, there were multi-
ple meanings, which were (i) compatible with the text context
and (ii) could be disambiguated using the image.
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ambiguous test set as it is built around multi-sense
verbs, it was automatically created from sentences
from MSCOCO (Lin et al., 2014) for which the
textual context is often sufficient for disambigua-
tion. These benchmarks remain useful to make sure
MMT systems do not perform worse than text-only
MT models on examples where images are not nec-
essary to translate correctly. However, we consider
them insufficient to assess how well MMT systems
exploit images to improve translation.

Monolingual multimodal data. For the VMLM
objective, we train our model on the Conceptual
Captions (CC) dataset (Sharma et al., 2018) com-
posed of 3.3M!? images aligned with English text.

5.3 Implementation details

For all our experiments, we use the mBART im-
plementation from Hugging Face (Wolf et al.,
2020). Experiments with adapters used bottleneck
adapters (Houlsby et al., 2019) with a reduction
factor of 8 and ReLU activation (Agarap, 2018).
We use the implementation provided by adapter-
transformers (Pfeiffer et al., 2020). We use a batch
size of 512, the Adam optimiser (Kingma and Ba,
2014) with 81 = 0.9, B2 = 0.99 and a learning rate
of 10~* for En—Fr and 10~° for En—{De,Cs}.
We also applied 0.1 label smoothing (Szegedy et al.,
2016) during training. We selected our final model
according to the best BLEU score (Papineni et al.,
2002) on the Multi30k dev set after at least one full
pass over the Multi30k and Conceptual Captions
training sets. We ran each experiment 3 times with
different seeds and report the average BLEU!? (Pa-
pineni et al., 2002) and COMET (Rei et al., 2020)
scores'* and the standard errors. We also report
METEOR scores (Banerjee and Lavie, 2005) in
Appendix E. All experiments were carried out on 8
NVIDIA V100 GPUs for ~15h.

5.4 Baselines

We consider several text-only and multimodal base-
lines. All baselines except the MT models fine-
tuned from mBART were trained from scratch
with the original codebases and features released
by the papers’ authors. Models trained on the
(multimodal) MT objective only where trained on

2At the time of writing, we were able to collect ~2M
images and trained models on this subset.

Bcomputed with the default parameters of sacreBLEU
v2.0.0 from https://github.com/mjpost/sacrebleu.

14Using the wmt20-comet-da model.

Multi30k, while models jointly trained on the (mul-
timodal) MT and (V)MLM objectives were trained
on Multi30k and Conceptual Captions.

Text-only. We trained a text-only Seq2seq Trans-
former (Vaswani et al., 2017) from scratch and
a text-only Seq2Seq Transformer initialised from
TLM weights (Conneau and Lample, 2019). We
refer to these models as Vanilla MT and TLM +
MT respectively. We also trained several MT mod-
els initialised from pretrained mBART (Liu et al.,
2020) and which we fine-tuned on parallel data (Li-
son et al., 2018; Wolk and Marasek, 2014). We re-
fer to these models as mBART + MT. ‘w/ adapters’
specifies that the model’s weights are frozen except
bottleneck adapters (Houlsby et al., 2019).

Multimodal. We trained several state-of-the-art
multimodal MT models: Graph-MMT (Yin et al.,
2020), Gated Fusion (Wu et al.,, 2021) and a
Seq2Seq Transformer trained from VTLM weights
(Caglayan et al., 2021) (hereafter VTLM + MMT).

5.5 Results and Analysis

N Four bikers are racing on
a course with a crowd in
the background.

FR Quatre motards font une
course sur un parcours
avec une foule en
arriere-plan.

Quatre cyclistes font une course sur un parcours
avec une foule en arriére-plan.

Text-only

Quatre motards font une course sur un parcours
avec une foule en arriere-plan.

VGAMT

Figure 5: Example from Test2017 with English biker,
translated as French ‘cycliste’ (cyclist) or ‘motard’ (mo-
torcyclist). VGAMT succeeds where the baseline fails.

Tables 3 and 4 show BLEU, COMET and accu-
racy scores for all models compared on several
En— {Fr,De,Cs} test sets including CoMMuTE.
An initial observation is that the text-only model
is a strong baseline on the three standard bench-
marks (Test2016, Test2017 and MSCOCO). As
mentioned in Section 5.2, most of these evaluation
datasets do not need visual context to be correctly
translated. Our model VGAMT is on average on
par with its counterpart text-only mBART+MT w/
adapters baseline for all Multi30k En—Fr test sets,
while being on average just below this baseline
on En—{De,Cs} Multi30k benchmarks. It outper-
forms other MMT models with a large margin due
to both the effective use of textual knowledge from
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En—Fr

# trainable Test2016 Test2017 MSCOCO CoMMuTE
Model Objectives params BLEU COMET BLEU COMET BLEU COMET Accuracy
Text-only Machine Translation
Vanilla MT* NMT 4.0M 59402 0.711 20004 51.6+02 0.568 +0.009 41.2 04  0.403 £0.005 50.0
TLM + MT* NMT 42M 62.0 0.1  0.795 0002 54202 0.681 0002 43.602 0.542 +0.009 50.0
mBART + MT* - - 49.0 0.819 48.1 0.779 47.0 0.733 50.0
mBART + MT* w/ adapters NMT + MLM 12.6M 67.2:03 0.971:0005 61.5+03 091820004 51.5207 0.832 +0.006 50.0
Multimodal Machine Translation
Graph-MMT* MMT 4.0M 58.9x05 0.705 0004 51.5:02 0.589 +0.005 41.020.6 0.387 £0.013 50.2 +3.5
Gated Fusion* MMT 2.8M 58703 0.707 0002  50.8 0.7  0.580 z0.011  40.4 04  0.394 +0.013 50.0 0.8
VTLM + MMT* MMT 44M 61.4 02 0.783 0005 53.6+0.1 0.672 0005 43.4x03 0.500 +0.006 50.1 0.3
VGAMT (ours) MMT + VMLM 13.2M 67.20.1 0968 0002 61.6 x0.1  0.921 x0.002 51.1 206  0.811 £0.003 67.1 0.7
En—De
Text-only Machine Translation
Vanilla MT* NMT 4.1M 385103 0.394:0005 30.3+05 0.259=x0012 27.8x04 0.092 +0.018 50.0
TLM + MT* NMT 42M 40.0 02  0.457 0006 31.5x0.1  0.341 20002 29.4 03 0.152 £0.015 50.0
mBART + MT* - - 36.2 0.595 32.3 0.506 27.6 0.383 50.0
mBART + MT* w/ adapters NMT + MLM 12.6M 43.6 02 0.697 0003 38905 0.664 0002 36.2:02  0.574 +0.004 50.0
Multimodal Machine Translation
Graph-MMT* MMT 4.1M 38.6+03 0.368 x0.011  29.0205 0.22620010 259108 0.060 £0.027 49.1 £15
Gated Fusion* MMT 2.8M 38702 0.378 £0.007 29.5x02 0.236 0018 26.603 0.055 +0.016 49.7 0.6
VTLM + MMT* MMT 44M 39.4:02 0.439x0004 30.7+02 0.3220005 282202 0.168 +0.014 50.0 0.2
VGAMT (ours) MMT + VMLM 13.2M 43302  0.694 0003 38.3x02 0.653 0005 35.7:03 0.544 0.006 59.0 0.5

Table 3: Results for En—{Fr,De} (average of three runs). The best result is indicated in bold. * means the results
were retrained by using the original codebase provided by the authors of the paper.

the frozen MT model but also guided self-attention.
Note that the scores reported for the baselines are
lower than the ones reported in the original pa-
pers of the models for several reasons. First, we
computed the scores on fully detokenised data to
have a uniform evaluation between all models. We
also report the average score from three different
runs using different seeds and not the best score
obtained over a single run.

More importantly, our VGAMT obtains strong
improvements over both text-only baselines and
state-of-the-art MMT systems on CoOMMuTE; our
model can use visual context to disambiguate sen-
tences. This can be seen in Figure 5 (one of the

SF= That’s lots of bucks!

D 1 Il'y a beaucoup de cerfs ! 2.763

Cela fait beaucoup de dollars ! 3.436 4

D 1 Cela fait beaucoup de dollars ! 1.410 v
Il'y a beaucoup de cerfs ! 6.315

Figure 6: VGAMT Perplexity scores on a CoOMMuTE
example, illustrating that it is able to correctly rank each
of the French translations of ambiguous English bucks
‘male deer or dollars’ when conditioning on the image.

En—Cs
Test2016 Test2018 CoMMuTE
Model BLEU COMET BLEU COMET Accuracy
Text-only Machine Translation

Vanilla MT* 313200 0.593 20008 26.0x02  0.379 £0.008 50.0
TLM + MT* 32.620.1  0.64220002 26.8+02 0.432 £0.006 50.0
mBART + MT*  32.1 0.865 29.6 0.747 50.0

w/ adapters 37301 0.940 0005 35.2:04  0.876 +0.002 50.0

Multimodal Machine Translation

Graph-MMT* 30.8 04 0.562 20011 249105 0.344 x0.011 49.2 418
Gated Fusion* 30.8 204  0.560 20014 25.8+0.1  0.342 £0.008 51.0+19
VTLM + MMT* 320203 0.621 20010 26.7+02 0.419 0015 50.0 203
VGAMT (ours)  37.6:02 0.934 20004 34.2:0.1  0.833 0.003 55.6 <08

Table 4: Results for En—Cs (average of three runs).
Same formatting as for Table 3.

ambiguous examples from Multi30k), where in con-
trast to the baseline VGAMT produces the correct
translation and Figure 6 (from CoMMuTE), where
VGAMT correctly ranks the two translations. More
examples are provided in Appendix D. We also pro-
pose to translate CoOMMUTE source sentences and
compare against the reference translations; the re-
sults are shown in Appendix F.

6 Ablation Study

To better understand the role of VGAMT’s com-
ponents, we carry out several ablations for En—Fr
and report all results in Table 5.

Adapters versus Fine-tuning. We compare the
results of fine-tuning an unfrozen VGAMT model
(w/o adapters) in comparison to our frozen model
with adapters (VGAMT), all other things remain-
ing equal. The unfrozen version faces a drop in
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Test2016 Test2017 MSCOCO CoMMuTE
Model BLEU COMET BLEU COMET BLEU COMET Accuracy
Text-only Machine Translation

mBART + MT* w/ adapters 67.2+03 097120005 61.5+03 09180004 51.5207 0.832 +0.006 50.0

w/o MLM objective 67.7+03 0.970x0004 615201 0.926 +0.004 50.3 +04 0.821 +0.002 50.0
Multimodal Machine Translation

VGAMT (ours) 67.2+0.1  0.968 +0.002 61.6 0.1  0.921 0002 51.1 0.6 0.811 +0.003 67.1 0.7
unfrozen w/o adapters 66.9+0.7 0.965+0.003 61.406 0.912+0009 50.3+07 0.814 +0.011 60.5 +3.8
w/o VMLM objective 67.7x02  0.976 z0.001 61.4+02 0.920 0003 50.5x00 0.809 +0.004 52.0 x1.2
w/o guided self-attention 67.0=202 0.963 20004 60.803 0.910 0006 50.3 0.5 0.792 +0.004 64.6 +1.6
w/ pretraining (w/o co-training)  66.2 +0.1  0.950 +0.001  59.3 +0.1  0.875 +0.003 49.2 02  0.777 0.001 63.3 0.5
w/o MDETR features 66.7x05 0.967 z0.004 61.1+01 09120002 51.0x06 0.810 +0.003 63.0 1.2
w/o CLIP features 66.4 208 0.959 +0.008 60.4 07 0.909 +0.002 51.0+0.6 0.810 +0.008 50.3 0.0

Table 5: Results of the ablation studies described in Section 6 (En—Fr test set). The best result is indicated in bold.

scores on all test sets except Test2017. Notably, the
unfrozen model’s accuracy score of 60.5 on CoM-
MuTE is 6.6 points lower than our final VGAMT
model. As well as providing a more lightweight
solution that does not involve fine-tuning all pa-
rameters, using neural adapters and freezing other
weights is useful in terms of performance.

Impact of the VMLM objective. To evaluate the
impact of jointly training with MMT and VMLM
objectives, we train a model on the MMT without
VMLM (and therefore without monolingual mul-
timodal data). The MMT model trained on MMT
alone obtains 52.0 on CoOMMuTE, compared to
67.1 for joint training, showing that VMLM helps
our model to better exploit disambiguating images.

Guided self-attention. We study the impact of
guided self-attention between modalities by com-
paring against classic full self-attention. Guided
self-attention obtains better results than full self-
attention, particularly on Test2017 and MSCOCO
(+0.8 BLEU, +0.015 COMET on average). It also
gets better results on COMMUTE (+2.5 points). See
Appendix C for analysis of guided attention scores.

VMLM and MMT joint training. We com-
pare our VMLM and MMT joint training with dis-
joint training where VGAMT is first pretrained on
VMLM then fine-tuned on MMT instead of co-
training on both VMLM and MMT. Table 5 shows
that it results in a large drop of performance on
all scores in average including 3.8 points on CoM-
MuTE.

MDETR. We examine the impact of MDETR
features by training a model without them."> The
results without MDETR features are slightly lower

More details are available in Appendix B.

than the full model on standard MMT benchmarks.
However, the results are significantly lower on
CoMMUTE (63.0+1.2 without MDETR features
and 67.1+£0.7 with MDETR features). This means
that VGAMT benefits from MDETR features when
disambiguating and translating sentences.

CLIP. We also study the impact of CLIP features
by training a model without them.!> Including
CLIP features gives slightly higher results on stan-
dard MMT benchmarks (+0.69 BLEU and +0.007
COMET scores on average on all benchmarks).
VGAMT without CLIP features faces an extreme
drop on CoMMuTE (50.3+0.00 w/o CLIP features
vs. 67.1+0.7 w/ CLIP features), which shows that
CLIP features are required for disambiguation.

VMLM sampling probability and degree of
masking. We ran experiments to vary the VMLM
sampling probability (see Section 3.1) and the per-
centage of masked text inputs (see Figure 7 for
results on COMMuTE). For the sampling between
VMLM and MMT objectives, the maximum value
is reached for p =50%, i.e. equal sampling between
VMLM and MMT objectives (Figure 7a). Similar
results are obtained for p = 75%, i.e. 3 VMLM
batches for I MMT batch, but the translation qual-
ity is lower. For the percentage of masking, there
is a peak at 25% masked text inputs and a constant
decrease for higher values (Figure 7b).

7 Conclusion

We propose a new MMT approach (VGAMT)
based on (i) adapting a strong text-only MT model
with lightweight adapters and (ii) introducing bet-
ter use of the text and image modalities through
a novel guided self-attention mechanism and joint
MMT and VMLM training. We also introduce
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25% masked text inputs.
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text inputs with fixed 50%
VMLM sampling probability.

Figure 7: CoMMUuTE Results comparing multiple
VMLM sampling probabilities and percentage of
masked text inputs. 95% confidence interval in grey.

CoMMUTE, a contrastive test set designed to test
the use of visual disambiguating context. Results
for En—{Fr,De,Cs} show that VGAMT obtains
competitive results compared with strong text-only
baselines on standard benchmarks and widely out-
performs these baselines and state-of-the-art MMT
systems on CoMMuTE.

Limitations

In this work, we focused on En— {Fr,De,Cs} mul-
timodal MT. At the time of writing, our method
can only be applied for En—X MMT. It is indeed
necessary to have access to a modulated object de-
tector in the source language to extract the features
and the image-text relationship exploited by our
model. This type of modulated object detector is
only available in English for the moment. We leave
the extension of our method to non-English source
languages to future work. Moreover, our method
requires large amount of captioning data to perform
well. It is therefore computationally expensive.
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A CoMMuTE statistics

Some basic statistics of the CoMMUuTE dataset can
be found in Table 6. The source side of the dataset
is always English and two translations of each of
the 155 English ambiguous sentences are provided
in French, German and Czech.

En Fr De Cs

#unique sents. 155 308 300 308
Avg. sent. length 6.54 690 648 5.07
#unique toks 462 679 638 718

Table 6: CoMMUTE statistics.

B Visual features

We use MDETR (Kamath et al., 2021) features as
our local visual features. Concretely, we extract
the set of output queries features of size 64 from
the MDETR decoder and introduce them as input.
In addition, we use CLIP (Radford et al., 2021)
features as our global visual features. More specifi-
cally, we extract the output [CLS] features of size
512 from the ViT (Dosovitskiy et al., 2021) image
encoder used by CLIP and introduced it as input.

C Guided self-attention analysis

We studied the values of the cross-modal part of our
guided self-attention. To do so, we followed the
method proposed by Kobayashi et al. (2020) who
showed that raw attention scores « are meaningless
and instead proposed to conduct analysis on the
normalised attention scores ||a.f||, where « are the
raw attention scores and f is the value vector in
the attention mechanism. Figure 9b shows the
cross-modal part of the guided self-attention map
from the example displayed in Figure 9a where all
the values have been averaged over all heads and
all layers. In this example, the English word fans
‘cooling device or ardent admirer’ is ambiguous
and the two meanings have different translations in
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En — Fr En — De En — Cs
Test2016  Test2017 MSCOCO  Test2016  Test2017 MSCOCO  Test2016  Test2018
Text-only Machine Translation
Vanilla MT* 74.4 £0.1 68.3 0.2 61.5 0.4 55.0+02 46.9 04 45.3 0.3 30.5+0.1  26.5+0.1
TLM + MT* 76.3 +0.1 70.3 0.2 63.4 0.3 56.0 02  48.1 +0.1 46.1 0.2 31.0 0.0  26.6 +0.1
mBART + MT* 68.3 66.8 66.4 52.6 48.3 44.2 30.7 28.1
mBART + MT* w/ adapters  79.9 +03  76.0 0.2 69.5 +0.6 58501  53.9 03 51.7 202 33.802 31.4 02
Multimodal Machine Translation

Graph-MMT* 74.1 204  68.7 05 61.6 20.6 54.4 204  45.7 04 43.2 +0.7 30.1 0.1 26.0 202
Gated Fusion* 73.1+03  67.1 0.5 60.1 0.4 549 +04  46.2 +03 44.2 +0.4 28.8 0.2  25.1 0.1
VTLM + MMT* 75.9+0.1  69.8 +0.1 63.3 202 55.4 0.1  47.7 0.1 45.6 +0.3 30.6 0.1  26.4 0.1
VGAMT (ours) 79.700  75.9 x0.1 68.9 +0.4 58.1+02  53.6 02 51.7 202 33.7+0.1  30.5 0.0

Table 7: METEOR scores for standard En—{Fr,De,Cs} benchmarks (average of three runs). The best result is
indicated in Bold. * means the results were retrained by using the original codebase provided by the authors of the

paper.

French, German and Czech. Given the region-text
couples extracted by MDETR (Figure 9a), only
the token fans can attend to the MDETR region
features. The normalised attention scores of the
embedding of the token fans on these regions are
low in comparison to the scores on the text part
and on the CLIP embedding. On the contrary, all
embeddings can attend to CLIP embedding and
the embedding of the token fans is the one with
the highest normalised attention score with CLIP
embedding.

D Additional examples

¥4 . ‘ 1,‘
- - AII';“’ &

\"‘y

{1 SOUTHERR \

Figure 12 shows examples from CoMMuTE and
the perplexity scores obtained by VGAMT. It is
able to choose the correct translations from En-
glish sentences with the ambiguous words chips,
bugs, red light. Howeyver, it fails to choose the cor-
rect translation in the first case of Figure 12d; the
picture shows a beam ‘ray of light’ and the perplex-
ity of the correct (top) translation with the French
translation rayon is higher than the incorrect (bot-
tom) one with the French translation poutre. Nev-
ertheless, the model gives a lower perplexity to the
sentence with the correct image (1.847) in compar-
ison to the same sentence with the incorrect image
(2.616). So, even if VGAMT is not able to choose
the correct translation in the first case of this ex-
ample, it shows some evidence of being able to
discriminate between the French translation with
the correct image and the same French translation
with the incorrect image. Figures 12e and 12f show
two other similar examples in En—De MT.

In terms of translation (rather than reranking),
Figure 8 shows an example from Multi30k where
our model correctly translates the ambiguous word
while the text-only baseline fails to do so.

EN Two men in uniforms are playing football in the snow.
FR Deux hommes en tenues jouent au football américain
dans la neige. Model Test2016  Test2017 MSCOCO
. . Text-only Machine Translation
Text-only Deux hommes en tenues jouent au football dans la neige.
G . L. mBART + MT* w/ adapters 799 +03  76.0 +0.2 69.5 +0.6
VGAMT  Deux hommes en tenues jouent au football américain wlo MLM objective 803102 763102  68.7 103
dans la neige.
Multimodal Machine Translation
VGAMT (ours) 79.700 759 0.1 68.9 0.4
Figure 8: Example from Test2017’ illustrating how unfrozen w/o adapters 79.8 05  75.8 0.2 68.7 0.6
. . . . . . w/o VMLM objective 80.3 0.1 76.0 x0.1 68.7 0.1
VGAMT is able to exploit visual information to dis- wlo guided self-attention 79601 754202 68403
tinguish between the two types of football (SOCCCI' (1) w/ pretraining (w/o co-training)  79.200  74.3 0.1 67.9 0.2
. . . w/o MDETR features 79.5+03  75.6 £0.1 68.9 0.6
and American football (2) depending on whether British w/o CLIP features 792405 752+03  69.005

or American English is used), whereas the text-only
baseline produces a wrong translation.

Table 8: METEOR scores for the ablations described in
Section 6 (En—Fr). The best result is indicated in bold.
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Cap: The fans were still out of order.

w The

fans

Img: were

still

out

of

MD?TR order
e

(a) English sentence, its associ-
ated image and the region-text
couples extracted by MDETR.

&
0.0

(b) Normalised attention scores from the cross-modal part of our guided self-attention
mechanism. Only the embeddings of the token ‘fans’ can attend to MDETR features. All the
embeddings can attend to CLIP features.

Figure 9: Guided self-attention map for the English sentence The fans were still out of order and its associated
image. The sentence is ambiguous as English fan refers to ‘a cooling device’ or ‘an ardent admirer’. Values are
averaged over all heads and all layers. <eos> refers to the end of sentence token.

E METEOR scores

In order to compare to previous work, we
also provide METEOR scores in Table 7 for
En—{Fr,De,Cs} standard benchmarks. It confirms
that VGAMT obtains competitive results over a
strong text-only baseline on benchmarks where im-
ages are not necessary for translation. METEOR
scores for the En—Fr ablations conducted in Sec-
tion 6 are shown in Table 8.

F Translating CoMMuTE

VGAMT (ours) mBART + MT* w/ adapters

BLEU 322 +17 34.5 +1.4
En—Fr COMET 0.362 +0.048 0.306 0.014
METEOR 48.5 2.1 523 +14
BLEU 29.3 0.6 25.9 0.7
En—De COMET 0.184 +0.024 0.182 +0.007
METEOR 43.0 0.8 41.3+13
BLEU 20.8 0.9 18.3 1.3
En—Cs COMET 0.525 +0.024 0.491 +0.022
METEOR 23.4 +08 22.4 0.7

Table 9: MT Generation results for COMMUuTE. Best
results are indicated in bold.

CoMMUTE is designed as a contrastive test set
to be used for reranking. However, it is possible
to translate the source sentences too and compare
against the reference translations.

Table 9 shows the MT results on CoOMMuTE
comparing VGAMT and the strong text-only base-
line. They may indicate that traditional metrics for
MT task are ill-adapted to evaluating the use of
visual information by MMT models. For instance,
BLEU and METEOR scores for the text-only base-
line are significantly higher than the scores for our
model VGAMT on the En—Fr split whereas our

N L)
71 1S

Ref
11 VZAMT

Source : Hand me that bow.

: Passe-moi ce ruban.
: Donne-moi ce noeud.

Text-only :Donne-moi ce noeud papillon.
Ref : Passe-moi cet arc.

I I VGAMT : Passe-moi l'arg, s'il te plait.
Text-only :Donne-moi ce noeud papillon.

Figure 10: Machine Translation example from CoM-
MuTE. VGAMT is able to exploit visual information to
translate ‘bow’ correctly in the two cases.

VGAMT obtains 67.10 accuracy on the contrastive
evaluation (Table 3). It might be due to the fact
that such metrics are less reliable on small datasets
or that BLEU and METEOR are words matching
metrics and therefore output low scores for syn-
onyms or similar content described differently. On
the other hand, COMET is an embedding-based
metric, which outputs higher scores for synonyms
which may be why VGAMT outperforms the text-
only baseline with this metric; as illustrated by Fig-
ure 10 where VGAMT outputs noeud ‘bow’ which
is a synonym of the reference translation ruban
‘bow’ in that case. That being said, the use of our
contrastive dataset COMMUuTE therefore seems nec-
essary to evaluate how well a MMT model exploits
visual information in order to produce correct trans-
lations instead of relying only on standard metrics
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for MT.

Figure 10 illustrates how VGAMT can translate
ambiguous words correctly by using images, while
mBART + MT (our strong text-only baseline) can-
not. In both cases, the baseline outputs French
noeud papillon ‘bow tie’, while VGAMT produces
the correct translations of bow. Figures 11a to 11f
show the same effect for En— {Cs,De} translations.
Even if VGAMT does not literally translate the
ambiguous word as exemplified by Figure 11b, it
produces a translation with the expected meaning
based on the image; the text-only models were not
able to do so.
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Y

Source : We'll have to get rid of that mole.

ralh~ SIZ< Source : | don't think we should use a brush.
Falhs
Ref : BUd‘? tfeba OdStran't toto w Ref : Ich glaube nicht, dass wir eine Biirste benutzen sollten.
E - VGAMT  : Musime se zbavit toho znaménka. B VGAMT : ich glaube nicht, dass wir eine Biirste benutzen sollten.
Text-only : Musime se zbavit toho znaminka. Text-only : Ich denke nicht, dass wir einen Pinsel benutzen sollten.
Ref - Bude tieba zbavit se tohoto krtka. Ref : Ich glaube nicht, dass wir einen Pinsel benutzen sollten.
. . . VGAMT : Ich glaube nicht, dass wir einen Pinsel benutzen sollten.
E - VGAMT : Musime se zbavit toho krtka. H - Text-only : Ich denke nicht, dass wir einen Pinsel benutzen sollten.

Text-only : Musime se zbavit toho znaminka.

(a) English word mole correctly translated in both cases (b) English word brush correctly translated in both cases

(znaménko ‘skin blemish’ and krtka ‘burrowing mammal’). (Biirste ‘cleaning tool’ and Pinsel ‘object used for painting’).
N L]
=== Source : They checked the seal.
~ 11N
L v :‘ ': Source : First we should fill up the boot.
Ref : Zkontrolovali pe€et’. i
A AT
n h VGAMT : On! ZkontmIoval! &et , Ref : Zuerst mussen Sie den Kofferraum fiillen.
Text-only  : Oni zkontrolovali tu pe€et’. ﬁ I VGAMT  :Zuerst sollten wir den Kofferraum auffiillen.
X . Text-only : Zuerst sollten wir den Stiefel auffullen.
Ref : Zkontrolovali tulené.
- Oni toho tulené provéfili. Ref : Zuerst mussen Sie den Stiefel fiillen.
g h VGAMT . 'p v ﬁ B veamr : Zuerst sollten wir den Stiefel auffillen.
Text-only  :Onizkontrolovali tu pec€et'.

Text-only  :Zuerst sollten wir den Stiefel auffullen.

(c) English word seal correctly translated in both cases (pecet’ (d) English word boot correctly translated in both cases (Kof-
‘official stamp’ and tulené ‘sea mammal’). Sferraum ‘car trunk’ and Stiefel ‘footwear’).

Yy«

B==< Source : Put down your arms.
. . :‘ ': Source  :An animal sitting in a palm.
Ref : Sklonte zbrané. i
n - VGAMT : PoloZte své zbrané. Ref : Ein Tier, das auf einer Palme sitzt.
Text-only : Dejty ruce dolt. n B VGAMT : Ein Tier sitzt in einer Palme.
Text-only : Ein Tier sitzt auf einer Palme.
Ref : PI'I‘ azte. . Ref : Ein Tier, das in einem Handteller sitzt.
] Daam VGAMT  : Dej ruce dolt. ] ™ yGamr : Ein Tier sitzt n einer Handftiche.
Text-only : Dejty ruce dol(. Text-only : Ein Tier sitzt auf einer Palme.

(e) English word arms correctly translated in both cases (zbrané (f) English word palm correctly translated in both cases (Palme
‘weapon’ and ruce ‘parts of the human body’). ‘tree’ and Handfldche ‘anterior aspect of the hand’).

Figure 11: MT examples for different English—Czech and English—German examples from CoMMuTE. For each
one, VGAMT is able to exploit visual information to translate English ambiguous words (underlined and in bold)
correctly in all cases.
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Ef= There are some chips in a bowl. 5= There are still a couple of bugs left.

Il'y a des frites dans un bol. 1.192 Il reste encore quelques bugs. 1.217
il i / il » v/
Il'y a des jetons dansun bol.  1.731 Il reste encore quelques insectes. 2.124

Il'y a des jetons dans un bol.  1.133 J/ 1 Il reste encore quelques insectes. 1.331
ﬂ Ll T y a des frites dans un bol. 1.547 Il reste encore quelques bugs. 1.502

(a) The English word chips refers to ‘french fries” or ‘poker (b) The English word bugs refers to ‘a problem in a computer
chips’. program’ or ‘a small insect’.

N 7] .
a's The beam seems to be moving.

. Le rayon a l'air de bouger. 1.847
n I I Tu ne vois pas le feu rouge ? 1.290 / (N L T e bor e L a0y X
Tu ne vois pas la lumiére rouge ? 1.697 boutre ger. .
E I I Tu ne vois pas la lumiére rouge ? 1.324 / i1 t: p_r:l:)t;eaal'la?rlrdiebzzuifn 1.379
Tu ne vois pas le feu rouge ? 1.325 rayon ger. 2.616

(c) The English phrase red light refers to ‘a traffic signal that (d) The English word beam refers to ‘a ray of light” or ‘a piece
instructs moving vehicles to stop’ or ‘light that is red’. of timber or metal used to support the roof’.

i
LTI g

== Over there by the pen. 5= The tube looks dirty!
nl mmm Dort neben dem Pferch. 3.877 J nl mmm Die U-Bahn sieht dreckig aus! ~ 1.918 J/
Dort neben dem Stift. 12.635 Das Réhrchen sieht dreckig aus! 2.549
Dort neben dem Stift. 4.772 Das Rohrchen sieht dreckig aus! 2.435
) - 2= v [ °sronrcnen cxie v
Dort neben dem Pferch. 8.258 Die U-Bahn sieht dreckig aus!  4.619

(e) The English word pen refers to ‘an instrument for writing or  (f) The English word tube refers to ‘a long cylinder for holding
drawing with ink’ or ‘an area of land surrounded by a fence’.  liquids or gases.” or ‘a railway system in some cities’.

Figure 12: Perplexity scores from VGAMT on different examples from CoMMUuTE. It is possible to produce at least
two different French translations from each source sentence in English, the correct translation therefore depends on
the input image. For each sub-example, the correct (resp. incorrect) translation is the top (resp. bottom) one. The
ambiguous parts of the sentences are highlighted in bold.
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