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Abstract

Discourse analysis is an important task because
it models intrinsic semantic structures between
sentences in a document. Discourse markers
are natural representations of discourse in our
daily language. One challenge is that the mark-
ers as well as pre-defined and human-labeled
discourse relations can be ambiguous when
describing the semantics between sentences.
We believe that a better approach is to use
a contextual-dependent distribution over the
markers to express discourse information. In
this work, we propose to learn a Distributed
Marker Representation (DMR) by utilizing the
(potentially) unlimited discourse marker data
with a latent discourse sense, thereby bridg-
ing markers with sentence pairs. Such repre-
sentations can be learned automatically from
data without supervision, and in turn provide
insights into the data itself. Experiments show
the SOTA performance of our DMR on the im-
plicit discourse relation recognition task and
strong interpretability. Our method also offers
a valuable tool to understand complex ambigu-
ity and entanglement among discourse markers
and manually defined discourse relations.

1 Introduction

Discourse analysis is a fundamental problem in
natural language processing. It studies the linguis-
tic structures beyond the sentence boundary and
is a component of chains of thinking. Such struc-
tural information has been widely applied in many
downstream applications, including information
extraction (Peng et al., 2017), long documents sum-
marization (Cohan et al., 2018), document-level
machine translation (Chen et al., 2020), conversa-
tional machine reading (Gao et al., 2020).

Discourse relation recognition (DRR) focuses
on semantic relations, namely, discourse senses
between sentences or clauses. Such inter-sentence
structures are sometimes explicitly expressed in nat-
ural language by discourse connectives, or markers

Figure 1: Entangled discourse relations and correspond-
ing markers between clauses. As shown in the figure,
there exist diverse discourse relations (marked in blue)
and corresponding markers (marked in red) for the same
pair of clauses. It suggests that the semantic meaning
of different discourse relations can be entangled to each
other.

(e.g., and, but, or). The availability of these mark-
ers makes it easier to identify corresponding rela-
tions (Pitler et al., 2008), as is in the task of explicit
discourse relation recognition (EDRR), since there
is strong correlation between discourse markers
and relations. On the contrary, implicit discourse
relation recognition (IDRR), where markers are
missing, remains a more challenging problem.

Prior work aims to address such challenges by
making use of discourse marker information over
explicit data in learning implicit discourse rela-
tions, either by injecting marker prediction knowl-
edge into a representation model (Zhou et al., 2010;
Braud and Denis, 2016), or transferring the marker
prediction task into implicit discourse relation pre-
diction by manually defining a marker-relation
mapping (Xiang et al., 2022; Zhou et al., 2022). It
has been shown that discourse marker information
can effectively improve relation prediction results.
Nevertheless, relatively little work has investigated
various subtleties concerning the correlation be-
tween discourse markers and discourse relations,
and their effect to IDRR in further detail.

To properly model discourse relations and mark-
ers, we need to consider that manually-defined dis-
course relations can be semantically entangled and
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markers are ambiguous. As shown in Fig. 1, for
a pair of clauses, based on different emphasis on
semantics, we have different choices on discourse
relations and their corresponding markers. The
existence of multiple plausible discourse relations
indicates the entanglement between their semantic
meaning. Besides, discourse markers and relations
do not exclusively map to each other. As an ex-
ample, “Ann went to the movies, and Bill went
home” (Temporal.Synchrony) and “Ann went to the
movies, and Bill got upset” (Contingency.Cause)
both use the marker and but express different mean-
ings. Identifying relations based on single markers
are difficult in certain scenarios because of such am-
biguity. Thus, a discrete and deterministic mapping
between discourse relations and markers can not
precisely express the correlations between them.

Based on the study of above issues, we propose
to use Distributed Marker Representation to en-
hance the informativeness of discourse expression.
Specifically, We use a probabilistic distribution on
markers or corresponding latent senses instead of
a single marker or relation to express discourse se-
mantics. We introduce a bottleneck in the latent
space, namely a discrete latent variable indicat-
ing discourse senses, to capture semantics between
clauses. The latent sense then produces a distribu-
tion of plausible markers to reflect its surface form.
This probabilistic model, which we call DMR, nat-
urally deals with ambiguities between markers and
entanglement among the relations. We show that
the latent space reveals a hierarchical marker-sense
clustering, and that entanglement among relations
are currently under-reported. Empirical results on
the IDRR benchmark Penn Discourse Tree Bank
2 (PDTB2) (Prasad et al., 2008) shows the effec-
tiveness of our framework. We summarize our
contributions as follows:

• We propose a latent-space learning framework
for discourse relations and effectively optimize it
with cheap marker data.1

• With the latent bottleneck and corresponding
probabilistic modeling, our framework achieves
the SOTA performance on implicit discourse rela-
tion recognition without a complicated architecture
design.

• We investigate the ambiguity of discourse mark-
ers and entanglement among discourse relations to

1Code is publicly available at: https://github.
com/rudongyu/DistMarker

explain the plausibility of probabilistic modeling
of discourse relations and markers.

2 Related Work

Discourse analysis (Brown et al., 1983; Joty et al.,
2019; McCarthy et al., 2019), targets the discourse
relation between adjacent sentences. It has at-
tracted attention beyond intra-sentence semantics.
It is formulated into two main tasks: explicit dis-
course relation recognition and implicit discourse
relation recognition, referring to the relation iden-
tification between a pair of sentences with mark-
ers explicitly included or not. While EDRR has
achieved satisfactory performance (Pitler et al.,
2008) with wide applications, IDRR remains to be
challenging (Pitler et al., 2009; Zhang et al., 2015;
Rutherford et al., 2017; Shi and Demberg, 2019).
Our work builds upon the correlation between the
two critical elements in discourse analysis: dis-
course relations and markers.

Discourse markers have been used for not
only marker prediction training (Malmi et al.,
2018), but also for improving the performance of
IDRR (Marcu and Echihabi, 2002; Rutherford and
Xue, 2015) and representation learning (Jernite
et al., 2017). Prior efforts on exploring markers
have found that training with discourse markers
can alleviate the difficulty on IDRC (Sporleder and
Lascarides, 2008; Zhou et al., 2010; Braud and
Denis, 2016). Compared to their work, we focus
on a unified representation using distributed mark-
ers instead of relying on transferring from explicit
markers to implicit relations. Jernite et al. (2017)
first extended the usage of markers to sentence rep-
resentation learning, followed by Nie et al. (2019);
Sileo et al. (2019) which introduced principled pre-
training frameworks and large-scale marker data.
Xiang et al. (2022); Zhou et al. (2022) explored
the possibility of connecting markers and relations
with prompts. In this work, we continue the line of
improving the expression of discourse information
as distributed markers.

3 Distributed Marker Representation
Learning

We elaborate on the probabilistic model in Sec. 3.1
and its implementation with neural networks in
Sec. 3.2. We then describe the way we optimize
the model (Sec. 3.3).
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Figure 2: The graphical model of 𝑝(𝒎 |𝑠1, 𝑠2). 𝒛 is the
latent variable indicating the latent sense, namely the
semantic relation between two clauses. 𝐾 is the number
of candidate values for the random variable 𝒛.

3.1 Probabilistic Formulation

We learn the distributed marker representation by
predicting markers given pairs of sentences. We
model the distribution of markers by introducing
an extra latent variable 𝒛 which indicates the latent
senses between two sentences. We assume the
distribution of markers depends only on the latent
senses, and is independent of the original sentence
pairs when 𝒛 is given, namely 𝒎 ⊥ (𝑠1, 𝑠2) |𝒛.

𝑝𝜓,𝜙 (𝒎 |𝑠1, 𝑠2) =
∑︁
𝒛

𝑝𝜓 (𝒛 |𝑠1, 𝑠2) · 𝑝𝜙 (𝒎 |𝒛),(1)

where the latent semantic senses 𝒛 describes the un-
ambiguous semantic meaning of 𝑚 in the specific
context, and our target is to model the probabilistic
distribution 𝑝(𝒎 |𝑠1, 𝑠2) with 𝒛. The probabilistic
model is depicted in Fig. 2 with an example.

The key inductive bias here is that we assume
the distribution of discourse markers is indepen-
dent of the original sentence pairs given the latent
semantic senses (Eq. 1). This formulation is based
on the intuition that humans decide the relationship
between two sentences in their cognitive worlds
first, then pick one proper expression with a map-
ping from latent senses to expressions (which we
call z2m mapping in this paper) without reconsid-
ering the semantic of sentences. Decoupling the
z2m mapping from the distribution of discourse
marker prediction makes the model exhibit more
interpretability and transparency.

Therefore, the probabilistic distribution of
𝑝𝜓,𝜙 (𝒎 |𝑠1, 𝑠2) can be decomposed into 𝑝𝜓 (𝑚 |𝒛)
and 𝑝𝜙 (𝒛 |𝑠1, 𝑠2) based on the independence as-
sumption above. 𝜓 and 𝜙 denote parameters for
each part 2. The training objective with latent
senses included is to maximize the likelihood on

2We omit the subscript of parameters 𝜓 and 𝜙 in some
expressions later for conciseness.

large-scale corpus under this assumption:

L(𝜓, 𝜙) = E(𝑠1,𝑠2,𝑚)∼𝐷 log 𝑝𝜓,𝜙 (𝑚 |𝑠1, 𝑠2). (2)

3.2 Neural Architecture

Our model begins by processing each sentence with
an encoder SentEnc:

ℎ = SentEnc𝜓𝑠 ( [𝑠1,[SEP], 𝑠2]), (3)

where ℎ ∈ R𝑑 denote the sentence pair represen-
tation in 𝑑 dimensions for 𝑠1 and 𝑠2. 𝜓𝑠 are pa-
rameters of the sentence encoder. The encoder
is instantiated as a pre-trained language model in
practice.

Then we use two linear layers to map the pair
representation ℎ to the distribution of 𝒛 as below:

ℎ𝑧 = 𝜓𝑤1 · ℎ + 𝜓𝑏1, (4)

𝑝𝜃 (𝑧 |𝑠1, 𝑠2) = softmax(𝜓𝑤2 · ℎ𝑧 + 𝜓𝑏2), (5)

where 𝜓𝑤1 ∈ R𝑑×4𝑑 , 𝜓𝑏1 ∈ R𝑑 , 𝜓𝑤2 ∈
R𝐾×𝑑 , 𝜓𝑏2 ∈ R𝐾 are trainable parameters. 𝐾 is
the dimension of latent discourse senses.

The parameter 𝜓𝑤2 not only acts as the mapping
from representation ℎ𝑧 to 𝒛’s distribution, but can
also be seen as an embedding lookup table for the
𝐾 values of 𝒛. Each row in 𝜓𝑤2 is a representation
vector for the corresponding value, as an anchor in
the companion continuous space of 𝒛.

To parameterize the z2m mapping, the parameter
𝜙 ∈ R𝐾×𝑁 is defined as a probabilistic transition
matrix from latent semantic senses 𝑧 to markers 𝑚
(in log space), where 𝑁 is the number of candidate
markers:

log 𝑝𝜙 (𝑚 |𝑧) = logsoftmax(𝜙), (6)

where 𝜓 = (𝜓𝑠, 𝜓𝑤1, 𝜓𝑏1, 𝜓𝑤2, 𝜓𝑏2), 𝜙 are the
learnable parameters for parameterize the distri-
bution 𝑝𝜓,𝜙 (𝒎 |𝑠1, 𝑠2).

3.3 Optimization

We optimize the parameters 𝜓 and 𝜙 with the clas-
sic EM algorithm due to the existence of the latent
variable 𝒛. The latent variable 𝒛 serves as a reg-
ularizer during model training. In the E-step of
each iteration, we obtain the posterior distribution
𝑝(𝑧 |𝑠1, 𝑠2, 𝑚) according to the parameters in the
current iteration 𝜓 (𝑡 ) , 𝜙 (𝑡 ) as shown in Eq. 7.

5336



Algorithm 1 EM Optimization for Discourse Marker Training with Latent Senses

1: Initialize model parameters as 𝜓0, 𝜙0.
2: while not converge do ⊲ 𝑡-th iteration
3: Sample a batch of examples for EM optimization.
4: for each example (𝑠1, 𝑠2, 𝑚) in the EM batch do
5: Calculate and save the posterior 𝑝(𝒛 |𝑠1, 𝑠2, 𝑚) according to 𝜓 (𝑡 ) , 𝜙 (𝑡 ) .
6: end for
7: for each example (𝑠1, 𝑠2, 𝑚) in the EM batch do
8: Estimate E𝑝 (𝑧 |𝑠1,𝑠2,𝑚) [log 𝑝𝜓,𝜙 (𝑚, 𝑧 |𝑠1, 𝑠2)] according to 𝜓 (𝑡 ) , 𝜙 (𝑡 ) . ⊲ E-step
9: end for

10: Update parameters 𝜓 to 𝜓 (𝑡+1) in mini-batch with the gradient calculated as ∇𝜓L(𝜓, 𝜙 (𝑡 ) ).
11: Update parameters 𝜙 to 𝜙 (𝑡+1) according to the updated 𝜓 (𝑡+1) and the gradient ∇𝜙L(𝜓 (𝑡+1) , 𝜙).

⊲ M-step
12: end while

Based on our assumption that 𝒎 ⊥ (𝑠1, 𝑠2) |𝒛,
we can get the posterior distribution:

𝑝(𝑧 |𝑠1, 𝑠2, 𝑚)= 𝑝(𝑚 |𝑠1, 𝑠2, 𝑧) · 𝑝(𝑧 |𝑠1, 𝑠2)
𝑝(𝑚 |𝑠1, 𝑠2)

=
𝑝(𝑚 |𝑧) · 𝑝(𝑧 |𝑠1, 𝑠2)

𝑝(𝑚 |𝑠1, 𝑠2)
∝ 𝑝𝜓 (𝑡 ) (𝑧 |𝑠1, 𝑠2) · 𝑝𝜙 (𝑡 ) (𝑚 |𝑧). (7)

In M-step, we optimize the parameters 𝜓, 𝜙 by
maximizing the expectation of joint log likelihood
on estimated posterior 𝑝(𝑧 |𝑠1, 𝑠2, 𝑚). The updated
parameters 𝜓 (𝑡+1) , 𝜙 (𝑡+1) for the next iteration can
be obtained as in Eq. 8.

𝜓 (𝑡+1) , 𝜙 (𝑡+1) = (8)

arg max
𝜓,𝜙

E𝑝 (𝑧 |𝑠1,𝑠2,𝑚) [log 𝑝𝜓,𝜙 (𝑚, 𝑧 |𝑠1, 𝑠2)] .

In practice, the alternative EM optimization can
be costly and unstable due to the expensive ex-
pectation computation and the subtlety on hyper-
parameters when optimizing 𝜓 and 𝜙 jointly. We
alleviate the training difficulty by empirically esti-
mating the expectation on mini-batch and separate
the optimization of 𝜓 and 𝜙. We formulate the loss
functions as below, for separate gradient descent
optimization of 𝜓 and 𝜙:

L(𝜓, 𝜙 (𝑡 ) ) = KLDiv(𝑝(𝑧 |𝑠1, 𝑠2, 𝑚), 𝑝𝜓,𝜙 (𝑡 ) (𝑚, 𝑧 |𝑠1, 𝑠2)),
L(𝜓 (𝑡+1) , 𝜙) = − log 𝑝𝜓 (𝑡+1) ,𝜙 (𝑚 |𝑠1, 𝑠2),

where 𝜙 (𝑡 ) means the value of 𝜙 before the 𝑡-th
iteration and 𝜓 (𝑡+1) means the value of 𝜓 after the
𝑡-th iteration of optimization. KLDiv denotes the
Kullback-Leibler divergence. The overall optimiza-
tion algorithm is summarized in Algorithm 1.

4 Experiments

DMR adopts a latent bottleneck for the space of
latent discourse senses. We first prove the effec-
tiveness of the latent variable and compare against
current SOTA solutions on the IDRR task. We then
examine what the latent bottleneck learned during
training and how it addresses the ambiguity and
entanglement of discourse markers and relations.

4.1 Dataset

We use two datasets for learning our DMR model
and evaluating its strength on downstream implicit
discourse relation recognition, respectively. See
Appendix A for statistics of the datasets.

Discovery Dataset (Sileo et al., 2019) is a large-
scale discourse marker dataset extracted from com-
moncrawl web data, the Depcc corpus (Panchenko
et al., 2018). It contains 1.74 million sentence
pairs with a total of 174 types of explicit discourse
markers between them. Markers are automatically
extracted based on part-of-speech tagging. We use
top-k accuracy ACC@k to evaluate the marker pre-
diction performance on this dataaset. Note that we
use explicit markers to train DMR but evaluate it
on IDRR thanks to different degrees of verbosity
when using markers in everyday language.

Penn Discourse Tree Bank 2.0 (PDTB2)
(Prasad et al., 2008) is a popular discourse analysis
benchmark with manually-annotated discourse re-
lations and markers on Wall Street Journal articles.
We perform the evaluation on its implicit part with
11 major second-level relations included. We fol-
low (Ji and Eisenstein, 2015) for data split, which
is widely used in recent studies for IDRR. Macro-
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Model Backbone macro-F1 ACC

IDRR-C&E (Dai and Huang, 2019) ELMo 33.41 48.23
MTL-MLoss (Nguyen et al., 2019) ELMo - 49.95
BERT-FT (Kishimoto et al., 2020) BERT - 54.32
HierMTN-CRF (Wu et al., 2020) BERT 33.91 52.34

BMGF-RoBERTa (Liu et al., 2021) RoBERTa - 58.13
MTL-MLoss-RoBERTa† (Nguyen et al., 2019) RoBERTa 38.10 57.72
HierMTN-CRF-RoBERTa† (Wu et al., 2020) RoBERTa 38.28 58.61

LDSGM (Wu et al., 2022) RoBERTa 40.49 60.33
PCP-base (Zhou et al., 2022) RoBERTa 41.55 60.54
PCP-large (Zhou et al., 2022) RoBERTa 44.04 61.41

DMR-basew/o z RoBERTa 37.24 59.89
DMR-largew/o z RoBERTa 41.59 62.35

DMR-base RoBERTa 42.41 61.35
DMR-large RoBERTa 43.78 64.12

Table 1: Experimental Results of Implicit Discourse Relation Classification on PDTB2. Results with † are from Wu
et al. (2022). DMR-large and DMR-base adopt roberta-large and roberta-base as SentEnc, respectively.

F1 and ACC are metrics for IDRR performance.
We note that although annotators are allowed to
annotate multiple senses (relations), only 2.3%
of the data have more than one relation. There-
fore whether DMR can capture more entanglement
among relations is of interest as well (Sec. 4.5).

4.2 Baselines
We compare our DMR model with competitive
baseline approaches to validate the effectiveness
of DMR. For the IDRR task, we compare DMR-
based classifier with current SOTA methods, in-
cluding BMGF (Liu et al., 2021), which combines
representation, matching, and fusion; LDSGM (Wu
et al., 2022), which considers the hierarchical de-
pendency among labels; the prompt-based connec-
tive prediction method, PCP (Zhou et al., 2022) and
so on. For further analysis on DMR, we also in-
clude a vanilla sentence encoder without the latent
bottleneck as an extra baseline, denoted as BASE.

4.3 Implementation Details
Our DMR model is trained on 1.57 million ex-
amples with 174 types of markers in Discovery
dataset. We use pretrained RoBERTa model (Liu
et al., 2019) as SentEnc in DMR. We set the
default latent dimension 𝐾 to 30. More details re-
garding the implementation of DMR can be found
in Appendix A.

For the IDRR task, we strip the marker genera-
tion part from the DMR model and use the hidden
state ℎ𝑧 as the pair representation. BASE uses
the [CLS] token representation as the representa-
tion of input pairs. A linear classification layer is

BMGF LDSGM DMR

Comp.Concession 0. 0. 0.
Comp.Contrast 59.75 63.52 63.16

Cont.Cause 59.60 64.36 62.65
Cont.Pragmatic Cause 0. 0. 0.

Expa.Alternative 60.0 63.46 55.17
Expa.Conjunction 60.17 57.91 58.54
Expa.Instantiation 67.96 72.60 72.16

Expa.List 0. 8.98 36.36
Expa.Restatement 53.83 58.06 59.19

Temp.Async 56.18 56.47 59.26
Temp.Sync 0. 0. 0.
Macro-f1 37.95 40.49 42.41

Table 2: Experimental Results of Implicit Discourse
Relation Recognition on PDTB2 Second-level Senses

stacked on top of models to predict relations.

4.4 Implicit Discourse Relation Recognition

We first validate the effectiveness of modeling la-
tent senses on the challenging IDRR task.

Main Results DMR demonstrates comparable
performance with current SOTAs on IDRR, but
with a simpler architecture. As shown in Table 1,
DMR leads in terms of accuracy by 2.7pt and is a
close second in macro-F1.

The results exhibit the strength of DMR by more
straightforwardly modeling the correlation between
discourse markers and relations. Despite the ab-
sence of supervision on discourse relations during
DMR learning, the semantics of latent senses dis-
tilled by EM optimization successfully transferred
to manually-defined relations in IDRR.

5338



100 200 300 400 500
# training examples

0
5

10
15
20
25
30
35
40

pe
rfo

rm
an

ce

BASE-acc
BASE-f1

DMR-acc
DMR-f1

Figure 3: Few-shot IDRR Results on PDTB2

# Training Examples 25 100 500 full (10K)

BASE
ACC - 32.20 33.85 59.45
F1 - 13.40 16.70 34.34

BASE𝑝
ACC - 33.76 37.56 60.90
F1 - 13.54 17.21 35.45

BASE𝑔
ACC 19.12 34.07 39.23 63.19
F1 5.75 13.72 19.27 36.59

DMR
ACC 21.32 37.14 42.53 62.97
F1 7.01 15.29 19.57 39.33

Table 3: Few-shot IDRR Results on PDTB2

Based on the comparison to DMR without la-
tent z, we observe a significant performance drop
resulted from the missing latent bottleneck. It indi-
cates that the latent bottleneck in DMR serves as a
regularizer to avoid overfitting on similar markers.

Fine-grained Performance We list the fine-
granined performance of DMR and compare it
with SOTA approaches on second-level senses of
PDTB2. As shown in Table 2, DMR achieves sig-
nificant improvements on relations with little super-
vision, like Expa.List and Temp.Async. The perfor-
mance of majority classes, e.g. Expa.Conjunction,
are slightly worse. It may be caused by the entan-
glement between Expa.Conjunction and Expa.List
to be discussed in Sec. 4.5. In summary, DMR
achieves better overall performance by maintain-
ing equilibrium among entangled relations with
different strength of supervision.

Few-shot Analysis Fig. 3 shows DMR achieves
significant gains against BASE in few-shot learning
experiments. The results are averaged on 3 inde-
pendent runs for each setting. In fact, with only
∼60% of annotated data, DMR achieves the same
performance as BASE with full data by utilizing
the cheap marker data more effectively.

To understand the ceiling of the family of
such BERT-based pretrained model with mark-

Model ACC@1 ACC@3 ACC@5 ACC@10

Discovery 24.26 40.94 49.56 61.81
DMR30 8.49 22.76 33.54 48.11
DMR174 22.43 40.92 50.18 63.21

Table 4: Experimental results of marker prediction on
the Discovery test set. DMR30 and DMR174 indicate
the models with the dimension K equals to 30 and 174
respectively.

Marker 1st Cluster 2nd Cluster

additionally 𝒛1:
as a result,

in turn,
simultaneously

𝒛20:
for example,
for instance,
specifically

amazingly 𝒛9:
thankfully,
fortunately,

luckily
𝒛21:

oddly,
strangely,

unfortunately

but 𝒛19:
indeed,

nonetheless,
nevertheless

𝒛24:
anyway,

and,
well

Table 5: Top 2 clusters of three random sampled mark-
ers. Each cluster corresponds to a latent 𝒛 coupled with
its top 3 markers.

ers as an extra input, we augment the data in
two ways: BASE𝑔 inserts the groundtruth marker,
and BASE𝑝 where the markers are predicted by
a model3 officially released by Discovery (Sileo
et al., 2019). Table 3 presents the results where the
informative markers are inserted to improve the per-
formance of BASE, following the observations and
ideas from (Zhou et al., 2010; Pitler et al., 2008).
DMR continues to enjoy the lead, even when the
markers are groundtruth (i.e. BASE𝑔), suggest-
ing DMR’s hidden state contains more information
than single markers.

4.5 Analysis & Discussion
Marker Prediction The performance of DMR
on marker prediction is sensitive to the capacity of
the bottleneck. When setting 𝐾 to be the number
of markers (174), it matches and even outperforms
the Discovery model which directly predicts the
markers on the same data (Table 4). A smaller 𝐾
sacrifices marker prediction performance but it can
cluster related senses, resulting in more informative
and interpretable representation.

Multiple markers may share similar meanings
when connecting sentences. Thus, evaluating the
performance of marker prediction simply on top1
accuracy is inappropriate. In Table 4, we demon-
strated the results on ACC@k and observed that

3They also use the RobERTa model as a backbone.
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Figure 4: The cropped T-SNE visualization of latent 𝒛
from DMR. Each 𝒛 is coupled with its top 3 markers
from z2m mapping.

DMR(K=174) gets better performance against the
model optimized by an MLE objective when k gets
larger. We assume that it comes from the marker
ambiguity. Our DMR models the ambiguity better,
thus with any of the plausible markers easier to be
observed in a larger range of predictions but more
difficult as top1. To prove the marker ambiguity
more directly, we randomly sample 50 examples to
analyze their top5 predictions. The statistics show
that over 80% of those predictions have plausible
explanations. To conclude, considerable examples
have multiple plausible markers thus ACC@k with
larger k can better reflect the true performance on
marker prediction, where DMR can beat the MLE-
optimized model.

z2m Mapping The latent space is not inter-
pretable, but DMR has a transition matrix that out-
puts a distribution of markers, which reveals what
a particular dimension may encode.

To analyze the latent space, we use 𝜓𝑤2 (Eq. 5)
as the corresponding embedding vectors and per-
form T-SNE visualization of the latent 𝒛, similar to
what Discover (Sileo et al., 2019) does using the
softmax weight at the final prediction layer. The
complete T-SNE result can be found in Appendix B.
What we observe is an emerging hierarchical pat-
tern, in addition to proximity. That is, while syn-
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Figure 5: Human Evaluation. Figure (a) shows numbers
of reasonable relations in top-3 predictions. Figure (b)
shows the accuracy for each of the top-3 predictions
evaluated by annotations or human, respectively.

onymous markers are clustered as expected, seman-
tically related clusters are often closer. Fig. 4b
shows the top left corner of the T-SNE result. We
can see that the temporal connectives and senses
are located in the top left corner. According to
their coupled markers, we can recover the semantic
of these latent 𝒛: preceding (𝑧27), succeeding (𝑧25,
𝑧22, 𝑧16) and synchronous (𝑧15) form nearby but
separated clusters.

For a comparison with connective-based prompt-
ing approaches, we also demonstrate the T-SNE
visualization of marker representations from BASE
in Fig. 4a. Unlike semantically aligned vector
space of DMR, locality of markers in the space
of BASE representation is determined by surface
form of markers and shifted from their exact mean-
ing. Marker representations of the model w/o latent
𝑧 are closer because of similar lexical formats in-
stead of underlying discourse.

From z2m mapping, we can take a step further
to analyze the correlation between markers learned
by DMR. Table 5 shows the top 2 corresponding
clusters of three randomly sampled markers. We
can observe correlations between markers like pol-
ysemy and synonym.

Understanding Entanglement Labeling dis-
course relations is challenging since some of them
can correlate, and discern the subtleties can be chal-
lenging. For example, List strongly correlates with
Conjunction and the two are hardly distinguishable.

DMR is trained to predict a distribution of mark-
ers, thus we expect its hidden state to capture the
distribution of relations as well even when the
multi-sense labels are scarce. We drew 100 random
samples and ask two researchers to check whether
each of the corresponding top-3 predictions is valid
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𝑠1 𝑠2 markers relations

Rather, they tend to have a set of
two or three favorites

Sometimes, they’ll choose Ragu
spaghetti sauce

because_of_this
therefore

for_example
for_instance

Contingency.Cause
Expansion.Instantitation

It just makes healthy businesses
subsidize unhealthy ones and
gives each employer less incen-
tive to keep his workers healthy

the HIAA is working on a pro-
posal to establish a privately
funded reinsurance mechanism
to help cover small groups that
can’t get insurance without ex-
cluding certain employees

because_of_this
conversely
therefore

in_contrast

Contingency.Cause
Comparison.Contrast

The Hart-Scott filing is then re-
viewed and any antitrust con-
cerns usually met

Typically, Hart-Scott is used now
to give managers of target firms
early news of a bid and a chance
to use regulatory review as a de-
laying tactic

although
though
besides

also

Comparison.Concession
Expansion.Conjunction

Table 6: Case Study on Marker Ambiguity and Discourse Relation Entanglement.
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Figure 6: Confusion on Discourse Relations. We use
entropy as the metric for filtering most confusing ex-
amples. We use the top-3 predictions of the 20 most
confusing examples to show the entanglement between
relations. We use accumulated 𝑝(𝑟𝑖) · 𝑝(𝑟 𝑗 ) as weights
for a pair of relations 𝑟𝑖 , 𝑟 𝑗 . Note that implausible pre-
dictions are suppressed to ignore model errors.

and give a binary justification4. Fig. 5a shows that a
considerable amount of 64% examples have two or
more relations evaluated as reasonable in top-3 pre-
dictions, much higher than 2.3% multi-sense labels
in PDTB2. This suggests that one way to improve
upon the lack of multi-sense annotation is to use
DMR to provide candidates for the annotators. For
these samples, we also inspect annotator agreement
in PDTB2 (Fig. 5b). While the trend is consistent
with what DMR reports, it also validates again that
the PTDB2 annotators under-labeled multi-senses.

To gain a deeper understanding of relation cor-
relation, we rank the sentence pairs according to
the entropy of relation prediction, a higher entropy
suggests more model uncertainty, namely more

4The annotators achieve a substantial agreement with a
Kappa coefficient of 0.68.

confusion.

We use the top-3 predictions of the 20 highest
entropy examples to demonstrate highly confus-
ing discourse relations as shown in Fig. 6. The
accumulated joint probability of paired relations
on these examples is computed as weights in the
confusion matrix. The statistics meet our expecta-
tion that there exist specific patterns of confusion.
For example, asynchronous relations are correlated
with causal relations, while another type of tempo-
ral relations, synchronous ones are correlated with
conjunction. A complete list of these high entropy
examples is listed in Appendix C.

To further prove DMR can learn diverse distri-
bution even when multi-sense labels are scarce, we
also evaluate our model on the DiscoGeM (Schol-
man et al., 2022), where each instance is annotated
by 10 crowd workers. The distribution discrep-
ancy is evaluated with cross entropy. Our model,
trained solely on majority labels, achieved a cross
entropy score of 1.81 against all labels. Notably,
our model outperforms the BMGF model (1.86)
under the same conditions and comes close to the
performance of the BMGF model trained on multi-
ple labels (1.79) (Yung et al., 2022). These results
highlight the strength of our model in capturing
multiple senses within the data.

To conclude, while we believe explicit relation
labeling is still useful, it is incomplete without also
specifying a distribution. As such, DMR’s ℎ𝑧 or the
distribution of markers are legitimate alternatives
to model inter-sentence discourse.
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Case Study on Specific Examples As a comple-
tion of the previous discussion on understanding
entanglement in a macro perspective, we present a
few examples in PDTB2 with markers and relations
predicted by the DMR-based model. As demon-
strated in Table 6, the identification of discourse
relations relies on different emphasis of seman-
tic pairs. Taking the first case as an example, the
connection between “two or three favorities” and
“Ragu spaghetti sauce” indicates the Instantiation
relation while the connection between complete
semantics of these two sentences results in Cause.
Thanks to the probabilistic modeling of discourse
information in DMR, the cases demonstrate entan-
glement among relations and ambiguity of markers
well.

5 Conclusion

In this paper, we propose the distributed marker
representation for modeling discourse based on the
strong correlation between discourse markers and
relations. We design the probabilistic model by in-
troducing a latent variable for discourse senses. We
use the EM algorithm to effectively optimize the
framework. The study on our well-trained DMR
model shows that the latent-included model can
offer a meaningful semantic view of markers. Such
semantic view significantly improves the perfor-
mance of implicit discourse relation recognition.
Further analysis of our model provides a better
understanding of discourse relations and markers,
especially the ambiguity and entanglement issues.

Limitation & Risks

In this paper, we bridge the gap between discourse
markers and the underlying relations. We use dis-
tributed discourse markers to express discourse
more informatively. However, learning DMR re-
quires large-scale data on markers. Although it’s
potentially unlimited in corpus, the distribution
and types of markers may affect the performance
of DMR. Besides, the current solution proposed in
this paper is limited to relations between adjacent
sentences.

Our model can be potentially used for natural
language commonsense inference and has the po-
tential to be a component for large-scale common-
sense acquisition in a new form. Potential risks
include a possible bias on collected commonsense
due to the data it relies on, which may be alleviated
by introducing a voting-based selection mechanism

on large-scale data.
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Train Valid Test

1566k 174k 174k

Table 7: Statistics of Discovery Dataset

Relations Train Valid Test

Comp.Concession 180 15 17
Comp.Contrast 1566 166 128

Cont.Cause 3227 281 269
Cont.Pragmatic Cause 51 6 7

Expa.Alternative 146 10 9
Expa.Conjunction 2805 258 200
Expa.Instantiation 1061 106 118

Expa.List 330 9 12
Expa.Restatement 2376 260 211

Temp.Async 517 46 54
Temp.Sync 147 8 14

Total 12406 1165 1039

Table 8: Statistics of PDTB2 Dataset

A Implementation Details

We use Huggingface transformers (4.2.1) for the
use of PLM backbones in our experiments. For
optimization, we optimize the overall framework
according to Algorithm 1. We train the model on
Discovery for 3 epochs with the learning rate for
𝜓 set to 3e-5 and the learning rate for 𝜙 set to 1e-
2. The EM batchsize is set to 500 according to
the trade-off between optimization efficiency and
performance. The optimization requires around
40 hrs to converge in a Tesla-V100 GPU. For the
experiments on PDTB2, we use them according to
the LDC license for research purposes on discourse
relation classification. The corresponding statistics
of the two datasets are listed in Table 7 and Table 8.

B Visualization of the latent 𝒛

To obtain an intrinsic view of how well the con-
nections between markers 𝒎 and 𝒛 can be learned
in our DMR model. We draw a T-SNE 2-d visual-
ization of 𝒛’s representations in Fig. 7 with top-3
connectives of each 𝑧 attached nearby. The repre-
sentation vector for each 𝑧 is extracted from 𝜓𝑤2.
The results are interesting that we can observe not
only the clustering of similar connectives as 𝑧, but
also semantically related 𝑧 closely located in the
representation space.

C High Entropy Examples from Human
Evaluation

For analysis of the entanglement among relations,
we did a human evaluation on randomly extracted
examples from PDTB2. To better understand the
entanglement among relations, we further filter the
20 most confusing examples with entropy as a met-
ric. The entanglement is shown as Fig.6 in Sec. 4.5.
We list these examples in Table 9 for clarity.
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basically

z18

increasingly
historically
locally

z19

indeed
nonetheless
nevertheless

z20

for_example
for_instance
specifically

z21

oddly
strangely
unfortunately

z22

subsequently
next
thereafter

z23

sometimes
usually
occasionally

z24

anyway
and
well

z25

this
afterward
here

z26

firstly
first
especially

z27

previously
originally
once

z28

because_of_that
because_of_this
therefore

z29

probably
perhaps
maybe

Figure 7: T-SNE Visualization of the Latent 𝒛. We draw the t-sne embeddings of each latent 𝑧 in 2-d space with the
well-trained 𝜓𝑤2 as corresponding embedding vectors. While each 𝑧 groups markers with similar meanings, we can
also observe that related senses are clustered together. For example, temporal connectives and senses are located in
the top left corner with preceding (𝑧27), succeeding (𝑧25, 𝑧22, 𝑧16), synchronous (𝑧15) ones separated. The existence
of 𝒛 helps to construct a hierarchical view of semantics between sentences.
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unsurprisingly, traditionally,

secondly,

thus,

by_then

on_the_other_hand

obviously,

likewise,

clearly,

presumably,

altogether,
interestingly,

yet,

luckily,

increasingly,

honestly,

thereafter,

again,

originally,

in_the_end,

meaning,
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probably,

so,

usually,
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besides,

lastly,
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consequently

admittedly,

as_a_result,

ultimately,

ideally,

inevitably,

soon,

theoretically,

instead,

together,

ironically,

gradually,

once,

firstly,
recently,

sadly,

though,

thankfully,

fortunately,

separately,

simultaneously

in_sum,

frequently,

undoubtedly,

notably,

actually,

meantime,

third,

nevertheless nationally,

because_of_this

really,

in_fact,

nonetheless

further,

alternately,

here,

subsequently, perhaps,

in_short,

historically,

in_contrast,

overall,

especially,

particularly,

also,

or,

in_turn,
for_example

significantly,

then,

thereby,

in_particular,

immediately,

personally,

absolutely,

supposedly,

later,

incidentally,

technically,

accordingly

only,

thirdly,

on_the_contrary,

regardless,

occasionally,

maybe,
alternatively

additionally

strangely, eventually,

second,

oddly,

mostly,

but

therefore

seriously, truthfully,

although,

naturally,

amazingly,

well,

surprisingly,

this,
meanwhile,

initially,

essentially,
next,

in_the_meantime,

suddenly,

evidently,
hence,

finally,

often,

now,

curiously,

and

unfortunately,

truly,however

because_of_that

for_instance

[no-conn]

already,

first,

by_doing_this,

namely,

by_contrast,

indeed,

arguably,

surely,

sometimes,

lately,

hopefully,

rather,afterward

specifically,

by_comparison,

elsewhere,

importantly,

collectively,

optionally,

moreover

still,

realistically,basically,

in_other_words

currently,

otherwise,
anyway,

conversely

similarly,

plus,

slowly,

presently,
coincidentally,

frankly, locally,

furthermore

happily,

typically,

preferably,

Figure 8: T-SNE Visualization of discourse markers from BASE. We draw the t-sne embeddings of each marker
in 2-d space with averaged token representations of markers from BASE PLM. Comparing to the well-organized
hierarchical view of latent senses in DMR, markers are not well-aligned to semantics in the representation space of
BASE. It indicates the limitation of bridging markers and relations with a direct mapping.
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s1 s2 1st-pred 2nd-pred 3rd-pred

Right away you notice the following
things about a Philip Glass concert

It attracts people with funny hair
Instantiation

0.502
Restatement

0.449
List

0.014

There is a recognizable musical style
here, but not a particular performance
style

The music is not especially pianistic
Restatement

0.603
Conjunction

0.279
Instantiation

0.048

Numerous injuries were reported Some buildings collapsed, gas and wa-
ter lines ruptured and fires raged

Restatement
0.574

Instantiation
0.250

List
0.054

this comparison ignores the intensely
claustrophobic nature of Mr. Glass’s
music

Its supposedly austere minimalism over-
lays a bombast that makes one yearn for
the astringency of neoclassical Stravin-
sky, the genuinely radical minimalism
of Berg and Webern, and what in ret-
rospect even seems like concision in
Mahler

Cause
0.579

Restatement
0.319

Instantiation
0.061

The issue exploded this year after a Fed-
eral Bureau of Investigation operation
led to charges of widespread trading
abuses at the Chicago Board of Trade
and Chicago Mercantile Exchange

While not specifically mentioned in the
FBI charges, dual trading became a fo-
cus of attempts to tighten industry regu-
lations

Cause
0.504

Asynchronous
0.400

Conjunction
0.045

A menu by phone could let you decide,
‘I’m interested in just the beginning of
story No. 1, and I want story No. 2 in
depth

You’ll start to see shows where viewers
program the program

Cause
0.634

Conjunction
0.188

Asynchronous
0.116

His hands sit farther apart on the key-
board.Seventh chords make you feel as
though he may break into a (very slow)
improvisatory riff

The chords modulate
Cause
0.604

Conjunction
0.266

Restatement
0.082

His more is always less Far from being minimalist, the music
unabatingly torments us with apparent
novelties not so cleverly disguised in
the simplicities of 4/4 time, octave inter-
vals, and ragtime or gospel chord pro-
gressions

Cause
0.456

Restatement
0.433

Instantiation
0.052

It requires that "discharges of pollu-
tants" into the "waters of the United
States" be authorized by permits that re-
flect the effluent limitations developed
under section 301

Whatever may be the problems with this
system, it scarcely reflects "zero risk"
or "zero discharge

Contrast
0.484

Cause
0.387

Concession
0.072

The study, by the CFTC’s division of
economic analysis, shows that "a trade
is a trade

Whether a trade is done on a dual or non-
dual basis doesn’t seem to have much
economic impact

Restatement
0.560

Conjunction
0.302

Cause
0.095

Currently in the middle of a four-week,
20-city tour as a solo pianist, Mr. Glass
has left behind his synthesizers, equip-
ment and collaborators in favor of going
it alone

He sits down at the piano and plays
Restatement

0.357
Synchrony

0.188
Asynchronous

0.115

For the nine months, Honeywell re-
ported earnings of $212.1 million, or
$4.92 a share, compared with earnings
of $47.9 million, or $1.13 a share, a year
earlier

Sales declined slightly to $5.17 billion
Conjunction

0.541
Contrast

0.319
Synchrony

0.109

The Bush administration is seeking an
understanding with Congress to ease re-
strictions on U.S. involvement in for-
eign coups that might result in the death
of a country’s leader

that while Bush wouldn’t alter a long-
standing ban on such involvement,
"there’s a clarification needed" on its
interpretation

Restatement
0.465

Conjunction
0.403

Cause
0.094
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s1 s2 1st-pred 2nd-pred 3rd-pred

With "Planet News Mr. Glass gets go-
ing

His hands sit farther apart on the key-
board

Synchrony
0.503

Asynchronous
0.202

Cause
0.147

The Clean Water Act contains no "legal
standard" of zero discharge

It requires that "discharges of pollu-
tants" into the "waters of the United
States" be authorized by permits that re-
flect the effluent limitations developed
under section 301

Alternative
0.395

Contrast
0.386

Restatement
0.096

Libyan leader Gadhafi met with Egypt’s
President Mubarak, and the two offi-
cials pledged to respect each other’s
laws, security and stability

They stopped short of resuming diplo-
matic ties, severed in 1979

Contrast
0.379

Concession
0.373

Conjunction
0.129

His hands sit farther apart on the key-
board.Seventh chords make you feel as
though he may break into a (very slow)
improvisatory riff.The chords modulate,
but there is little filigree even though
his fingers begin to wander over more
of the keys

Contrasts predictably accumulate
Conjunction

0.445
Synchrony

0.303
List

0.181

NBC has been able to charge premium
rates for this ad time

but to be about 40% above regular day-
time rates

Conjunction
0.409

Restatement
0.338

Contrast
0.224

Mr. Glass looks and sounds more like a
shaggy poet describing his work than a
classical pianist playing a recital

The piano compositions are relentlessly
tonal (therefore unthreatening), unvary-
ingly rhythmic (therefore soporific),
and unflaggingly harmonious but un-
melodic (therefore both pretty and un-
conventional

Cause
0.380

Instantiation
0.323

Restatement
0.241

It attracts people with funny hair Whoever constitute the local Left Bank
come out in force, dressed in black

Cause
0.369

Asynchronous
0.331

Conjunction
0.260

Table 9: High Entropy Examples of Model Inference on Implicit Discourse Relation Classification
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