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Abstract

Recent advancements in pre-trained language
models (PLMs) have demonstrated that these
models possess some degree of syntactic aware-
ness. To leverage this knowledge, we propose a
novel chart-based method for extracting parse
trees from masked language models (LMs)
without the need to train separate parsers. Our
method computes a score for each span based
on the distortion of contextual representations
resulting from linguistic perturbations. We de-
sign a set of perturbations motivated by the
linguistic concept of constituency tests, and use
these to score each span by aggregating the dis-
tortion scores. To produce a parse tree, we use
chart parsing to find the tree with the minimum
score. Our method consistently outperforms
previous state-of-the-art methods on English
with masked LMs, and also demonstrates su-
perior performance in a multilingual setting,
outperforming the state of the art in 6 out of 8
languages. Notably, although our method does
not involve parameter updates or extensive hy-
perparameter search, its performance can even
surpass some unsupervised parsing methods
that require fine-tuning. Our analysis highlights
that the distortion of contextual representation
resulting from syntactic perturbation can serve
as an effective indicator of constituency across
languages.'

1 Introduction

Constituency parsing is a fundamental task in natu-
ral language processing (NLP) that involves uncov-
ering the syntactic structure of a sentence by identi-
fying the constituents it is composed of. While
supervised constituency parsing methods neces-
sitate the utilization of a labeled dataset contain-
ing sentences and their corresponding constituency
parses, unsupervised methods for generating syn-
tax trees emerge because manual annotation is
labor-intensive and requires specialized linguistic

'Our code is available at https://github.com/
jxjessieli/contextual-distortion-parser.

they
watched

a film this afternoon

(1) they watched <mask> this afternoon
2) <mask> a film <mask>

(3) a film,they watched , this afternoon

Figure 1: Example sentence and its constituency tree.
We list perturbed sentences after substitution (1), decon-
textualization (2), and movement (3).

knowledge. One line of work for unsupervised
constituency parsing involves designing an objec-
tive function that enables the model to infer the
hierarchical structure of language from the unan-
notated text (Kim et al., 2019b,a; Drozdov et al.,
2019; Yang et al., 2021). An alternative approach,
known as Constituency Parse Extraction from Pre-
trained Language Models (CPE-PLM), involves
extracting parse trees from pre-trained language
models without fine-tuning in an unsupervised man-
ner (Kim et al., 2020; Wu et al., 2020; Kim et al.,
2021). The main motivation for CPE-PLM is the
assumption that pre-trained language models con-
tain implicit syntactic knowledge learned during
the pre-training stage. This knowledge can then
be used to directly predict parse trees, eliminating
the need for task-specific fine-tuning. While CPE-
PLM systems have been shown to produce parse
trees that resemble manually annotated ones, they
have also been found to have lower performance
than the first line of work.

In this paper, we propose a simple yet effective
CPE-PLM approach to bridge the performance gap
between these two methods by input perturbations
designed based on the intuition of constituency
tests. Linguists use constituency tests to determine
whether a span of words forms a constituent in a
sentence. One common constituency test is the
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substitution test which replaces the span of words
with a single pronoun (such as “it”” or “they”) and
checks if the sentence is still grammatical. For
example, in Figure 1, the span “a film” can be
replaced with the pronoun “i#”, resulting in the
sentence “they watched it this afternoon,” which
is still grammatical. This suggests that “a film”
is likely a constituent. Our goal in this work is
to maximally explore the capabilities of PLMs to
induce grammar by themselves. Specifically, we
focus on masked LMs and leverage the inherent
properties of the mask token prediction pre-training
objective. The main idea is to make pre-trained
language models think like linguists, such that with
constituency tests, span-level scores reflecting the
likelihood of a span being a constituent can be
obtained.

The evaluation of constituency tests tradition-
ally relies on grammaticality judgments. Cao et al.
(2020) trained a classifier that can make grammat-
icality decisions with external data. In contrast,
our approach assesses the degree of alternation in
contextual representations resulting from manip-
ulations akin to those used in constituency tests.
We hypothesize that, when the context of a span
is manipulated, the contextual representations of
constituents will exhibit minimal alteration com-
pared to those of distituents (non-constituents). We
refer to these manipulations as perturbations, as
our method measures the sensitivity of the repre-
sentations to these changes. We define three per-
turbations and for each perturbation, we alter the
input sentence and compare the representations of
the perturbed sentences to that of the original. The
three perturbations on an example span are illus-
trated in Figure 1. By applying perturbations to
each span of words within the input sentence, we
generate scores indicating the likelihood of each
span being a constituent.

To evaluate the effectiveness of our approach,
we compare it with existing methods for extracting
parse trees from PLMs without fine-tuning (Sec-
tion 4). Our model improves over the previously
published best result by a large margin. In a mul-
tilingual setting, our model surpasses the previous
state of the art in 6 out of 8 languages. Our model
even outperforms some unsupervised parsing meth-
ods that require parameter updates, highlighting
the effectiveness of our approach.

Our main contributions can be summarized as
follows:

* We propose a novel, simple and effective
method for extracting constituency trees from
masked LMs based on linguistic perturbations.

* We demonstrate that our proposed method
achieves new state-of-the-art results under the
no parameter update setting on the standard
English dataset and 6 out of 8 languages from a
multilingual dataset with a significantly smaller
hyperparameter search space than previous
methods.

* Our work identifies the crucial elements that
benefit the overall performance gain and high-
lights the potential of utilizing perturbations on
masked LMs for understanding the underlying
structure of language.

2 Related Work

Unsupervised Constituency Parsing. Early
works on unsupervised constituency parsing fo-
cused on building generative models such as prob-
abilistic context-free grammars (PCFGs) (Car-
roll and Charniak, 1992) and constituent-context
model (Klein and Manning, 2002) with expectation-
maximization (EM). More recent approaches have
shown improvement by parameterizing PCFGs
with neural networks and enhancing the model via
latent variables (Kim et al., 2019a; Zhu et al., 2020).
Instead of a generative model over sentences and
trees, Clark (2001) identified constituents based on
span statistics. Our method is relevant to the above
in that constituents appear in constituent contexts.

Recent works have attempted to induce struc-
tural bias by constraining the flow of information
in neural networks. Examples include the Parsing-
Reading-Predict Network (PRPN) (Shen et al.,
2018), the Ordered Neuron (ON) model (Shen et al.,
2019), and Tree transformer (Wang et al., 2019).
Models with latent tree variables can also be seen
as manipulating the information flow. The unsuper-
vised recurrent neural network grammar (URNNG)
(Kim et al., 2019b) and the Deep Inside-Outside
Recursive Autoencoder (DIORA) (Drozdov et al.,
2019) optimized an autoencoder objective through
latent tree variables.

On the other hand, Cao et al. (2020) designed an
unsupervised parser by specifying a set of transfor-
mations inspired by constituency tests and trained
a classifier on the external raw text of 5 million
sentences from English Gigaword (Graff and Cieri,
2003) to make grammaticality decisions. Our work
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builds upon this approach by utilizing constituency
tests to obtain span scores. However, our method
differs in that it is free from parameter updates and
does not require the training of a grammaticality
model on external data.

Constituency Parse Extraction from Pre-trained
Language Models. Inducing the parse tree of an
input sentence with pre-trained language models
without training is a rising line of research recently.
MART (Wu et al., 2020) measured the impact a
word has on predicting another word using BERT’s
hidden states and parsed by finding the best split-
ting point recursively. Our work is similar to their
notion of perturbation and parse, while we adopt
stronger prior knowledge with constituency tests
and we focus on the span-level constituency.

Kim et al. (2020) calculated syntactic distances
of adjacent words using intermediate hidden states
and the attention distributions. Li et al. (2020)
ranked Transformer attention heads and created an
ensemble of them for parsing. Kim et al. (2021) and
Kim (2022) further improved over Kim et al. (2020)
by a chart-based method and top-K ensemble and
extended the approach to different languages by ap-
plying multilingual PLMs. Our method has a clear
advantage over existing approaches by leveraging
the masked LMs pre-training objective implicitly
with models like BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019). While previous works
can be generalized to a wider range of pre-trained
models, our method requires minimal hyperparam-
eter search and consistently achieves superior re-
sults.

3 Approach

3.1 Perturbations

We specify a set of perturbations that are based on
the linguistic concept of constituency tests (de Mar-
cken, 1996). These perturbations involve a set of
transformation functions, a masked LM, and a func-
tion d for calculating the distortion of the repre-
sentation of a targeted span. Each transformation
function takes in a sentence and a targeted span and
outputs a new sentence. The masked LM takes in
a sequence of words of length 7" and outputs rep-
resentations from the /-th layer H = [hy, ..., hy],
where h; € R? is the contextualized representation
for word t. The distortion function compares the
change in the representation of the targeted span
that results from the application of the transforma-

tion function. Our distortion function is formalized
asd : (H,H) = ||H - H|*/T, where || - || is
the matrix 2-norm (i.e., Frobenius norm). Alleman
et al. (2021) used the Frobenius norm to measure
the distortion of contextual representations and ob-
served the results of different norms to be similar.
Our preliminary experiments show that the squared
Frobenius norm performs slightly better than the
Fronenius norm possibly due to its ability to am-
plify matrix differences and better distinguish con-
stituents and distituents. We conduct an ablation
study comparing these two norms in Section 4.5.

We focus on the sensitivity of a span’s represen-
tation towards each perturbation because it may
give us evidence about whether the span is a con-
stituent. Specifically, we define three perturbations
to obtain the overall distortion score for each span
in a sentence.

Substitution Substitution is a common type of
constituency test that involves replacing the span of
words with a single pronoun (such as “if” or “they”).
If the resulting sentence is still grammatically cor-
rect while maintaining the meaning, then the span
of words forms a constituent. Instead of measur-
ing the grammaticality change, we measure the
representational distortion by substitution transfor-
mation. Specifically, the transformation function
replaces the target span of words [x;, ..., z;] with
a single mask token. Then we input the perturbed
sentence into the pre-trained language model to
obtain the representation:

H = |hy, ..., b1, hyask, hjg1, by |0 (D)

We calculate the representational distortion of
the surrounding text of this span:

dsup = d(H\{h;, ..., h; }, H\{hmas }). (2

The intuition is that if a span of text constitutes
a grammatical unit, then the surrounding text’s
representation should be relatively independent of
the span. We use a single mask token to replace
the targeted span as the masked language models
(LMs) are pre-trained with the objective to pre-
dict the mask token. This way, while there are
many choices of the single word that can replace
the constituent, we allow the model to decide on
the replacement word for the constituent given the
context.
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Decontextualization Another way that linguists
use to determine constituency is the standalone
test, also known as the answer fragment test. It
checks if the span of words can appear alone as a
sentence fragment in response to a question. Our
observations indicate that standalone answers of-
ten convey the same meaning as they do in their
original sentence. Therefore, we hypothesize that
the representation of a constituent without context
should resemble its representation in the original
sentence. We decontextualize the span by masking
its surrounding context instead of directly removing
all the surrounding tokens. This allows us to inform
the LM that the span is surrounded by an unknown
context. As the context surrounding a constituent is
usually a structured unit in a sentence, we assume
it can be replaced by a single word such that the
meaning of the constituent changes little. Formally,
for the span [2;, ..., z;|, we mask the context of it
and feed it to the pre-trained model to obtain

I:I - [hmaskl 3 fliy ooy flja hmask21| . (3)
The distortion score is then
ddc = d(H [Z : ]] 7I:I\{flmask1 3 flmaskz})- (4)

Movement Movement is yet another common
method to determine constituency. It involves mov-
ing the span of words to a different location in
the sentence and seeing if the resulting sentence
is still grammatically correct. Similar to the afore-
mentioned methods, instead of checking if the re-
sulting sentence is grammatical, we measure the
representational distortion caused by the movement
transformation. We calculate distortion scores for
both front movement and end movement. For a tar-
geted span [z;, ..., z;], the movement transforma-
tion leads to [l‘i, s Ty Ty eeey L1y Tjp sy enns LET]
and [.’El, oy Ljgm 1y Ljddy ooy LT Ly ey .’Ej]. Then
with the pre-trained language model, we obtain

Hion = [hz‘, "'7f1j7 hy, ..., flz‘—l,fljﬂ, ET} 5)

Hopg = [h), . 0], YA
(6)
Each movement splits the sentence into three
spans. To make the split more explicit to the pre-
trained language model, we add a comma between
spans to separate them. We calculate the distortion

of each movement of the span by summing up the

/
j-‘rl’ ceey

three distortion scores. Therefore, the distortion
score 1is

dmove = dfrontmove + dendmove

=dH[1:i—1],H[1:i-1])

[
j+1:7),H[j+1:1)) D
[1:i—1],H[1:i—1])

[i: 5], H'[i: 5])

J+1:T],H [j+1:T)).

For each span in a sentence, we apply the afore-
mentioned three perturbations and score each span
by averaging the span-level contextual distortion
yielded from perturbations”

d= %(dsub + dge + dmove)7 (8)
where L denotes the number of span-level contex-
tual distortion scores.® It is worth noting that the
decontextualization and movement perturbations
align with the intuition of Wu et al. (2020). They
suggest that words within a constituent have signif-
icant interaction with each other, while words that
are syntactically far apart have minimal interaction.
In our approach, we assume that the representation
of a word is primarily affected by its syntactically
local context, i.e., the constituent that it appears in.

3.2 Parsing Algorithm

With the distortion score calculated for each span in
a sentence, we describe how to obtain the parse tree
in this section. In the supervised setting, Stern et al.
(2017) and Kitaev and Klein (2018) showed that
independently scoring each span and then choosing
the tree with the best total score produced a simple
yet very accurate parser. We apply a similar chart
parsing approach to obtain the best tree given the
span scores.

2Sequentially calculating the attention matrix for a sen-
tence of length n is O(n") computational complexity, but
GPUs’ parallel processing capabilities allow for O(1) sequen-
tial operations per tested span (as detailed in Section 4 of
Vaswani et al. (2017)). Therefore, the time complexity to
obtain the distortion scores for a sentence of length n with
parallel attention matrix computation is O(n?).

3When the span is in the middle of the sentence, the three
perturbations produce 8 span-level scores, with the movement
perturbation contributing 6 of these scores. In contrast, when
spans are not in the middle of the sentence, the movement
perturbation yields only 4 scores as each front and end move
splits the span by a comma into two. Therefore, averaging the
scores mitigate this bias caused by the position of the spans.
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We define the score s(7T') of a tree T" to be the
sum of its normalized distortion scores denoted as

d(i, j) spanning words i to 7,

s(T)= Y d(i,j). 9)

(3,9)€T

One important step to make chart parsing work
with our distortion scores is normalization. Our
perturbations invoke inevitable bias towards the
length of the span. If the length of the target span is
relatively long, the distortion score will generally
be small compared to shorter spans regardless of
the constituency of the span, while distortion scores
of spans of the same length are comparable with
each other. Therefore, we normalize the distortion
score over span lengths in each sentence such that
scores of the same length are scaled individually
to the unit norm. For span (i, j), whose distortion
score is d(i, ), the normalized distortion score is:

s oy
d(i,j) = Z( 7)
\/(iaj’)s.pj/_i,:j_i

Since the distortion score is inversely propor-
tional to the likelihood of a span being a constituent,
we need to find the minimum-scoring tree. As with
chart parsing with the standard CKY algorithm,
the running time of this procedure is O(n?) for a
sentence of length n.

The best score of a tree spanning 7 to j with
k as the splitting point is defined to be the sum
of the scores of the two subtrees and the current
span’s normalized distortion score. The recurrence
relation used for finding the tree with the best score
s* spanning ¢ to j is:

(10)

d2(i’, ]/)

$*(i,3) = min |57(i, k) + *(k, §) + d(i, )]
an
Based on these optimal scores, we will then be
able to use a top-down backtracking process to ar-
rive at the optimal constituency tree, as our output.

4 Experiments

4.1 Setup

We conduct experiments on the English Penn Tree-
bank (PTB) dataset (Marcus et al., 1993). To un-
derstand how our approach works across different
languages, following prior research (Kim et al.,
2021; Zhao and Titov, 2021), we also evaluate our
approach on 8 different other languages, namely

Basque, French, German, Hebrew, Hungarian, Ko-
rean, Polish, and Swedish, which are freely re-
leased within the SPMRL dataset* (Seddah et al.,
2013). The evaluation was performed using the
F1 score, which was calculated with respect to the
gold trees in the PTB test set (section 23) and the
test sets for different languages in SPMRL?>.

4.2 Implementation Details

For the English PTB dataset, the results of masked
language models (BERT and RoBERTa) were re-
ported. For the multilingual SPMRL dataset, the
results of a multilingual version of the BERT-base
model (M-BERT Devlin et al. (2019))® were re-
ported’. Our method uses a single hyperparame-
ter, the layer of representation, and we select the
optimal layer for each LM by evaluating parsing
performance on the development set.

4.3 Parsing Performance on PTB

Table 1 presents the F1 scores obtained by our
method in comparison to existing parsers that use
pre-trained masked language models without un-
dergoing parameter updates. It can be observed that
our method consistently achieves superior perfor-
mance compared to state-of-the-art methods under
the same condition, with a substantial margin of
improvement. It is noteworthy that our method
has a significantly reduced search space for hyper-
parameters, with the layer index being our only
hyperparameter. This is in contrast to the approach
proposed by Kim et al. (2020), Kim et al. (2021),
and Kim (2022) which have a larger number of
hyperparameters to optimize including attention
heads, layer, and distance metric, etc.

Wu et al. (2020) has the same hyperparameter
search space as ours. They use a top-down ap-
proach to find the split point iteratively based on
the “impact matrix”, which captures the impact
of inter-word relationships. Our method focuses
on the span-level information and thus might be
more suitable for constituency parsing, whereas
their method may be more suitable for dependency
parsing, because the constituency tree is more con-
cerned with the syntactic role of words, by group-

*Dataset statistics can be found in Appendix A.1.

SFollowing prior research (Kim et al., 2019a, 2020), punc-
tuation was removed, unary chains were collapsed before
evaluation, the F1 score was calculated disregarding trivial
spans, and the results reported are based on the unlabeled
sentence-level F1.

%We use bert-base-multilingual-uncased.

"More details can be found in Appendix A.5.
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Model Method Layer S-FI SBAR NP VP PP ADJP ADVP
Baselines Right-Branching - 39.8 69 25 72 42 28 38
selnes Left-Branching - 9.0 6 1m 1 s 3 8
Kim et al. (2020) (w/o bias) 9 324 28 42 28 31 35 63
Kim et al. (2020) 9 4023 45 46 49 43 41 65
BERT, MART (Wu et al., 2020) 2 421 52 45 47 51 48 57
base Kim et al. (2021) - 427 - - - - - -
Kim (2022) - 43.0 - - - - - -
Ours 10 490 49 65 39 74 46 64
Kim et al. (2020) (w/o bias) 17 342 34 43 27 39 37 57
Kim et al. (2020) 17 444 55 48 48 52 41 62
BERT MART (Wu et al., 2020) 16 429 50 47 49 50 46 57
large Kim et al. (2021) - 44.6 - - - - - -
Kim (2022) - 45.0 - - - - -
Ours 15 482 50 62 42 69 46 64
Kim et al. (2020) (w/o bias) 9 338 40 33 33 43 42 57
Kim et al. (2020) 8 4.1 51 4 44 55 40 66
, MART (Wu et al., 2020) 12 422 52 44 50 51 46 56
RoBERTapse Kim et al. (2021) S 450 - oL - :
Kim (2022) - 454 - B - B} B
Ours 11 467 52 58 41 63 47 58
Kim et al. (2020) (w/o bias) 14 34.1 29 46 30 37 28 40
Kim et al. (2020) 12 423 40 50 43 44 48 56
] MART (Wu et al., 2020) 24 413 49 43 47 50 44 58
ROBERTa1arge Kim et al. (2021) - 48 - oL - )
Kim (2022) - 472 . . - . .
Ours 21 488 55 61 43 71 49 59
PRPN (tuned) (Shen et al., 2018) - 473 50 59 47 57 44 33
Other models with O (tuned) (Shen et al., 2019) - 48.1 51 65 41 54 38 32
rmotor eodage N-PCFG (Kim et al., 2019a) - 508 53 71 34 59 33 46
P P C-PCFG (Kim et al., 2019a) - 552 56 75 42 69 40 53
CT (w/o self-training) (Cao et al., 2020) - 48.2 23 60 33 57 66 62

Table 1: Parsing performance (S-F1) and label recall on English PTB with four masked LMs. We present results
of Kim et al. (2020) with and without the right-branching bias. BERT},,, results for the MART method are from
Wau et al. (2020). We run their code to produce results for other models by changing the masked LM. Kim (2022)
proposed 5 variations to their method and we present the one with the best-averaged performance across LMs.

ing them into constituent spans, while the depen-
dency tree is more concerned with the grammatical
relationship between words, by connecting them
with edges.

Additionally, our method even surpasses some
unsupervised constituency parsing methods with
parameter-update including PRPN (Shen et al.,
2018) and ON (Shen et al., 2019). Our best re-
sult is approaching Neural PCFG (N-PCFG) and
Compound PCFG (C-PCFG) (Kim et al., 2019a).
Notably, our best model even outperforms Cao et al.
(2020) without self-training, where they used an
external unlabeled large dataset to train a grammar
model built on top of RoBERTa-base with addi-
tional parameters.®

In addition to sentence-level F1 (S-F1), we re-

8When iteratively refining their model using the self-
training strategy involving multiple iterations of parameter
updates, they achieved an average S-F1 of 62.8. While our
method is not comparable to such an approach, we believe
our results can also be further boosted using a similar strategy,
especially when a parameter-rich model (e.g., RNNG) is used
for this step. We focus on establishing a strong parameter-
update-free approach in this work and leave such a direction
to future explorations.

port label recall scores for six main types, namely
SBAR, NP, VP, PP, ADJP, and ADVP. Notice that
our model can significantly outperform other mod-
els in terms of the label recall of NP, PP, and ADVP
as the semantic meaning of these phrases is usually
independent of the context and our method is able
to capture their representational change. While
for other constituent types, we obtain comparable
label recalls. This demonstrates that our method
is effective in recognizing the main constituency
types. In Section 5.2, we conduct a more detailed
analysis of perturbations that lead to improvements
in performance for different constituency types.

4.4 Parsing Performance on SPMRL

Table 2 shows the F1 scores on 8 languages from
the SPMRL dataset. As baselines, we consider N-
PCFG and C-PCFQG, following prior work (Kim
et al., 2021) as they can subsume naive baselines
such as right or left-branching9. From the table,

We report the results from Zhao and Titov (2021) where
they assume they have access to parses in the PTB develop-
ment set to select the best hyperparameters following Kim
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Method Basque French German Hebrew Hungarian Korean Polish Swedish \ Average
N-PCFG* 30.2 422 37.8 41.0 37.9 25.7 31.7 14.5 32.6
C-PCFG* 27.9 40.5 37.3 39.2 38.3 27.7 324 23.7 334
Kim et al. (2021) 41.6 45.6 40.3 42.0 404 49.8 429 39.3 42.7
Kim (2022) 41.2 36.1 37.6 38.0 33.8 49.1 51.4 32.6 40.0
Ours 44.0 48.7 40.8 50.4 39.1 43.7 53.3 46.3 45.8

Table 2: Sentence F1 on the test set of 8 languages from the SPMRL dataset. I: results from Zhao and Titov (2021).

it can be observed that our method outperforms
the previous state-of-the-art under the setting of no
parameter update in 6 out of 8 languages and with
significantly fewer hyperparameters!'?. Specifically,
for Hebrew, Polish and Swedish, our method im-
proves over the previous state-of-the-art by a large
margin. Our average performance on 8 languages
achieves 45.8 F1, an absolute improvement of 3.1
points over the previous best-published results un-
der the same condition. Results of all languages
surpass those of N-PCFG by 13.2 points and C-
PCFG by 12.4 points on average. Overall, these
results show that our method is robust and effec-
tive as compared to previous approaches across
languages.

4.5 Ablation Studies

Operations to Combine Scores Distortion
scores for each span are computed by summing
scores from three distinct perturbations, an ap-
proach inspired by Cao et al. (2020). This summa-
tion operation assumes that different perturbations
may provide complementary information, which
could capture a wider range of constituency evi-
dence. Aside from summation, alternative strate-
gies to combine the scores generated by perturba-
tions could be the minimum (assuming a span is a
constituent if one test is decisive) or the maximum
(assuming a span is not a constituent if at least one
test is inconclusive). We conducted further experi-
ments using the minimum and maximum methods
to combine perturbation scores. As the scores from
different perturbations may be on different scales,
we normalized the scores produced by each per-
turbation before combining them. As shown in

et al. (2019a). This setting is the same as ours.

'%In our case we only have one hyperparameter, while Kim
(2022) and Kim et al. (2021) find the best combinations of
attention head, layer, distance metric and create an ensemble of
attention heads. We present the results from their work where
the same pre-trained LM, M-BERT is used. They proposed
multiple variations of their method and we present the one
with the best-averaged performance. Note that Kim et al.
(2021) proposed an ensemble of multiple PLMs to obtain
better results and are not comparable with ours.

Model sum+N N+sum  N+min  N+max | F-norm
BERThase 49.0 48.9 41.6 40.7 47.6
BERT14rge 48.2 48.9 43.1 41.7 46.5
RoBERTapase 46.7 46.5 37.0 41.3 46.3
RoBERTa4rge 48.8 46.3 38.6 39.7 475

Table 3: Parsing performance with perturbation com-
binations operations and F-norm as the matrix norm on
the PTB test set. sum+N indicates summing the scores
first before normalization, while N+sum means normal-
izing scores from each perturbation and then applying
the sum operation.

Language sum+N N+sum N+min N+max \ F-norm
Basque 44.0 41.9 36.8 36.6 45.1
French 48.7 48.7 359 42.6 50.3
German 40.8 45.8 35.0 424 40.3
Hebrew 50.4 50.4 37.3 432 51.1
Hungarian 39.1 419 30.6 379 38.1
Korean 437 44.8 40.6 40.3 41.6
Polish 53.3 52.0 449 452 53.8
Swedish 46.3 45.8 36.7 39.8 45.8
Average 45.8 46.4 37.2 41.0 \ 45.8

Table 4: Parsing performance with perturbation com-
binations operations and F-norm as the matrix norm on
the SPMRL test set.

Tables 3 and 4, these alternative methods perform
less effectively than the summation method. One
possible explanation is that the minimum or maxi-
mum methods may be overly sensitive to individual
perturbations, potentially leading to an underesti-
mation or overestimation of the true constituency
score. In contrast, the summation method captures
a more comprehensive view of the perturbations,
thus reducing the influence of any single perturba-
tion and enhancing overall scoring robustness. Our
experiments also showed that whether the scores
were normalized after or before the summation pro-
cess did not significantly affect the results on the
PTB dataset, and the latter even slightly improved
the results for German, Hungarian, and Korean
languages in the SPMRL dataset. These findings
suggest that the method of summation, in calcu-
lating contextual distortion scores, serves as a ro-
bust mechanism for discerning constituents and
distituents and that all perturbations contribute to
effectively determining a span’s constituency.
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Figure 2: The layer-wise sentence-level F1 scores on
the PTB test set.

Matrix Norms We present a comparison be-
tween the Frobenius norm and its squared variant
for distortion calculation in contextual represen-
tations, motivated by superior preliminary results
from the squared variant on the PTB dataset. Tables
3 and 4 show that the squared Frobenius norm con-
sistently surpasses the conventional one on the PTB
test set, though its efficacy on the SPMRL dataset is
more varied. Despite this discrepancy, the inherent
property of the squared Frobenius norm — its ca-
pacity to amplify the divergence between matrices —
could potentially enable more precise identification
of subtle yet important distinctions, such as those
between constituents and distituents.

5 Analysis

5.1 Performance Comparison by Layer

To gain a better understanding of the relationship
between the layers of pre-trained LMs and parsing
performance, we plot the layer-wise F1 scores on
the PTB test set in Figure 2. We can observe several
patterns in the figure. First, the best-performing lay-
ers are largely found in the later layers of the LMs,
but not necessarily the last layer. In our approach,
the representation from LMs is mainly used for the
semantic information it contains as we focus on
the change of their contextual meaning, and it is
likely that the later layers contain richer semantic
information. However, we notice there is a per-
formance drop for BERT-large when later layers
are considered. We suspect this is because BERT-
large is more prone to be undertrained compared
to BERT-base and the deeper layers may contain
more noise. The issue is not present in ROBERTa
models probably because they are pre-trained on
a much larger dataset with carefully designed pre-
training strategies. Second, we note that the best-
performing layers on the development set for dif-
ferent languages are relatively consistent'!. This
suggests that there are specific layers, typically the

""With the same multilingual model, the best-performing
layers on 8 languages from SPMRL are usually 10 or 11.

Model w/osub w/odc w/omove all
BERTbase 47.2 44.2 40.9 49.0
BERT1arge 45.3 42.0 454 48.2
ROBERTapase 439 44.4 41.8 46.7

RoBERTa14rge 46.9 46.8 40.2 48.8

Table 5: Parsing performance with perturbation combi-
nations on the PTB test set.

later layers in the LMs, which are more sensitive
to linguistic perturbations and can reflect the infor-
mation of constituency with our perturbations.

5.2 Impact of Perturbation Types

Our method aggregates three types of perturbations
to obtain improved results. In this section, we
analyze the impact of perturbation combinations.
Specifically, we first conduct an ablation study to
verify that each perturbation helps to improve the
overall parsing performance. Then for each per-
turbation, we examine the constituency types that
it can extract effectively. Table 5 illustrates the
sentence-level F1 score on the PTB test set when
removing one type of perturbation each time'?. For
each language model, the layer that generates the
best parsing results on the development set is used.
From the results presented in Table 5, we observe
that each perturbation contributes to the improve-
ment of the results. Additionally, each PLM has a
different sensitivity to different perturbations. For
example, the performance drops the most when
the movement perturbation is not used, except for
BERT-large. We find that although BERT-large
is effective in extracting constituency trees with
our method, the patterns such as layer-wise perfor-
mance and perturbation combination performances
are different from those of other models. We be-
lieve that the differences in representation between
BERT-large and other masked LMs could be an in-
teresting research question worth exploring further.

Figure 3 illustrates the label recall of 6 main con-
stituency types when one perturbation is applied at
a time'3. It can be observed that the movement per-
turbation is generally more effective in capturing
all types of constituents compared to the other per-
turbations. We note that each constituent type can
be effectively captured by at least one perturbation
and each perturbation targets different constituency

Further details of performance comparison by layer on the
SPMRL dataset can be found in Appendix A.2.
1ZResults on other languages can be found in Appendix A.3
3We conduct our analysis on the BERT-base model. The
full results can be seen in Appendix A.3.
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tituents with the BERT-base model.

types. For example, with movement perturbation,
SBAR, NP, PP, and ADVP have high label recalls.
This is likely because when the position of these
constituents is changed within a sentence, the mean-
ing of the phrase itself, and the context around it
that are reflected in the span representations nor-
mally remain unchanged. For NP and PP, decon-
textualization is effective because the contextual
representations of these phrases are primarily deter-
mined by themselves. With or without context has
a relatively small impact on the contextual repre-
sentations of these constituents. Substitution works
well for SBAR, PP, and ADVP, as these phrases
can usually be replaced by a single word without
causing the meaning of the surrounding context to
be altered.

5.3 Distortion Score Reveals Constituency

We further analyze the correlation between distor-
tion score and constituency. We collect the dis-
tortion scores before normalization for each con-
stituent and distituent in the gold sentences in the
test set of PTB. Figure 4 illustrates the distortion
scores for constituents and distituents of varying
span lengths'#. We group the spans by their lengths,

'4To ensure that there is enough data for analysis, we restrict
our analysis to spans whose lengths are less than or equal to

and for each group of spans, the shaded areas repre-
sent the 30th to 70th percentile range of distortion
scores for each group. It can be seen that the dis-
tortion scores for constituents are normally smaller
than those of distituents, which verifies our hy-
pothesis that distortion scores of representations
calculated with perturbation reveal the likelihood
of a span being a constituent.

As observed in Figure 4, distortion scores for
spans of the same lengths are comparable to each
other, but not so when the spans are of different
lengths. The distortion score indicates the likeli-
hood that one span is a constituent compared to the
other when both spans have the same length. How-
ever, when the two spans are of different lengths,
the longer span is likely to have a lower distortion
score, not because it is a constituent, but due to
the lesser amount of perturbed information. It is
therefore essential to apply normalization over the
length of spans as shown in Equation 10.

6 Conclusion

In this work, we proposed a novel method for ex-
tracting constituency trees from masked LMs with-
out parameter updates. Based on linguistic pertur-
bations, we use the change in the contextual rep-
resentation to reveal the constituency property of
a span. Through experiments on the English PTB
and the multilingual SPMRL dataset, we show that
our method is robust and able to achieve state-of-
the-art performance across languages. Notably, our
method only requires a single hyperparameter, the
layer index within the Transformer architecture.
Our results indicate that our method is a simple yet
effective approach to obtaining constituency trees,
and future research includes exploring its applica-
tion to broader PLMs beyond masked LMs and the
identification of other types of syntactic structures.

36, as PTB does not have enough longer constituents.
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Limitations

Our method has some limitations that should be ac-
knowledged and addressed in future research. One
of the main limitations is the restriction of the PLM
type to masked LMs. While this model type has
been widely used in previous studies, it may not be
the only option. With the ongoing advancements
in pre-trained large language models, it is possible
that our method could be applied to a wider range
of PLM types. Furthermore, we have only con-
sidered three commonly used perturbation types in
this study, future studies could investigate a broader
range of perturbations and how they interact with
each other in determining the constituents. These
limitations provide an opportunity to further im-
prove the method and its applicability in the field.
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A Appendix

A.1 Dataset Statistics

Table 6 presents the statistical analysis of the En-
glish PTB and the multilingual SPMRL datasets.
The table includes the number of sentences, the av-
erage sentence length, and the maximum sentence
length from the development and test sets for each
language. The data presented serves as an overview
of the characteristics of the two datasets.

-=- bert-base (dev)
roberta-base (dev)

0.25 ~=- bert-large (dev)
roberta-large (dev)

(a) Base models with 12 layers (b) Large models with 24 layers.

Figure 5: The layer-wise sentence-level F1 scores on
the PTB development set.

A.2 Performance Comparison by Layer

This section presents the layer-wise performance
of the English PTB and the multilingual SPMRL
datasets on the development set. Specifically, for
the English PTB, we evaluate the performance
of BERT-base, BERT-large, RoBERTa-base, and
RoBERTa-large models. For the multilingual
SPMRL dataset, we use the M-BERT model. The
results of the PTB development set are depicted
in Figure 5, and the layer-wise comparison of the
SPMRL development set is illustrated in Figure 6.

Our analysis shows that the pattern of perfor-
mance for different languages is relatively consis-
tent, with our method achieving the best results
when using the later layers of the masked language
models (LMs), although not necessarily the last
layer. The performance over sentence lengths tends
to increase until the last few layers. In our approach,
the representation from LMs is mainly used for the
semantic information it contains, as we focus on
the change of contextual meaning due to perturba-
tions on context. Thus, it is likely that the later
layers contain richer semantic information.

On the development set of the SPMRL dataset,
the best-performing layer for Basque, French, Ger-
man, and Korean is layer 11, while the best-
performing layer for Hebrew, Hungarian, Polish,
and Swedish is layer 10. This suggests that there
are specific layers, typically the later few layers in
the LMs, which are more sensitive to linguistic per-
turbations and can reflect the contextual meaning
of words. This highlights the importance of con-
sidering layer-wise representations when analyzing
the performance of PLMs and the effect of con-
text on their output when directly using the PLMs
without finetuning.

A.3 Impact of Perturbation Types

In this section, we investigate the effect of vari-
ous perturbation types on the development set of
the SPMRL dataset. Table 7 presents the sentence-
level F1 scores for each language when one per-
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Stats English Basque French German Hebrew Hungarian Korean Polish Swedish
Size (development) 1,700 948 1,235 5,000 500 1,051 2,066 821 494
Avg. Length (development) 20 12 27 13 20 25 11 9 17
Max. Length (development) 98 37 98 60 87 76 26 26 101
Size (Test) 2,416 946 2,540 4,999 716 1,009 2,287 822 666
Avg. Length (Test) 20 10 26 16 21 17 11 8 14
Max. Length (Test) 58 31 119 115 70 56 29 32 63

Table 6: Dataset statistics of English PTB and the 8 languages from SPMRL.

—-M- basque
french
—&- german
k- hebrew
—®- hungarian
—A— korean
polish
@ swedish

Layer

Figure 6: The layer-wise sentence-level F1 scores on
the SPMRL development set.

turbation type is removed at a time. Overall, the
best performance is obtained when three perturba-
tions are applied. However, for Basque, German,
and Polish, the best performance is achieved when
two perturbations are combined. This suggests that
certain languages may be more sensitive to certain
types of perturbation. For example, removing the
movement perturbation results in a 1.8 point in-
crease in parsing performance in German. This can
be attributed to the fact that word order is crucial
in German in order to convey the correct meaning
of a sentence, unlike in English where elements
can be moved around without changing the overall
meaning. Therefore, the movement perturbation
may not be as effective in identifying constituents
in German as it is in languages with more flex-
ible word order, like English. Despite this, our
method with all perturbation types does not sig-
nificantly degrade the performance. For Basque
and Polish, the performance with the combination
of three perturbations is comparable to that of the
best-performing combination. This demonstrates
the robustness of our method across different lan-
guages and that all three perturbations generally
improve parsing results.

We present the full results of label recall of 6
main constituency types when one perturbation is
applied at a time on the English PTB test set, us-
ing BERT-base, BERT-large, RoOBERTa-base, and
RoBERTa-large in Table 8. The table demonstrates

Model w/osub w/odc w/o move all

Basque 423 42.6 31.8 425
French 46.9 432 41.8 47.7
German 42.2 41.0 45.7 43.9
Hebrew 50.1 50.0 42.8 514
Hungarian 31.6 31.3 29.5 33.2
Korean 41.5 40.9 41.2 43.2
Polish 55.3 51.8 474 55.2
Swedish 39.6 38.3 36.2 40.5
Avg. 43.7 424 39.6 44.7

Table 7: Parsing performance with perturbation combi-
nations on the SPMRL development set.

that movement perturbation is generally effective
in capturing all 6 types of constituents compared to
other perturbations. We note that each constituent
type can be effectively captured by at least one
perturbation and each perturbation targets different
constituency types. The results for different mod-
els are consistent with some exceptions for certain
constituency types. Further exploration of the dif-
ferences in representation that lead to performance
difference with respect to constituent types is left
as future work. It is worth noting that our method
with a single movement perturbation achieves com-
parable results to previous state-of-the-art methods.
This highlights the effectiveness of the movement
perturbation in detecting constituents. Similar find-
ings can be observed in Table 7 where the perfor-
mance is the most affected without the movement
perturbation.

A.4 Distortion Score Reveals Constituency

We analyze the correlation between the distortion
score and constituency on the SPMRL development
set. Figure 7 illustrates the distortion scores for
constituents and distituents of varying span lengths
for each language. To ensure a sufficient number
of constituents is considered in each length, we
restrict our analysis to spans whose lengths are
less than or equal to the average length of all sen-
tences in the development set. The results show
that the distortion scores for constituents are typ-
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Method Model SentFl SBAR NP VP PP ADJP ADVP
BERT-base 25.4 363 287 186 348 303 433

Substitu BERT-large 31.0 469 327 328 489 290 573
ubstitution RoBERTa-base 29.8 424 285 297 427 295 55.9
RoBERTa-large 277 415 263 259 391 244 462

BERT-base 37.6 332 499 288 503 280 357

Decontextualization  BERT-large 39.7 296 546 265 551 336 456
RoBERTa-base  33.8 268 440 258 379 266 318

ROBERTa-large  32.5 288 424 267 367 309 248

BERT-base 40.6 448 465 383 566 303 542

Movement BERT-large 39.1 445 443 391 511 273 517
v RoBERTa-base 435 494 517 394 593 428 556
ROBERTa-large 459 525 546 405 669 409 615

Table 8: Sentence-level F1 and label recall on the PTB test set for each individual perturbation.

constituent
=~ distituent

1
Span length

A.5 Additional Implementation Details

We use the pre-trained LMs from a PyTorch code-
base!”.

In instances where a word was split into word
pieces, the representation of the word was obtained
by averaging the representations of the word pieces.

We implement our method with PyTorch using
Quadra RTX 8000 GPU. The estimated running
time to parse the development set of English PTB
with BERT-base is 1 hour.
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Figure 7: The distortion scores of constituents and dis-
tituents for 8 languages in the SPMRL dataset.

ically lower than those for distituents, providing
evidence for our hypothesis that distortion scores
calculated using our method can reveal the likeli-
hood of a span being a constituent. This further
suggests our method is robust across languages.

Bhttps://huggingface.co/transformers/v3.3.1/
pretrained_models.html
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Section 3,4, 5

0J B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Not applicable. Left blank.

¥/ B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Section 3, 4, 5

¥f B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
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(1 C1. Did you report the number of parameters in the models used, the total computational budget
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v C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Section 4, 5. Appendix A.2

v C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?

Section 4, 5.

v C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?

Section 4, 5.

D Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

O DI1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

(] D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?

No response.

[0 D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?

No response.

0 D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

0] DS. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.
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