Tokenization and the Noiseless Channel

Vilém Zouhar£®

ETH Ziirich®

Abstract

Subword tokenization is a key part of many
NLP pipelines. However, little is known
about why some tokenizer and hyperparameter
combinations lead to better downstream model
performance than others. We propose that
good tokenizers lead to efficient channel usage,
where the channel is the means by which some
input is conveyed to the model and efficiency
can be quantified in information-theoretic
terms as the ratio of the Shannon entropy to the
maximum possible entropy of the token distri-
bution. Yet, an optimal encoding according to
Shannon entropy assigns extremely long codes
to low-frequency tokens and very short codes
to high-frequency tokens. Defining efficiency
in terms of Rényi entropy, on the other hand,
penalizes distributions with either very high or
very low-frequency tokens. In machine transla-
tion, we find that across multiple tokenizers, the
Rényi entropy with @ = 2.5 has a very strong
correlation with BLEU: 0.78 in comparison to
just —0.32 for compressed length.

1 Introduction

Tokenization, the practice of breaking up text
into words or subword pieces, or more generally,
tokens,' is often the first step in an NLP pipeline.
A wide variety of tokenization functions have
been proposed in the NLP literature (Mermer,
2010; Sennrich et al., 2016; Kudo, 2018). And,
indeed, research on developing a good tokenization
function continues because how one tokenizes
may have a large impact on model performance
in the downstream task. For instance, Gowda
and May (2020) note BLEU ranges from 28 to
37 just by changing the size of the vocabulary in
their machine translation (MT) pipeline. A direct
extrinsic evaluation of a tokenization function,

We release the tokenization-scorer package (App. B).

"To avoid ambiguity, we eschew the common expressions
word and subword and, instead, adopt the term foken to mean
an element of the vocabulary after tokenization. We formally
define token in §2.
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however, is computationally intensive: One first
has to retokenize the corpora (generally quick), but
then retrain the NLP model (often computationally
intensive) to evaluate the effect. For this reason,
characterizing the intrinsic properties of a good
tokenization function has practical benefits (Gallé,
2019; Gowda and May, 2020).

Our paper takes an information-theoretic ap-
proach to characterizing a good tokenization func-
tion. Following Gallé (2019), we contend that tok-
enization may be fruitfully viewed as determining
a good dictionary code for a language. Fortunately,
dictionary codes are equipped with a natural intrin-
sic metric of utility (expected code length) whereas
there are many ways to extrinsically measure the
tokenization quality. For simplicity and in line
with previous research, we choose a specific down-
stream task metric: BLEU (Papineni et al., 2002) in
the domain of MT.?

We hypothesize that, ceteris paribus, down-
stream task metrics should correlate with the ex-
pected code length of the unigram token distribu-
tion. While not immediately intuitive, the motiva-
tion is that there is a theoretical connection between
the expected code length (under an optimal en-
coder) of a token distribution and that distribution’s
Shannon entropy: The latter gives us a lower bound
on the former. And given a fixed vocabulary size,
higher entropy token distributions are more desir-
able because they are more balanced, i.e., there are
fewer tokens that occur too rarely or too frequently.
This characteristic should in turn balance a model’s
ability to learn representations for the entire vocab-
ulary, which requires exposure to enough instances
of each token while also penalizing the use of very
frequent character sequences as tokens, which is of-
ten inefficient due to their lack of distinct meaning.

Yet when using Shannon entropy as our metric
of a distribution’s balance, the optimal token
distribution may still include a large number of in-

%In Tab. 2 (Appendix) we replicate the findings with CHRF

(Popovié¢, 2015), BLEURT (Sellam et al., 2020) and COMET
(Rei et al., 2020).


mailto:vzouhar@ethz.ch
mailto:cmeister@ethz.ch
mailto:gjuan@ethz.ch
mailto:msachan@ethz.ch
mailto:rcotterell@ethz.ch
mailto:leodu@cs.jhu.edu
https://github.com/zouharvi/tokenization-scorer

frequent tokens. This behavior may be undesirable
for a number of reasons that we subsequently dis-
cuss. Accordingly, we formulate the compression
principle, which states that downstream task met-
rics, e.g., BLEU, should correlate with the expected
code length subject to a penalty for long codewords
(which correspond to infrequent tokens). Conse-
quently, we introduce a more nuanced formulation
of efficiency that employs Rényi entropy (Rényi,
1961),> whose hyperparameter o allows us to
penalize the use of long codes to varying degrees.

In the experimental portion of our paper, we
predict the performance of MT models. We find
that the channel efficiency with Rényi entropy with
a = 2.5 yields a Pearson correlation of 0.78 with
BLEU on German — English MT (1M parallel
sentences from CommonCrawl). This stands in
contrast to Shannon entropy or expected sequence
length, which yield Pearson correlations of only
0.22 and —0.30, respectively.

We also provide an easy-to-use package to score
tokenizations. See App. B for usage instructions.

2 Tokenization

Tokenization is generally defined informally as the
breaking up of text into a sequence of tokens which
are then encoded into a machine-interpretable for-
mat. However, to proceed with our analysis, we
require a more formal treatment. First, we assume
that there exists an alphabet, a finite, non-empty
set of characters >. We call a string of charac-
ters o = (o102---0on) € ¥* a text. In this
formulation, we assume that the alphabet . in-
cludes all characters, including punctuation and a
distinguished white space character. Finally, an
unordered multiset of texts {o1,...,0} C X*
is termed a corpus of size M. We denote the true
distribution over all texts as py-. Every py- induces
a marginal distribution over X, which we call the
>.-unigram distribution:

(@) 2 Y peo) 2O O)

ocy* ’0.|

where count (o, o) returns the number of times the
character o appears in text o. In general, we do
not have access to pg- but rather only to samples
from p;. with which we can represent an empirical

3Campbell (1965) shows that Rényi gives a lower-bound
on the expected length of an optimal code subject to a length
penalty, i.e., overly long or short codewords are penalized.

distribution py-. Our formal analysis, however, will
consider py.-.

Let A be a second alphabet, which we call the
tokenization alphabet. We define a tokenization
function ¢ : >* — D C A* as a function mapping
texts in alphabet 3 to sequences of tokens in
D = t(¥*), One popular choice in NLP is to have
3 be a set of Unicode characters and A be a set of
strings of Unicode characters. In this case, the tok-
enization function ¢ segments the text o into tokens
corresponding to smaller chunks of text. There are
many approaches for devising different ¢’s; a brief
overview of some of them is offered in App. E.

Furthermore, for our purposes, it is useful to
restrict tokenization functions to those that are
invertible (bijections), i.e., rules where we can
undo the tokenization. This way, the original text
can be reconstructed and no information is lost
during tokenization.

Example 2.1. Any injective tokenization function,
i.e., mapping different inputs &',6" to different
outputs o', a”, satisfies our requirements. As a
counter example, consider a tokenization function
t1 for which t1(two-cows) = (two,-, [UNK]) and
t1(two=birds) = (two,—, [UNK]). The t1’s lack of
injectivity prevents us from recovering the original
text from the token sequence (two,—, [UNK]).

Because of our restriction to invertible tokeniza-
tion functions, with a change of variable we can
convert the distribution over texts in >* into one
over token sequences § in D in a straightforward
manner: p,-(8) = ps-(t71(8)). Note that the
pushforward p,.(d) induces a distribution over A*
but with support limited to D.

In applied NLP, there is currently no widely ac-
cepted notion of the intrinsic quality of a tokeniza-
tion function. Rather, practitioners are generally
interested in its extrinsic performance, i.e., the per-
formance of a model trained on a corpus tokenized
using a certain tokenization function. Under such
an evaluation, given two tokenization functions, the
one that enables better performance on the down-
stream task is taken to be better. However, gauging
the quality of a tokenizer function in this manner
is computationally expensive. Thus, we develop
an information-theoretic intrinsic evaluation.

3 Communication in a Noiseless Channel

Our analysis of tokenization schemes relies on the
following framing: Our ultimate goal when tokeniz-
ing a text o ~ py. is the transmission of this text



across a hypothetical channel. To perform this feat,
we first tokenize o into a sequence in D C A*, We
then encode each token in A as a sequence of sym-
bols from the set {1, ..., b}, where b is determined
by the channel. Our goal is to analyze the prop-
erties of tokenization schemes that lead to models
with good downstream performance.

In the case of a noisy channel, we seek an encod-
ing scheme that will help ensure that o is resilient
to noise in addition to efficiently encoding o. How-
ever, in the noiseless case, we only care about effi-
ciency. We can assume that we are working with a
noiseless channel because, in the process of encod-
ing data, no information is ever altered by a stochas-
tic process. In this case, one can equivalently
think of noiseless channel encoding as compres-
sion. Thus, our analysis proceeds by considering
the efficiency of different tokenization functions as
if our goal is to use them to communicate over a
noiseless channel. To this end, we first discuss the
conditions for building such an encoding and then
discuss the concept of efficient channel usage.

Definition 3.1. A token-level encoder enc, is a
functionency : A — {1,...,b}* that maps every
token & € A to a string of symbols in base b, which
we call a codeword. We can naturally lift the token-
level encoder to a sequence-level encoder using

concatenation as enc,(6) = @ L enca(6,).

In order to be able to uniquely decode a string 6,
we further require that enc, produces prefix-free’
codes for all tokens in A. As an example, Huffman
encoding provides a fast and nearly optimal (in a
sense to be discussed in the subsequent section)
method to construct prefix-free codes (Huffman,
1952).

Example 3.2 (One-hot encoding). Consider a to-
kenization alphabet A. In NLP, when b = 2, the
most straightforward way of encoding the n™ ele-
ment of A is a vector of zeroes with length |A| with
1 on position n.

Example 3.3 (Transmission). We consider an arbi-
trary encoder enc, over a given alphabet A and a
channel with b = 2. Now given a text and some to-
kenization function t(two-cows) = (two-, cow, s)
we apply the encoder: enc,(two-) = 1010101
enca(cow) = 101111101 and enca(s) = 01010

*Whitespace information is not lost here because it is in-
cluded in the tokens (see Example 2.1).

SPrefix-free means that no codeword is a prefix of any
other codeword.

and for the whole sequence ency (t(two=cows))
=101010110111110101010.

For the remainder of the paper, we will not be
interested in any specific enc,, but rather in an
optimal token-level encoder that we can achieve,
as measured by expected code length measures.

Definition 3.4. The expected code length Lenc
of a token-level encoder ency is defined as

= pald

0EA

ol @
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A well-known result from information theory
tells us that Eq. (2) is bounded by the Shannon
entropy of W,, a A-valued random variable with
law p,. To introduce the theorem, we first define
Shannon entropy.

Definition 3.5. The Shannon entropy of W, is
defined as

== pald)

0EA

log Pa 5) 3)

For channels using b symbols for transmission, the
logarithm is of base b. Traditionally in information
theory, ones takes b = 2.

Theorem 3.6 (Shannon’s Source Coding Theorem).
Let W, be a A-valued random variable with law
pa and let enc, be an encoder. Then,

H(WA) < EencA (pA) 4

with the optimal token-level encoder ency
satisfying

Eenc*A (pA) < [H(WAH )

This theorem tells us that if we wish to com-
municate tokens from the alphabet A through
a noiseless channel, their minimum expected
length for any possible encoding is bounded by
the Shannon entropy of the distribution p,. An
optimal token-level encoder will produce codes
with the expected length within those exact bounds.
We can prove a very similar result to Shannon’s
source coding theorem (Shannon, 1948) that tells
us how well we can optimally encode a A*-valued
source using only the token-level encoder.

To this end, we first introduce the notions of
expected sequence length and average per-token
encoding length, and then offer a lower-bound on
the compression achievable using only a token-
level encoder. We additionally define three random



variables that will prove useful in our analysis; all
of them are pushforwards of p,-.

Let L be a random variable whose values
range over strings’ lengths, i.e., L(d) = |d|. The
expected token sequence length [£[L] for sequences
sampled according to p,- is then

E[L] = ) pa(8)[d] 6)

dEA*

where for notational simplicity, we leave the depen-
dence of this expectation on p,- implicit as it will al-
ways be clear from context. Let X5(d) = %('5’5)
be the unigram random variable, i.e., a function
that returns the proportion of § that consists of a
particular §. Finally, define the random variable
Lenca (0) = >_sen X5(8)|enca(d)].
We now turn to our first major theorem.

Theorem 3.7. Let p,- be a distribution over A¥,
and let p, be the unigram distribution induced by
pa- (Eq. (1)). Then, for an optimal token-level
encoder enck : A — {1,...,b}* lifted to the se-
quence level, the following lower and upper bounds
hold:®

»Cenc*A (Par) — Cov(fenc*Aa L)
H(W.) < E[L] ©)

< [H(W4)]
Proof. The proof is given in App. C. |

In the special case of Shannon entropy, we addi-
tionally arrive at the following stronger inequality:

Lenc+ (pa) < Eenc*A (Pa-) (&)

This holds because enc* is not constrained to
token-level codes and the unconstrained minimum
over all codes is naturally lower than the con-
strained version. As a concrete example, even if
two &', 8" € A always appear together in practice,
enck must assign both ¢’ and ¢” their own unique
code. Such a constraint does not apply to enc*. We
foreshadow that this inequality does not generalize
to Rényi entropy, as discussed in §4.

Theorem 3.7 tells us that the expected code
length of a sequence-level encoder, based on a
token-level encoder, is proportional to the expected
code length of the unigram distribution up to
an additive covariance factor. This allows us to

®Be careful not to confuse enc, an optimal token-level
encoder (here lifted to the sequence level), with enc-, an

arbitrary sequence-level encoder, which we usually denote
enc when clear from context.

determine both a lower-bound for the expected
code length of such an encoder and an upper-bound
for the expected code length of a sequence-level
encoder based on an optimal token-level encoder.
We are now in the position to return to the main
objective of this paper: Assessing the quality of
different tokenizers. One natural way of comparing
tokenizers would be to compare properties of the
distributions over tokens that they each induce. At
first glance, Shannon entropy looks like the most
obvious candidate for such a property. However,
for distributions over A of different sizes, it is
not directly comparable. The efficiency of a
tokenization function addresses this issue.

Definition 3.8. Let ps- be a distribution over X%,
lett : X* — A* be a tokenization function, and let
Da- be the distribution over A* induced by t. The
efficiency of t is defined as

def ﬁencg (Pa+)

f(ps. 1) & oA S0 9
o) Eencg (pa-) ®

where enc’, is an optimal token-level encoder and
ency a uniform encoder that assigns all tokens in
A codes of equal length: [log |Al].

Theorem 3.9. The efficiency of t is upper-bounded
by
Cov (fenc*A 7L>
log |A|

> eff(ps-, 1) (10)

and lower-bounded by

Cov (fenc* ,L)
H(W,) + — >

[log [A[]

where W 4 is a A-valued random variable with law
Pa, the unigram distribution induced by t.

< eff(ps,t)  (11)

Proof. The proof is given in App. C. ]

Note that the upper bound given in Eq. (10)
tells us how efficient the best code could be, which
is the more interesting bound for our purposes.
Additionally, we note that, by introducing a normal-
ization factor, efficiency provides a better solution
than directly comparing distributions’ entropies.
We illustrate this in the following example.

Example 3.10. Consider a tokenization function
t1 with tokenization alphabet Ay where |A1| = 6.
We then introduce a second tokenization function
to with a tokenization alphabet Ao defined to be



A1 plus an additional 6 tokens that occur very
infrequently. The difference between these two dis-
tributions is illustrated in Fig. 1. If, for example,
we relied solely on the Shannon entropy, which is
higher for more uniformly spread-out distributions,
we would judge the second distribution to be better
(2.50 < 3.08). However, the efficiency tells the
opposite story (0.97% > 0.86%).

As Example 3.10 suggests, the measure provided
by efficiency is in line with the idea of a more
balanced distribution over A*. Informally, we do
not want a tokenizer that induces a distribution
with very low entropy, as this is indicative of an
unbalanced distribution. The efficiency eff provides
us with a notion of this imbalance. To relate
efficiency back to our metaphor of the noiseless
channel, we note that the quantity 1 — eff(p,-, t)
is known as relative redundancy and corresponds
to the maximum data compression ratio (in
percentage of how much can data size be reduced)
that can be achieved.

4 Rényi Efficiency

Definition 3.8, the standard definition of efficiency,
is based on Shannon entropy. Upon closer inspec-
tion, we see it linearly penalizes the use of long
codes. To see why, consider a case where the dis-
tribution changes such that the entropy increases
by one. Then, the upper-bound for the expected
code length provided by an optimal encoder also
increases by one. However, in some cases, we may
wish to assign a non-linear cost to code length,
e.g., there may be a non-linearly higher cost for
decoding longer codes. In the context of choos-
ing the vocabulary for a model, this corresponds
to our desire to avoid inducing tokens that occur
very infrequently because there may not be enough
examples of them in the training data for the model
to learn. To add an additional degree of freedom to
accommodate such preferences Campbell (1965)
generalizes the measure of expected code length to
discounted expected code length for a hyperpa-
rameter s as follows:’

log (Y5en pa(8)b10m05 )
dEA

/

Lones (ps) £ lim -

(12)
By L’H6pital’s rule, we can show that

= pald

deA

(13)

encA (Pa) )lenca(6)]

"Our notation differs slightly from Campbell (1965).

|A] =6, H=2.50, Eff=97%

-

Efficient

|A| = 12, H=3.08, Ef=86%

rm
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Frequency

Figure 1: Examples of unigram distributions with effi-
cient and inefficient channel usage.

and, additionally, that

Léron(ps) = maxfencs(3)]  (14)
Beyond the limiting cases, for s € (—1,00) \ {0},
we further note that E((;])C A (pa) is a monotonically
increasing function of s. The larger our value of s,
the more disproportionately Eésn)c A (pa) increases
as a function of the longest codeword, which often
corresponds to the encoding of a low-frequency
character in a good code because high-frequency
tokens are assigned the shorter codes in order
to minimize the expected code length. For large
enough s, this has the effect of encouraging all
codewords to be roughly of equal length. Campbell
(1965) sought an analogue of Shannon’s coding the-
orem for Eéf])c A (pa) where s # 0. As it turns out,
there is a deep connection with the Rényi entropy.

Definition 4.1. The Rényi entropy of order o« > 0
is defined as

Prima facie, Rényi entropy bears some sem-

blance to Eé‘;)c A(pa). To see this, consider the
limiting cases. At o = 0, we have

Ho(pa) = log |A| (16)
And, at & = oo, we have
Heo(pa) = max —log pa(9) (17)
dEA

Finally, we have H; (p) = H(p), i.e., & = 1 corre-
sponds to Shannon entropy, another result which
can be shown by L’Hopital’s rule. These examples
suggest the correspondence a = (1 + s)~!, which
fits the three cases considered, e.g., note that o = 0
when s — oco. Moreover, this is exactly the intu-
ition we argued for above: When o = 0, we encode
tokens with codewords of the same length which



follows from minimizing the length of the longest
codeword. On the other hand, when s = —1, we en-
courage shorter codes for high-probability tokens.
This case corresponds to &« = co. We now prove
that, similarly to how H(W,) provides bounds
for Lencs, (pa-) in Theorem 3.7, Ho (W) provides

bounds for [,(S)

encs, (pa-), where enc?, is an encoder
optimal with respect to a given s = o~ 4 1. We

term such an encoder s-optimal.

Theorem 4.2 (Generalization of Campbell (1965)).
Let Hy, be the Rényi entropy of order o and let
,Cé‘;)c A (Pa) (Eq. (12)) be the discounted expected
code length for the encoder enc,, where s =
a~Y — 1. Moreover, let W 5 be a A-valued random
variable with law p,. Then for an s-optimal token-
level encoder enc},, the following bound holds on
the discounted expected code length:

Ha(Wa) < Loy (bs) < Ha(Wa)] - (18)
Proof. Proof in App. C. |

Note that we have further generalized Camp-
bell’s (1965) result by allowing some negative val-
ues for s, namely, s > —1. As a result, we can
induce additional non-linear weight on too short
codes as opposed to only long codes.

Now we generalize the efficiency with respect

to Shannon entropy to Rényi entropy. Let enc}
be an s-optimal token-level encoder over token
alphabet A. Note that several terms from our prior
notation can now be expressed in terms of enc},
i.e., enck = enc) and enc{ = enc.
Theorem 4.3. Let o = (1 + s)~! and pa- be a
distribution over A*, and let p, be the unigram
distribution induced by p- (Eq. (1)). Then, the
following inequality holds

> £encz (par) — COV(ZencZa L)

Ho (W
(19)
for an  s-optimal  sequence-level  en-
coder enc} based on token-level encoder

enca : A —{1,...,b}*.
Proof. Proof in App. C. |

Definition 4.4. Let ps- be a distribution over X%,
lett : X* — A* be a tokenization function, and let
pa- be the distribution over A* induced by t. The
Rényi efficiency of t at « is defined as

ar Lencs, (Pa-)

= 20a
Eenczo (Pa-) (200)

effo (g, 1)

o EenCSA (Pa-)

(20b)
Eencg (Pa-)

where s = a1 — 1.

The Rényi efficiency can be easily upper-
bounded in a similar manner to the Shannon ef-
ficiency.

Theorem 4.5. Let py. be a distribution over Y%,
lett : ¥X* — A* be a tokenization function, and let
pa- be the distribution over A* induced by t. Then,
for an s-optimal token-level encoder ency, lifted
to the sequence-level, the Rényi efficiency of t at
« is upper-bounded by

Cov( Lengs. , L
[Ho(Wa)] + (E[L]A )

log |A|

> effy(ps,t) (21)

where W4 is a A-valued random variable with
law pa, the unigram distribution induced by t.

Proof. Proof in App. C. ]

To provide more intuition of why the non-linear
penalization in Rényi efficiency makes for a good
measure of distribution balance, we offer a worked
example in Example E.1.

S The Compression Principle

In previous sections, we discussed how different
tokenizers lead to token distributions of varying
properties. Now, we add the last piece necessary to
link the downstream performance of a system with
the choice of a tokenizer.

Hypothesis 5.1 (Compression Principle). Let ps-
be a distribution over texts with characters from
alphabet 3 and t be a tokenization function from
3* to A* for some token alphabet A. Let p, be
the A-unigram distribution induced by t. Finally,
let PERFORMANCE 5/ (t) be some measure of per-
formance of a system M which uses tokenization
t. Then, for some o dependent on M, eff,(py-,t)
is a good predictor of PERFORMANCE y (t).

In words, we hypothesize that the efficiency
of the tokenization function ¢ is highly correlated
with the downstream performance. We will verify
this claim experimentally in §6.

Rényi Entropy «. The choice of a for H,
determines the extent to which longer codewords
are penalized. On one hand, if we observe that
Rényi efficiency with low « correlates the best
with performance, we can conclude that longer
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Figure 2: Efficiency of sequence length and Hs 5 /H, as predictors of MT performance (average of 5 runs). Bands

show 95% t-test confidence intervals for regression lines.

codewords and, hence, very low-frequency tokens
hurt performance. On the other hand, if we observe
that Rényi efficiency with high o, we can conclude
that shorter codewords and, hence, very high-
frequency tokens hurt performance. Note that most
downstream NLP applications do not explicitly use
codewords (all token representations are the same
size), but long codewords are still a natural way
to think about low- and high-frequency tokens.

Learnability. The most intuitive explanation for
why some tokenization functions enable good
downstream results and some worse is that having
many low-frequent tokens will prevent the model
from learning their distributional properties. This
hypothesis can be related back to the sample com-
plexity of the learning algorithm, i.e., the number
of training samples needed by the model in the
given setting to learn the function of interest. If
we accept that part of the MT task is learning the
meaning of all individual vocabulary tokens, then
sample complexity could (at least partially) be ex-
pressed in terms of the number of instances of each
token. This argument is made by Gowda and May
(2020), who are concerned with what proportion of
0 € A appears at least 100 times in the corpus for
the downstream task at hand.

Nevertheless, we will see shortly that the best
predictor with Rényi efficiency is for o > 1, mean-
ing that higher weight is given to codewords for
more frequent tokens. We therefore hypothesize,
that very high-frequency tokens have the most im-
pact in downstream performance.

6 Experiments

We now seek empirical evidence for Hyp. 5.1. We
focus on MT, where a standard automatic evalu-

ation metric is BLEU (Papineni et al., 2002). We
use the English—German CommonCraw] dataset
in all experiments. The specifics of the MT system,
data and evaluation are described in App. D. We
consider two different experimental manipulations.
First, we experiment with various modifications
of the popular byte-pair encoding (BPE) tokenizer
(Sennrich et al., 2016) to control its compression
rate. The details are discussed in §6.1. Second, we
experiment with a variety of tokenization schemes:
Unigram (Kudo, 2018), WordPiece (Devlin et al.,
2019), Lempel-Ziv—Welch (Ziv and Lempel, 1977;
Welch, 1984) and Morfessor (Creutz and Lagus,
2007; Virpioja et al., 2013; Smit et al., 2014). The
details are discussed in §6.2.

Note that throughout our experiments, we make
the simplifying assumption of Cov (ZencSA , L) =
0. It simplifies the upper bound of eff(pg-, t) (from

[H(Wa)]
Theorem 3.9) to Tog A

effo (ps-, t) (from Theorem 4.5) to

and the upper bound of

[Ha (Wa)]
ﬁ. From

our preliminary results, Cov (Lencs , L) is nega-
tive and small. We leave its more accurate approx-
imation, which requires a Rényi analogue of Huff-
man coding as in Jelinek (1968), to future work.

6.1 Experiment 1

In our first experiment, we analyze how predictive
various quantitative attributes of a tokenization
scheme are of downstream model performance.
We consider BPE with 5 different vocabulary sizes:
2k, 4k, 8k, 16k, and 32k. For each vocabulary
size, we create multiple tokenization schemes
with varying compression rates. As discussed in
App. E.1, BPE produces a vocabulary through a
greedy compression algorithm. However, in order
to achieve a variety of different compression rates,



Predictor Pearson Spearman p?
Sequence len. —0.32 (=0.118) —0.24 (=0.239) 10%
Percentile freq. 0.76 (<0.001)  0.63 (<0.001) 58%
Entropy 0.22 (=0.281) 0.12(=0578) 5%
Entropy eff. 0.56 (=0.004)  0.38 (=0.006) 31%
Rényi entropy  0.49 (=0.001) 0.38 (=0.006) 24%
Rényi eff. 0.78 (<0.001) 0.66 (<0.001) 61%

Table 1: Correlations between different predictors and
MT performance (BLEU). The p-values for each statistic
(computed using a t-test) are in parentheses.

we inject random noise into the algorithm.® We
achieve this by sampling from a Boltzmann distri-
bution over the pair frequencies with temperature
parameter 7; see App. E.1 for details.” We then
treat each vocabulary size—temperature pair as a
single data point in our analysis.

Our main quantitative attribute of interest, i.e.,
predictor, is Rényi efficiency. Aside from Rényi ef-
ficiency, we further consider Shannon and Rényi en-
tropies, Shannon efficiency, and average tokenized
sequence length. Further, one popular heuristics
for choosing the vocabulary size is given and jus-
tified by Gowda and May (2020). It can be sum-
marized as: “Use the highest possible vocabulary
size such that 95% of [tokens] occur at least 100
times in the data.” While the constants seem ar-
bitrary, this rule of thumb works well in practice
(Gowda et al., 2022; Dramko et al., 2022; Kumar
and Thawani, 2022). Nevertheless, it is stated
in an algorithmic manner and not as a predictor
of performance or learnability. We attempt to
turn it into a regressive predictor so as to make
it more comparable with the other quantities stud-
ied. Given p,, let f,,(pa) symbolize the frequency
of the n™ percentile. We then define the quantity
Fy e (pa) = ngngw fn(ps), which in words,
is the sum of token frequencies from the *yih to
7 percentile. The original work suggests ex-
amining the frequency of the 95" percentile, i.e.,
Y1 = 72 = 0.95. In contrast, we add an additional
degree of freedom as we do not inspect a single
percentile frequency but rather a sum across an in-
terval. Later, we scan the whole space for v, and
72 and show that there are better choices that lead
to much higher correlations.

We use Pearson and Spearman correlations with

8The empirical effects of choosing BPE merge operations
uniformly at random is studied by Silevé and Lignos (2023).

%Note that the stochasticity in our case is introduced during
training and not during inference, as in the popular BPE-
dropout method (Provilkov et al., 2020).
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Figure 3: Correlation of Rényi efficieny (H,,/Hg) with
BLEU on train data in the experiment 1. Maximums of
Pearson and Spearman correlations are marked with *.

downstream model performance (measured with
BLEU) as our metrics of predictor quality. Recall
that Pearson correlation tells us the strength of a
linear relationship between two variables. On the
other hand, Spearman correlation quantifies the
strength of a linear relationship of the ranking.

Results. In order to select « (for eff,) as well
as 1 and 7o (for F,, .,), we use half of the data
to perform a grid-search, selecting the hyperpa-
rameters that lead to the highest Pearson correla-
tion. We show the results of this grid search for
H,/HpinFig. 3 (o* = 2.5) and for F,, -, in Fig. 4
(i = 0.03,~5 = 0.83). Unless otherwise stated,
we use these values in subsequent experiments. We
show the relationship between BLEU, sequence
length and Rényi efficiency as approximated by the
lower bound (Theorem 4.5) in Fig. 2. A compre-
hensive comparison for all predictors is shown in
Tab. 1. The visualization of the other predictors
is in Fig. 6. From these analyses, we can see that
the Rényi efficiency provides a significantly better
explanation for downstream model performance
than any of our other predictors.

When examining which a leads to the highest
absolute correlation with BLEU, we can conclude
that tokenization schemes that result in fewer very
high-frequency tokens are the best for downstream
performance. This is evinced by both the relatively
high value of « that leads to the best correlation
with performance (Fig. 3, a* = 2.5) and by Fig. 4,
which shows that frequencies in the top percentile
correlate negatively with performance. Importantly,
this finding does not contradict Gowda and May’s
(2020) rule of thumb, which focuses on low fre-
quency tokens. While very high and very low fre-
quencies produced by a tokenization scheme are
not independent, a tokenization scheme may feasi-
bly produce both, neither or only one.

Furthermore, the Pearson correlation between
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Figure 4: Results for grid search over the best hyperpa-
rameters for percentile frequency predictor to maximize
the absolute Pearson correlation. The highest is for 3™
to 83" percentile with p = 0.81.

the efficiency (Ha5/H) and percentile frequency
(F0.03,0.83) 1s 0.96, which suggests that both pre-
dictors are capturing the same underlying effect.

6.2 Experiment 2

In this experiment, we evaluate whether there exist
aspects of a tokenization scheme that influence
BLEU beyond the Rényi efficiency. Following re-
sults in Experiment 1, we focus on Rényi efficiency
at « = 2.5. In contrast to the first experiment,
we consider different tokenization schemes (BPE,
Unigram, WordPiece, LZW, Morfessor). We ma-
nipulate their efficiency by lowering the amount of
tokenizer training data (2k, 8k, 100k parallel lines)
together with varying vocabulary sizes of 4k, 8k,
and 16k tokens. We then treat each tokenization-
scheme—training-data-size—vocabulary-size triple
as a single data point in this analysis. We compare
three different linear models (Gelman and Hill,
2006), where BLEU is always the dependent
variable: (i) with the tokenization scheme as a
random effect, (ii) with Rényi efficiency as a fixed
effect, and (iii) with both. Importantly, we treat
tokenization scheme as a random effect because
the set of tokenization algorithms that we consider
does not encompass all possible methods, i.e., only
a sample of all possible algorithms are observed.
To compare the ability of these different models
to predict BLEU, we look at the average change in
log-likelihood of held-out data points under a given
model with respect to a baseline model: A model
trained with only an intercept term. A larger value
of A log-likelihood indicates that the data point
is more probable under the comparison model, i.e.,
the comparison model more closely fits the ob-
served data. We use 10-fold cross-validation to es-
timate these differences: Our data is split randomly

e
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w
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A Log-Likelihood
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Figure 5: Mean change in log-likelihood on held-out
data under linear models using different predictors. Bars
indicate 95% confidence interval around the mean.

into 10 folds, where 9 of the folds are used to learn
model coefficients and the 10" fold is held back for
evaluation. The same process is performed until we
have a A log-likelihood value for each data point.

Results. In Fig. 5, we see that Rényi efficiency is
a stronger predictor of MT performance than the
tokenization scheme alone. Interestingly though,
the predictive power of these two predictors seems
to be orthogonal, as evinced by the mean A log-
likelihood of a model with both predictors. This
finding suggests that there are additional qualities
of a good tokenization scheme that Rényi efficiency
alone cannot capture. We leave the investigation of
such qualities to future work.

7 Conclusion

Our paper presents a new information-theoretic
approach to characterizing a good tokenization
scheme. We contend that the Rényi efficiency
of the unigram distribution that a tokenization
scheme produces is a principled measure of
the tokenization quality. To test this claim, we
evaluate a large set of tokenization schemes, with
varying vocabulary sizes and produced by different
tokenization schemes. We observe how the Rényi
efficiency of these different tokenizations relates to
the performance of a downstream MT model. We
find that, for an appropriate choice of the parameter
a, this new metric has a very strong Pearson
correlation with BLEU: 0.78 in comparison to
just —0.32 for baseline sequence length. From
a theoretical perspective, this property can be
connected to a penalization of token distributions
that are too unbalanced, having, in particular, very
high-frequency tokens. This finding is in line with
the more general principle that compression is
connected with learnability. Our framework also
has practical benefits as it allows for an intrinsic
evaluation of tokenization functions.



Limitations

It is possible that there is a hidden effect caused
by the language pair direction, model selection, or
training data and its size. However, our results bear
high statistical significance for cases where we de-
sire high correlation and low statistical significance
where we expect low correlation. Assured by this
and concerned by the large cost of training a large
number of MT systems, we did not experiment
with larger data or other language directions apart
from limited additional experiments in Tab. 2.
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A Related Work

Prior to the widespread adoption of subword tokenization, large vocabulary sizes (e.g., 500k) were needed
to allow for output expressivity and to avoid a high proportion of out-of-vocabulary tokens. Various tricks
were devised to tackle the resulting computational issues (Jean et al., 2015; Mi et al., 2016; L’Hostis
et al., 2016). On the other side of the spectrum, character-level NMT was also explored (Ling et al., 2015;
Costa-jussa and Fonollosa, 2016), though issues arise with large sequence lengths. Mielke et al. (2021)
provide an overview of the evolution of NLP tokenization and describe different types of tokenization
approaches. They conclude that reasoning about tokenizer choices remains a vital part of modern pipeline
preparation. In this context, our work quantifies and hence also automates some of this process by offering
a framework to help guide the decision process and hyperparameter selection. Somewhat similar to our
work, Ataman and Federico (2018) perform a comparison between BPE and Morfessor, though with only
one specific vocabulary size (30k). Similarly to Gowda and May (2020), they suggest that homogeneity
of token frequency is an important factor for MT model performance.

B Package Usage

The package is open-source!? and can be downloaded via pip and used via the command-line:

$ pip3 install tokenization-scorer
$ tokenization-scorer -i en-de.tokenized_with_unigramlm.{en,de}
> 0.4826

$ tokenization-scorer -i en-de.tokenized_with_wordpiece.{en,de}
> 0.5047

or as a module in Python:

import tokenization_scorer

textl = "pick @@ed pick @@l @Qed pick @@les”
tokenization_scorer.score(textl, metric="renyi”, power=2.5)
> 0.8031528501359657

text2 = "pick @e @@d pick @@l @@e @@d pick @@l @Re @@s"
tokenization_scorer.score(text2, metric="renyi", power=2.5)
> 0.9105681923824472

The supported metrics are the ones presented in Tab. 1: renyi_efficiency (default), renyi_entropy,
shannon_efficiency, shannon_entropy, percentile_freq, bits, sequence_len. The power in
Rényi can be modified using an extra parameter: -e power=2.5. The similar applies to the percentile
frequency with -e perc_start=0.03 perc_end=0.83.

Ygithub.com/zouharvi/tokenization-scorer


https://github.com/zouharvi/tokenization-scorer

Predictor En—De Cs—En

BLEU CHRF BLEURT COMET BLEU CHRF BLEURT COMET

Sequence length 0% 4% 23% 13% 4% 24% 51%
Percentile freq. 9% 21% 47% 33% 25%  63% 86%
Entropy 0% 5% 24% 14% 7% 31% 58%
Entropy efficiency 22% 8% 0% 1% 6% 1% 3%
Rényi entropy 7% 0% 6% 1% 0% 7% 24%
Rényi efficiency 53%  33% 12% 19% 32%  35% 17%

17%
55%
23%
3%
4%
39%

Table 2: Variance explained between predictors and MT performance (BLEU, CHRF, BLEURT and COMET) in
Experiment 1 (only 3 MT seeds, 5 temperatures and 4 vocabulary sizes) with different language directions.

C Proofs

Lemma C.1. Let p,- be a distribution over A*, and let p, be the unigram distribution induced by p,-

(Eq. (1)). Then, the following equality holds

ZpA )|enca ()] + Cov (LencA7 ) = Lenca (Pa-)
ISTAN

Proof. Let § € A*. Define the expected counts as follows

E-count(d Z pa-(8) count(d, 9)
dEA*
count (6,6
S RUELY
dEA*
— E [X(6) L
d~pa

We start by manipulating the expected code length

6]
Z pa-(0)lenca(6)| = Z pN((S)Z lenca (0,
dcA* SeA* n=1
|9]
= 2 D pa(®lenca(8y)]
deA* n=1
Z ZPA Jeount(d, d)|enca (9)]
deA* feA
= Z lenca (0 (Z pa-(0)count(d, 6))
ISTAN SEA*
= ZE count(d)|enca(0)]
dEA
Now, we proceed with algebraic manipulation.
Z E-count(d)|encA(d)| = Z IE [Xs(0) - L] lenca(9)]

Pax

dEA 6EA

= ( E £X5(6)] 6{157 [L] lenca(d)] + Cov (X5(d), L) |encA((5)|>
seA °

(22a)

(23a)

(23b)

(23¢)

(242)

(24b)

(24c)

(24d)

(24e)

(25a)

(25b)



=Y E [X5(8)] E [L]]enca()|+ > Cov (X5(6),L)[enca(d)] (25¢)

Y IN [N

dEA dEA
=Y E [Xs5(8)] E [L]]enca(d)|+ Cov <Z \encA(é)]X(;(é),L> (25d)
O~par d~pa~
dEA dEA
=) E [Xs(8)] E [L]]enca(s )|+C0v<2|enCA )| X5(8), L> (25¢)
d~par d~pax
dEA dEA
difLencA
ZpA )|enca(6)] +Cov (ZencA,L) (251)
0EA

expected unigram code length
|

Theorem 3.7. Let p,- be a distribution over A*, and let p, be the unigram distribution induced by p -
(Eq. (1)). Then, for an optimal token-level encoder enck : A — {1,...,b}* lifted to the sequence level,
the following lower and upper bounds hold:'!

Eenc*A (pA*) - COV(zenc*A ) L)
E[L] %

H(W,) <
< [H(W,)]

Proof. By Lemma C.1, we have

Z pa(0)lency (6)] + Cov (Lenc* L) ﬁenc*A (Pa-) (26)
JEA

Now, by applying Theorem 3.6, we achieve

E[L] - H(W.) < E[L] Y pa(6)lenc} ()] (27a)
SEA

E[ ] (WA) + COV (Lenc* L < E Z pA ‘enCA ’ + COV (Lenc* L) (27b)
dEA

E[L] - H(W,) + Cov (fenc*A7L) < »Cenc*A (Pa-) (27¢)

Similarly, from Theorem 3.6, we have

E[L] - [H( L]~ pa(d)[enc (9)] (28a)
SEA

E[L] - [H(W,)] + Cov (Lenc* L > E[L ZpA )enck (0)| + Cov (fencz,L) (28b)
SEA

E[L]- [H(W4)] + Cov (fenc*A7L) > Eenc*A (Pa-) (28¢)

Putting these together with some additional algebraic manipulation we get

H(WA) < ﬁenc“A (pm) ?E[(;/C])V(Lencz,[/) < (H(WA)-I 29)

This concludes the proof. |

"Be careful not to confuse enc , an optimal token-level encoder (here lifted to the sequence level), with @nC-, an arbitrary
sequence-level encoder, which we usually denote enc when clear from context.



Theorem 3.9. The efficiency of t is upper-bounded by

Cov ( Lgne »L
[H(W,)] + (IE[L]A)

log [A

> eff(py-, 1) (10)

and lower-bounded by

Cov(fenc* ,L)
H(WA) + TL]A

[log [A[]

where W, is a A-valued random variable with law p,, the unigram distribution induced by t.

< eff(py-, t) (11

‘Cenc*A (pa+)
‘cencg (par)

distribution, Cov (fenCX,L) = 0 and obtain E[L]10g |A| < Loy (ps-) < E[LI[log|A[]. Using this
fact, we can obtain an upper bound

Proof. Recall that eff(py.,t) = . To bound the denominator we use the fact, that for uniform

»Cenc*A (pa-)
ﬁencg (pa-)
_ E[L]- [H(W.)] + Cov (ency . L)
B Lencg (pa-)

E[L] - [H(W4)] + Cov (Lency, , L)
- E[L]log|A|

Cov ( Lgne »L
[H(W,)] + (E[L]A)

eff(py-,t) = (30a)

(numerator lower-bound from Theorem 3.7) (30b)

(denominator upper-bound) (30c)

= 30d
log 4] .
and a corresponding lower bound
Lane* .
ofi(py. 1) = —onea ) (31a)
[’encg (Pa-)
E[L] - H(W,) + Cov (Lenc~ , L
> L] (W) ( enca ) (numerator lower-bound from Theorem 3.7) (31b)
Eencg (Pa-)
E[L] - H(W,) + Cov (Zenc* ,L)
> a (denominator upper-bound) (31c)
E[L][log|A[]
COV(fenC*A ,L)
[log |A[]
[ |

Theorem C.2 (Generalized Holder’s inequality; §2 in Aczél and Beckenbach (1980)). Let f, g and h be
vectors of positive values and coefficients p, q and r such that all but one are negative and % + % + % = 0.
Further, ifVi : f;g;h; = 1 then

1£1lp lgllg IAll- < 1. 32)

As noted in Aczél and Beckenbach (1980), Theorem C.2 is in fact a simple special case of Theorem 12
in Hardy et al. (1934). We will use Theorem C.2 specifically with » = —1 and h; = f;g;. This simplifies
the requirements for exactly one of p and ¢ to be negative and % + % = 1. Eq. (32) can then be restated as
the following.



Corollary C.3 (Reverse Holder’s inequality). If f, g are positive vectors and p, q are such that % + % =1
and exactly one is negative and the other is positive, then

1Fllp llgllq < 1 f9lls- (33)

Theorem 4.2 (Generalization of Campbell (1965)). Let H,, be the Rényi entropy of order o and let

Eésn)c A (pa) (Eq. (12)) be the discounted expected code length for the encoder encs, where s = a -1
Moreover, let W o be a A-valued random variable with law p,. Then for an s-optimal token-level encoder
ency, the following bound holds on the discounted expected code length:

Ha(Wa) < Lo (ps) < [Ha(Ws)] (18)
Proof. Letp = —s and ¢ = 1 — «. Let us consider three cases of s:

* s =0, then o = 1, then Theorem 3.6 applies;

e s€(—1,0),thena € (1,00),p € (0,1) and ¢ € (—00,0).

* 5€(0,00),thenc € (0,1),p € (—00,0) and ¢ € (0,1).

In the latter two cases, we have one of p and ¢ is positive and one is negative. Further, our definitions of p
and ¢ imply that p~! + ¢! = 1, which allows us to use the reverse Holder’s inequality (Corollary C.3).
First, we note that the reverse Holder’s inequality implies that, for finite sequences (z;) and (v;),

(>-a) g (> =y (34)
(Z x:s) - <Z yil_o‘> = < Z TiYi (p and ¢ substitution) (35)

Let £(0) = |enca ()| be the lengths of the codes given by our encoding. Further, let p, (&) be the unigram
probabilities and b be the base of our encoding. Now set x; = p, (5)_%11_3(5) and y; = pA(d )% This step
is valid because both quantities are positive. Then we proceed with algebraic manipulations

(Z (m(é)‘ib‘“”)_s> | (Z%(a)i)l‘“) Ym0 O s

LISTAN LISTAN 0EA

(Z(pA<6)‘ib‘“5>)‘8> S (Z(m(é)i)l‘“) < S ot (algebra)  (36b)

ISTAN dEA LISTAN
. .
(Z pa((s)bs'g(é)) <Z Pa (5)a> < Z b=t (algebra)  (36¢)
dEA dEA dEA
defy &y défc

_1 1 o .
Then, let A = (Ssenpa(6)p )" B = (Y seapa(d)®)™= and C = S sea b9 in the subse-
quent proof descriptions. Note that by the Kraft-McMillan inequality (Kraft, 1949), because our code is
prefix-free (and b > 0), it must be that 0 < C' < 1.

o 1
(Z(;EA pa(9) ) < (ZPA((;)bM(lS)) (divide by AC) (37a)

2sea b= seA

1

(Zm(&“) < (Zm(é)bs'“‘”> S O<C<1)  (37b)

LISTAN STAN



1 a 1 s-0(6 P .
1o log (Z pa(0) ) < glog (Z pa(8)6° )> (take log) (37¢)

[J<TAN dEA
Ho (W) < £52(ps) (37d)

Our constraint on C'is met and Eq. (37d) holds with equality when the lengths of our code satisfy the
following relationship

5)“
> sreaPa(d)?
{(8) = —alog, pa(6) + log,, (Z pA(é’)"> (38b)
N
Now we consider a sequence of M tokens = (d1, ..., dxr), where each d,, is sampled according to p,;

note that this is not necessarily equivalent to a sequence § ~ p,-, as we do not assume independence
between tokens in that setting. Let us first lift p, to take sequences, i.e., pA(d) = H%:l pa(d), which
follows naturally due to the independence of each §,, in this setting. Now let

M
Q=) pa(6)* = (Zm(é)“) (39)

dcAM SEA

where the later equality follows from the fact that there are |A|™ sequences in AM and each ¢ appears
an equal number of times. We will now use Eq. (38b) to reason about the length of an optimal code for
d, where we similarly denote length as ¢(d). We will first assume that s € (—1,0) but later show that
a slight modification to the proof makes it viable also for s > 0. Following the result in Eq. (38b), the
length £(4) of an optimal integer-length code for & should satisfy

—alogy pa(6) +log, Q < €(8) < —arlogypa(6) + log, @ + 1 (40a)

—salogy pa(6) + slogy Q > s-£(8) > s — salogy pa(d) + slog, @  (multiply by s € (—1,0))
(40b)

pa(6)7%°Q° > > i) > b°pa(6)5Q° (raise to power b)
(40¢c)

pa(8) Q% > pa(8)b7 1) > bops () T Q? (multiply by pa(8))
(40d)

Pa(8)%Q% > pa(8)b*H0) > b5p,(6)*Q° (s =1—q)
(40e)

Z pA(J)aQs > z pA((S)bS.E((S) > Q% Z pA((s)a
seAM deAM deAM

(sum across all sequences of length M)
(401)

Qerl > Z pA(é)bs-é(tF) > QSJrlbs (sub. Q)

seAM
(40g)
M
Qs > <Z pA(é)bS'e(6)> > Q% Hp* (same logic as Eq. (39))
deA

(40h)

(s 4+ 1)log, @ > M log, (Z pA(é)bs'£(5)> > (s+1)log, Q + s (take logy)

deA

(401)



1
log, @ + 1

log, Q < —logb (ZpA )b 0 )> <

dEA
(divide by s € (—1,0))
(40j)

1 M . 1 .
T log;, Q < o log, <Z pa(6)b aa)) < T log, @ + 1 (substitute o)

dEA
(40Kk)
1 M M 1 M
—log, <Z m(é)a) <~ log, (Z pA<6>bS'“5>> <1 log, (Z ma)“) +1
dEA dEA SEA

(definition of (Q)

(401)
Ho(Wa) < M - L, (pa) < M - Ho(Wa) +1 (40m)
1
Ha(Wa) < L, (pa) < Ha(Wa) + = (divide by M)
(40n)

Note that in Eq. (40b), we multiplied by a negative value and therefore swapped the directions of the
inequalities. Then, in Eq. (40j) we divided by a negative value and swapped the inequalities back to their
original directions. If s > 0, we would not change the directions of the inequalities and the proof would
proceed as before.

For large M, we can get arbitrarily close to H,. However, if we wish for £(§) to be an integer, the
upper bound becomes [Hqy(W,)]. [ |

Theorem 4.3. Let o = (1+5)~! and pa- be a distribution over A*, and let p, be the unigram distribution
induced by pu- (Eq. (1)). Then, the following inequality holds

[Ho(Wo)] > Lencz (pa-) ;E[(;;(])V(Lencz,l}) o

for an s-optimal sequence-level encoder ench based on token-level encoder ency : A — {1,...,b}*.

Proof. Let ency be an s-optimal code, i.e., a code that minimizes Eéf,)c A (pa-). By Lemma C.1, we have
L]y pa(®)lencs (8)] + Cov (Lency L) = Lancs (pa) @1
YA

To prove the bound, we proceed as follows. Assume s # 0 as that case is covered by Theorem 3.7. We
first start with a simple application of Jensen’s inequality:

[Ho(Wo)] > £§1)Cb (pa) (Theorem 4.2) (42a)
= logy (ZdeA pﬂ((s)bslencz(é)‘) (definition) (42b)
s
> Lsea pA(5)3§ncZ(5)| log, b (Jensen’s inequality) (42¢)
= ZpA )|enc? (9)] (42d)
dEA

Algebraically, combining the above results

»CencSA (par) — COV(zencSA, L)
[HG(WA)—‘ 2 E[L]

which proves the theorem. ]

(43)




Theorem 4.5. Let py. be a distribution over 3%, let t : ¥* — A* be a tokenization function, and let p -
be the distribution over A* induced by t. Then, for an s-optimal token-level encoder enc?, lifted to the
sequence-level, the Rényi efficiency of t at « is upper-bounded by

Cov( Lenes , L
[Ho(Wa)] + (E[L]A)

log |A|

where W , is a A-valued random variable with law p,, the unigram distribution induced by t.

2> effa(ps-, t) (2D

Lencs, (Pa*
Proof. Recall from Definition 4.4 that eff, (ps-,t) = £ 5 P)

A L withs = 1 — 1. Again, to bound
ency (Pa*) a
A

the denominator, we use the fact, that for uniform distribution, Cov (Lencg, L) = 0 and obtain

E[L]log |A| < Lency (Pa-). Then, we proceed as follows

Lencs .
effo (ps-, 1) = L@A) (44a)
Eencg (a-)
E[L] - [Ho(W,)] + Cov (Lencs, , L
< ] [Ho(Wa)] ( % ) (upper-bound numerator) (44b)
[’encg (Pa-)
E[L] - [Hy(W4)] + Cov (Lencs, , L
< - | Q(E[z]ﬂ 10gA|( e ) (lower-bound denominator) (44¢)
Cov( Lengs. ,L
- MWl (E[L]A) (44d)
- log |A|
This proves the result. |

D Model, computation and reproducibility details

For the MT model, we use the transformer_iwslt_de_en model architecture in Fairseq (Ott et al.,
2019). For data, we use 1M training and 50k dev parallel sentences from English-German CommonCrawl
(El-Kishky et al., 2020). BLEU evaluation performed using SacreBLEU (Post, 2018). Details for the
model training and the code to reproduce the experiments in this paper will be made publicly available.
For the first experiment we trained 5 X 6 x 9 = 270 MT models. For the second experiment we trained
5 x5 x 3 x 3 =225 MT models. We used varying GPU models (GTX 1080, RTX 2080, RTX 3090)
based on availability in shared compute cluster. Although different hardware and different tokenizations
had an impact on the training time, the average per one configuration was 1.5 days. Overall, we estimate
800 GPU days.

E Tokenization Schemes

In this section, we describe the four tokenization schemes used together in the second experiment. Special
attention is paid to BPE, which plays a role in the first experiment. Tab. 3 shows how different tokenizers
with varying vocabulary sizes tokenize the same word. For simplicity, we do not include variable-length
encoding, even though it has been previously applied to MT (Chitnis and DeNero, 2015).

E.1 Byte-Pair Encoding

BPE was first discovered by Gage (1994) as a faster compression algorithm alternative to Lempel-Ziv—
Welch. It was later adapted by Sennrich et al. (2016) as a tokenizer for MT. The algorithm starts by
splitting words of individual tokens of length 1 (characters). Then it repeatedly takes the most frequent
pair of adjacent tokens and joins it into a new single token, adding this token to the vocabulary. This
procedure is repeated until we fill the predefined vocabulary budget. Zouhar et al. (2023) show that this
greedy approach is approximately optimal when searching for the vocabulary (merge sequence). We are
however interested in intentionally suboptimal vocabularies.
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Figure 6: Predictor visualization in parallel to Fig. 2. Various features are used as predictors of MT performance

(average of 5 runs). Bands show 95% t-test confidence intervals for regression lines.

Tokenizer V =16k V =4k

BPE Re gu lation Re gu la tion
BPET = —0.4 Reg ul ation Reg ul a tio n
Unigram Regulation Re gu 1 ation
WordPiece Regul ation Re gul ation
LZ Re gul ation Re gu la tion
Morfessor Regul ation Re gul ation

Table 3: Example tokenizations of the word Regulation.

Temperature. In order to introduce stochasticity into the process and intentionally alter the tokenization,
instead of deterministically merging the most frequent token pair, we randomly sample a pair proportionally
to their frequencies, similar to setup of Sdlevd and Lignos (2023). We add an additional hyperparameter
to this strategy by annealing the frequency distribution with a temperature parameter 7, where annealing
is performed via a softmax. We use 7 = 0T (original greedy BPE), 0.2, 0.4, 0.9, 100, —100, —0.9, —0.4,
—0.2, and 0~. Progressively, each temperature creates less and less optimal BPE compression model,
increasing the encoded length of the data. The last model, with 7 = 0, we dub antigreedy because it

always chooses the least frequent pair to merge, practically leading to a character-only model.

E.2 Unigram LM

While BPE repeatedly merges the most frequent pair, Unigram LM (Kudo, 2018) tokenizer modifies
this part of the algorithm with a more complex approach. The algorithm then jointly optimizes the token
vocabulary and the unigram probability of the tokenized text. Because of this dual objective, the algorithm
is done in Expectation-Maximization manner. We start by seeding the token vocabulary with the most
frequent substrings. In one step, probability is assigned to individual tokens and also how much worse the
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Figure 7: Examples of unigram distributions of tokens with varying imbalance of probabilities. Letters corresponding
to the are in [ and those corresponding to cow in

overall probability of the whole text would be if the single token was removed. In the second step, top-n%
of the tokens is preserved. These two steps are repeated until the vocabulary size is reduced to size V.

E.3 Linguistically Informed tokens

Morfessor (Creutz and Lagus, 2007; Virpioja et al., 2013; Smit et al., 2014) is a family of unsupervised
morphological analyzers that work on the minimum description principle, which is not distant from
compression. The link to tokenization is clear: Under some minimization objective, segment the input
text into a list of morphemes with the constraint of at most V' distinct morphemes appearing in the whole
text, where V' is a hyperparameter. In the case of tokenization, we would use the morphemes as tokens.
For our purposes, we use vanilla Morfessor 2.0.6.

E4 Lempel-Ziv—Welch Compression

BPE, a popular tokenization scheme used in many NLP applications, was first invented (Gage, 1994) as
a faster compression algorithm alternative to Lempel-Ziv—Welch (LZW). However, there is, in fact, a
family of algorithms related to LZW. LZ77 (Ziv and Lempel, 1977) and LZW (Welch, 1984) are two of
the most popular variants.

Example E.1. Consider a scenario where we want to encode a lowercased text without punctuation with
the restriction of |A| = 28. Upon adding the 26 lowercased letters of the English alphabet and space, we
can add one additional token. Let us consider the tokens: the and cow. Certainly, the former token is
much more frequent in natural English distribution and hence a tokenizer fully utilizing this token would
result in shorter optimal expected code length. By adding the token the, we are lowering the probability
mass of the most frequent English letters: e and t. This does not happen with cow and hence the first
distribution is more uniform. For a depiction of this synthetic example, see Fig. 7. If we measure it using
effy, we obtain only 1% difference but if we measure it using effy, we get 3% difference, showing that the
first tokenization is much better.



