Z-Code++: A Pre-trained Language Model Optimized for Abstractive
Summarization

Pengcheng He!, Baolin Peng?, Song Wang',
Yang Liu!, Ruochen Xu!, Hany Hassan Awadalla',Yu Shi!, Chenguang Zhu',
Wayne Xiong!, Michael Zeng!, Jianfeng Gao?, Xuedong Huang!
1 Microsoft Azure Al
2 Microsoft Research
penhe@microsoft.com

Abstract

This paper presents Z-Code++, a new pre-
trained language model optimized for abstrac-
tive text summarization. The model extends
the state of the art encoder-decoder model us-
ing three techniques. First, we use a two-phase
pre-training process to improve model’s perfor-
mance on low-resource summarization tasks.
The model is first pre-trained using text cor-
pora for language understanding, and then is
continually pre-trained on summarization cor-
pora for grounded text generation. Second, we
replace self-attention layers in the encoder with
disentangled attention layers, where each word
is represented using two vectors that encode its
content and position, respectively. Third, we
use fusion-in-encoder, a simple yet effective
method of encoding long sequences in a hierar-
chical manner. Z-Code++ creates new state of
the art on 9 out of 13 text summarization tasks
across 5 languages. Our model is parameter-
efficient in that it outperforms the 600x larger
PalLMs40p on XSum, and the finetuned 200x
larger GPT3753 on SAMSum. In zero-shot
and few-shot settings, our model substantially
outperforms the competing models.

1 Introduction

Text summarization aims at producing a concise
and fluent summary while preserving salient con-
tent and overall meaning of the source docu-
ments. It has been applied in a wide range of
real-world applications, e.g., summarizing Web
search results for interactive information retrieval
(Gao et al., 2022) and generating medical sum-
maries from doctor-patient conversation transcripts
(Zhang et al., 2021).

While the extractive approach is the dominant
approach in commercial systems due to its simplic-
ity and effectiveness (Allahyari et al., 2017), the
abstractive approach is getting more attention in
the research community as neural language models
are used (e.g., Rush et al., 2015; Nallapati et al.,

2016; Chopra et al., 2016; Liu and Lapata, 2019b,a;
Pasunuru et al., 2021). Compared to the extractive
approach where a summary is constructed using
extracted sentences, abstractive summarizers para-
phrase the idea of the source documents in a new
form, and have a potential of generating more con-
cise and coherent summaries.

However, good abstractive summarizers are
harder to develop since we have to deal with prob-
lems like semantic representation, inference and
low-resource text generation, which are more chal-
lenging than sentence extraction. Recently, large-
scale pre-trained language models (PLMs) such
as PEGASUS (Zhang et al., 2020), GPT (Radford
et al., 2019; Brown et al., 2020), TS5 (Raffel et al.,
2020), have been applied for abstractive summa-
rization. While these models can produce surpris-
ingly fluent text, the generated summaries often
contain factual inconsistencies, caused by distorted
or fabricated facts about the source documents,
which is known as the hallucination problem (Krys-
cifiski et al., 2019; Celikyilmaz et al., 2020; Ji et al.,
2022). In addition, since the amount of text in the
source documents can be very large, it is expen-
sive to train an end-to-end abstractive model (e.g.,
an encoder-decoder transformer model) given the
memory constraints of current hardware and the
latency constraints of applications such as online
document summarization for interactive informa-
tion retrieval. Therefore, a two-stage approach is
widely used, where a subset of document sentences
is coarsely selected using an extractive summa-
rizer, and an abstractive summarizer generates the
summary conditioning on the extraction (Liu and
Lapata, 2019b). This approach is sub-optimal in
that salient information might be missed in the ex-
traction.

In this paper, we propose a new encoder-
decoder PLM optimized for abstractive summa-
rization, Z-Code++, which significantly extends
Z-Code (Wang et al., 2020), a state-of-the-art PLM

5095

Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 5095-5112
July 9-14, 2023 ©2023 Association for Computational Linguistics

developed for machine translation, as follows.

First, Z-Code++ is pre-trained on web text us-
ing two tasks, replaced token detection (RTD) and
corrupted span prediction (CSP). RTD uses a gen-
erator to generate ambiguous corruptions and a
discriminator to distinguish the ambiguous tokens
from the original inputs (Clark et al., 2020). RTD
is proved to be more sample-efficient than the clas-
sic mask language modeling (MLM) task in learn-
ing text representations for language understanding
(Bajaj et al., 2022; Hao et al., 2021). In CSP, a
consecutive segment of tokens are corrupted and
the model is learned to predict the corrupted spans
using all the uncorrupted tokens in the original in-
put (Raffel et al., 2020; Joshi et al., 2020). CSP
can be viewed as a generalized form of gap sen-
tences generation (GSG), a pre-training task tai-
lored to abstractive summarization (Zhang et al.,
2020), where the spans are entire sentences. CSP
outperforms GSG in our experiments. In the second
phase of grounded pre-training (Peng et al., 2022),
the model is continually trained on summarization
corpora of documents-summary pairs to better sup-
port low-resource fine-tuning to downstream sum-
marization tasks that require the model to produce
summaries grounded in source documents. We find
in our experiments that grounded pre-training sig-
nificantly boosts the results on downstream tasks
in low-resource settings.

To handle the large input documents, we use
fusion-in-encoder (FiE), a simple yet effective
method of encoding long sequences in a hierar-
chical manner. It works by first splitting the input
sequence into small chunks, applying attention on
each chunk locally to get the chunk representation,
and applying attention globally on the concatenated
chunk representations to get the representation of
the original input.

In addition, we replace the self-attention layer in
the encoder with the disentangled attention (DA)
layer (He et al., 2020, 2021), where each word
is represented using two vectors that encode its
content and position, respectively, and the atten-
tion weights among words are computed using dis-
entangled matrices on their contents and relative
positions, respectively. DA is motivated by the ob-
servation that the attention weight of a word pair
depends on not only their contents but their relative
positions. For example, the dependency between
the words “deep” and “learning” is much stronger
when they occur next to each other than when they

occur in different sentences. We show in our exper-
iments that DA leads to a more effective abstractive
summarizer.

For evaluation, we have pre-trained two Z-
Code++ models on English data and multi-lingual
data, respectively. The English model is trained
using 160G English text data and the vocabulary
of DeBERTaV2 (He et al., 2020). The multi-
lingual model is trained on mC4 corpus which is
the same as mT5. These models are evaluated on
13 text summarization tasks across 5 languages,
and create new state of the art on 9 tasks. As of
May 6th, 2022, Z-Code++ sits atop of the XSum
leaderboard, surpassing UL2,0, TS5 and PE-
GASUS. It is worth noting that our models are
very parameter-efficient. For example, Z-Code++
outperforms PalLMs40p, which is 600x larger in
model parameters, on XSum, and outperforms a
fine-tuned, 200x larger, GPT3175s5 on SAMSum. In
zero-shot and few-shot settings, our models outper-
form more substantially the competing models.

2 Z-Code++

This section describes three modeling techniques
we have exploited to optimize Z-Code++ for ab-
stractive summarization, including two-phase pre-
training, disentangled attention, and long sequence
encoding.

2.1 Two-Phase Pre-Training

The two-phase pre-training, which includes the
language model pre-training and grounded pre-
training phases, is inspired by the GODEL recipe
(Peng et al., 2022) that has been proposed to pre-
train language models for grounded text generation
tasks, such as dialog response generation and ab-
stractive question-answering.

In the language model pre-training phase, Z-
Code++ is pre-trained using two language model-
ing tasks, replaced token detection (RTD) (Clark
et al., 2020) and corrupted span prediction (CSP)
(Raffel et al., 2020; Joshi et al., 2020). As il-
lustrated in Figurel (Left), RTD uses a generator
trained with MLM to generate ambiguous tokens
to replace tokens in the original input X, and a
discriminator to determine whether a token is from
X or generated by the generator. Let 05 and 6p
be the parameters of the generator and the discrimi-
nator, respectively. The MLM loss of the generator
is written as

5096

Original? Y Y Y Y Y N Y ¥
rPT1r1rrrd
Encoder
Tttt
Replaced X1 Xy X3 X4 X5 X9 X7 Xg
X3 X9
I I
Generator
rrrrrrrt
Masked X1 X2 [M] x4 x5 [M] x7 xg
Original X1 Xy X3 X4 X5 Xg X7 Xg

Replaced Token Detection

Uoss-Attention

X3 X4 Xg Reconstructed
T T T Text Span
Decoder
[MO] x3 X4 Text Span
Encoder

FPrrrai

x1 %2 [MO] x6 x7 xg Span Masked

X1 X2 X3 X4 X5 Xg X7 Xg Original

Corrupted Span Prediction

Figure 1: The two pre-training tasks, replaced token detection (RTD) and corrupted span prediction (CSP), used in
the language model pre-training phase of Z-Code++. RTD task is to optimize the encoder, and CSP is to optimize
the encoder-decoder. Encoders in the same color share parameters during training.

Lun = B (= Sieelog o (710 = 2l Xa)), (D

where X is the input to the generator by randomly
masking 15% tokens in original input X. The
input sequence of the discriminator is constructed
by replacing the masked tokens, x;, ¢ € C, with the
tokens, Z;, sampled by the generator as

Fip = T ~ pog (5i,c=$i|)~(c), ieC @)
’ x4, i¢C.

Then the discriminator is trained using the loss
Lgrrp = E (* 2 log po,, (1 (%ip = i) \XDJ)))

where 1(-) is the indicator function and X p is the
input to the discriminator constructed via (2). In
ELECTRA (Clark et al., 2020), the discriminator
and generator share token embeddings and their pa-
rameters are optimized via MLM and RTD jointly
as L = Lty + ALgrrp. However, as pointed out in
(He et al., 2021), such embedding sharing makes
training highly inefficient since MLM and RTD
pull token embeddings into very different direc-
tions, creating the “tug-of-war” dynamics. MLM
tries to map the tokens that are semantically simi-
lar to the embedding vectors that are close to each

other. RTD, on the other hand, tries to discriminate
semantically similar tokens, pulling their embed-
dings as far as possible to optimize the classifica-
tion accuracy. Thus, we use the method of gradient-
disentangled embedding sharing (He et al., 2021)
by re-parameterizing the token embeddings of the
discriminator as

Ep = sg(Ec) + Ea, 4

where Ep and E¢ are the embedding parameters
of the discriminator and generator, respectively, sg
is the stop gradient operator which only allows gra-
dients propagation through Ea. Ex is initialized
as a zero matrix. In each training pass, we first run
a forward pass of the generator to generate inputs
for the discriminator, and then a backward pass to
update E g with respect to MLM. After that, we run
a forward pass for the discriminator using the in-
puts produced by the generator and run a backward
pass with respect to the RTD loss to update Ep
by propagating gradients only through EA. After
model training, E'a is added to Eg and the sum is
saved as Ep in the discriminator, as Equation 4.
The CSP is widely used to optimize the encoder-
decoder PLMs such as T5 (Raffel et al., 2020). As
illustrated in Figure 1 (Right), given input string
X, we first select a continuous span Y; by first

5097

randomly selecting a start position in X and a span
with an average length of 3. Then we replace the
selected span Y; with a sentinel token [M;]. We
repeat the process until the replaced tokens amount
to 15% of all tokens in X. Then, we feed the
corrupted input X csr to the encoder. The encoder-
decoder model is then trained to recover the Y;
from the context. The CSP loss is written as

Y|
Lese =B | = Y, log po (Yil Xosp, Y<i) | (5)
i=1

If we restrict the corrupted span Y; to a complete
sentence, CSP is equivalent to the GSG task which
simulates the process of extractive summarization
and is shown to be effective for training abstractive
summarizers (Zhang et al., 2020). In this study,
we find the that CSP, as a more general form of
GSG, works better across many natural language
understanding and generation tasks, including sum-
marization, as to be discussed in Section 3.

Combining the pre-training tasks of MLM, RTD
and CSP, in the language model pre-training phase,
Z-Code++ is optimized using the joint loss as L =
ALy + AoLgtp + A3Lcsp, where we set \; =
1, X2 = 30, A3 = 1 in our experiment.

In the second phase of grounded pre-training, Z-
Code++ is continually pre-trained on a collection of
summarization datasets, as shown in Table 1, which
consist of documents-summary pairs (X,Y), to
better support low-resource finetuning for down-
stream summarization tasks that require the model
to generate target summaries Y grounded in source
documents X, as

N
p(Y1X) = [[pnlyr, - vn-1,X) (6)
n=1

Following TO (Wei et al., 2021), FLAN (Sanh et al.,
2022), and GODEL (Peng et al., 2022), we add
for each training pair (X,Y") a natural language
instruction of the summarization task, as illustrated
in the below example and in Table 1. In our ex-
periment, we only apply grounded pre-training for
low-resource summarizations. Unless specified, we
apply the first phase Z-Code++ to downstream task
adaptation.

2.2 Disentangled Attention

Disentangled Attention (DA) is first used in De-
BERTa (He et al., 2020, 2021). DA is an extension
of the classic self-attention (SA) mechanism in that

Instruction: Summarize the following news article into a one
sentence summary.

Source: Officers searched properties in the Waterfront Park and
Colonsay View areas of the

city on Wednesday. Detectives said three firearms, ammunition and
a five-figure sum of money were recovered. A 26-year-old man who
was arrested and charged appeared at Edinburgh Sheriff Court on
Thursday.

Target: A man has appeared in court after firearms, ammunition
and cash were seized by

police in Edinburgh

Figure 2: Examples of instructions used for grounded
pre-training.

DA represents each input word using two separate
vectors: one for the content and the other for the
position. Meanwhile, its attention weights among
words are computed via disentangled matrices on
both their contents and relative positions. The ex-
periments of DeBERTa shows that DA is more effi-
cient than SA to encode the positional dependency
in Transformer models. Z-Code++ adopts DA in
modeling. Our experiments show that DA leads to
a more effective abstractive summarizer.

2.3 Long Sequence Encoding

It is challenging to encode long sequence given
the O(N?) memory and computation complexity
of self-attention and DA. Various sparse attention
mechanisms have been proposed to alleviate the
problem. However, sparse attention often hurts
performance on short sequences due to the de-
crease of attention precision. Inspired by fusion-in-
decoder (Izacard and Grave, 2020) and hierarchi-
cal transformer (Liu and Lapata, 2019a), we pro-
pose fusion-in-encoder (FiE), a simple but effective
mechanism to encode long sequences while retain-
ing high attention precision on short sequences.
FiE works by separating the L encoder layers of
Z-Code++ into m local layers and n global lay-
ers. In each local layer, the hidden states of input
sequence are split into small chunk of size [(e.g.
256 or 512), and self-attention (or DA) is only ap-
plied to those small chunks locally with a complex-
ity of O(I?). After local layer, the hidden states
of those small chunks are concatenated together
to form the representation of the long sequence.
Global layers are the same as original self-attention
(or DA) layers in encoder to fuse the local states
of small chunks. With FiE, the complexity of en-
coder is reduced from O(LN?) to O(mNI+nN?).
Both the local layers and fusion layers are initial-
ized with the corresponding weights of encoder

5098

Task Genre Instructions

MediaSum | Interview | Summarize the following interview script into a two sentences summary.
How can the following interview script be rephrased into a few sentences summary.
MultiNews News Summarize the news article into a one sentence summary.
Rephrase the news article with a few sentences.
NewsRoom News Summarize the news article into a one sentence summary.
- Rephrase the news article concisely with a few sentences.
WikiHow Wiki Summarize the paragraph into a one sentence summary.
- Summarize the paragraph with a few words.

Table 1: Grounded pre-training summarization datasets and examples of instructions.

layers of Z-Code++. Please check Appendix A.3
for a graphic illustration of FiE. In experiment, we
show that compared with LongT5 (Guo et al., 2021)
which applies sparse attention that is specifically
optimized for summarization, Z-Code++ achieves
similar or better performance on long document
summarization tasks.

3 Experiment

3.1 Experiment Setups

Datasets We validate the effectiveness of Z-
Code++ on 11 representative summarization tasks,
which are detailed in Table 2. Among these
datasets, XSum (Narayan et al., 2018), CN-
NDM (See et al., 2017), NewsRoom (Grusky
et al., 2018), and MultiNews (Fabbri et al., 2019)
are news article summarizations, while SAM-
Sum (Gliwa et al., 2019), MediaSum (Zhu et al.,
2021), and Reddit TIFU (Kim et al., 2018) are
conversation-like summarization tasks. Follow-
ing LongT5, we use MultiNews, MediaSum,
arXiv (Cohan et al., 2018) and PubMed (Cohan
et al., 2018) to assess the long document summa-
rization capability. In addition, WikiLingua (Lad-
hak et al., 2020) and MLsum (Scialom et al., 2020)
are used to evaluate the capacity of Z-Code++ on
multilingual summarization.

Implementation Details We have built our mod-
els following the same setting as T5. For Z-
Code++rarae, there are 24 layers for the encoder
and 24 layers for the decoder with 1024 hidden
dimension sizes and 16 self-attention heads. Fol-
lowing DeBERTaV3 (He et al., 2021), a 6-layer
generator with the same structure as the encoder
is employed during the pre-training stage. Z-
Code++pagee is trained on 160G data with a vo-
cabulary of size 128k. Our code is implemented
based on open sourced pytorch! and DeBERTa?.

1https://pytorch.org/
2https://github.com/microsoft/DeBERTa

We pre-train Z-Code++pprge for 1M steps with a
batch size of 2048 in Azure Machine Learning clus-
ter® with 128 A-100 GPUS for 20 days. AdamW is
used as the optimizer in all experiments. For tasks
with an input length of more than 10k words, i.e.,
arXiv and PubMed, Fusion-in-Encoder is used to
encode the document as described in 2.3. For the
other standard summarization tasks with moderate
input length (i.e., less than 4k words) we directly
feed the input document to the encoder.

For multilingual summarization, we have built
Z-Code++apee With the same architecture but dif-
ferent training data and vocabulary. Specifically, Z-
Code++paree 18 trained with mC4 data and a vocab-
ulary of size 250k, which are the same as mT5 (Xue
et al., 2021). Following XLLM (Lample and Con-
neau, 2019), CCMatrix (Schwenk et al., 2019) and
CCAligned (El-Kishky et al., 2019), parallel data is
used to enhance the cross-lingual summarization of
Z-Code++papge. Due to the limited computational
resource, Z-Code++pre is trained with only 500B
tokens instead of 1T tokens as that for mT5 train-
ing.

We use grid search to choose the grounded train-
ing and fine-tuning hyper-parameters based on val-
idation set, the parameter search range are listed in
appendix A.1.

3.2 Experiment Results

3.2.1 Results on Standard English
Summarization Tasks

We first conduct experiments to compare the
performance of Z-Code++pprge With SOTA
and PEGASUSppree on 7 representative stan-
dard public English summarization datasets
with moderate document length, including
AESLC, SAMSum, XSUM, WikiHow, News-
Room, CNN/DailyMail(CNNDM), and Reddit
TIFU. Following (Chowdhery et al., 2022;
Gehrmann et al., 2022), for each dataset we re-

3https://ml.azure.com

5099

https://pytorch.org/
https://github.com/microsoft/DeBERTa
https://ml.azure.com

Input Tokens ~# Summary Tokens
Dataset # Docs. Avgl95% Avel95% Genre
Standard Document Summarization
AESLC 14K 152/440 5/13 Business/Personal
SAMSum 15k 132/331 24/52 Dialog
XSUM 227K 458/1,139 25/35 News
WikiHow 168K 623/1,878 90/226 Wiki
NewsRoom 1.3M 715/1,704 43/152 News
CNNDM 311K 827/1,682 74/127 News
Reddit TIFU 41K 470/1,096 24/51 Forum
Long Document Summarization
MediaSum 463K 1,554/5,323 14/52 Interview
MultiNews 459K 2,103/6,642 264/407 News
PubMed 133K 3,224/8,210 214/401 Scientific
arXiv 215K 6,913/19,560 293/576 Scientific
Multilingual Summarization
WikiLingua (ru — en) 37K 661/1,468 49/102 Wiki
WikiLingua (vi — en) 13K 1,140/2,570 48/96 Wiki
WikiLingua (es — en) 79K 676/1,454 50/105 Wiki
WikiLingua (tr — en) 3k 549/1,294 50/100 Wiki
MLSum (de) 221k 907/1,712 50/81 News
MLSum (es) 266k 1,195/2,402 31/50 News

Table 2: Statistics of the datasets used for evaluation including the total number of documents, the average length of
input tokens and summary tokens, and the genres of each dataset.

. PEGASUSLARGE Z—Code++LARGE
Dataset Prior SOTA 470M 710M
XSum 27.12 24.6 24.6
CNNDM 22.6° 21.4 2224
NewsRoom 33.5 33.5 33.1
WikiHow 18.5 18.5 22.1
SAMSum 29.8°¢ 26.3 30.3
Reddit TIFU 11.34 9.0 11.6
AESLC 21.2 21.2 22.5
Average 234 22.1 23.8

Table 3: Results on Common English Summariza-
tion tasks. Best numbers are in Bold. aST-
MOEyssg (Zoph et al., 2022), °T5;3 (Rothe
et al., 2021), °GPT3;7s:0ra (Hu et al.,, 2021),
IMAPPET+BARTLARGE (Aghajanyan et al., 2021).

port the average F-measure ROUGE-2 score of 5
runs. Detailed F-measure of ROUGE-1/ROUGE-
2/ROUGE-L scores can be found in Appendix ??.

As listed in Table 3 , Z-Code++arge achieves
substantial improvements over PEGASUSy gee,
which is a PLM optimized for abstractive summa-
rization, on 6 out of 7 tasks in terms of ROUGE-2
F-measure score. > Specifically, on SAMSum, a
critical dialog summarization task, Z-Code++rarge
outperforms GPT-31755 that is extensively fine-

>The computation cost of the embedding layer is not fac-
tored in, so we only display the primary model parameters
in the table, excluding those from the embedding layer. This
approach is consistent across all subsequent experiments for
comparison purposes.

tuned with LoRA(Hu et al., 2021) even though
Z-Code++pppee has less than 1/175 parameters of
GPT-34755. Furthermore, Z-Code++; ggg lifts SO-
TAs by 0.36 points on average. These results
demonstrate the effectiveness of Z-Code++ on
English document summarization tasks. Addi-
tionally, we observe that Z-Code++rrge Outper-
forms PEGASUS; arqe on WikiHow, SAMSum,
Reddit TIFU, and AESLC by a much larger margin
(> 1%) than it does on XSum, CNNDM, and News-
Room. We speculate that PEGASUS is biased to
news-like tasks since it is heavily pre-trained on
large amounts of news data. In contrast, Z-Code++
is pre-trained on diverse web data and thus is more
adaptable for general-domain summarization tasks.

3.2.2 Results on Long Document
Summarization

We compare Z-Code++ to PEGASUS and LongT?5,
which is optimized for long document summariza-
tion. Results in Table 4 show that Z-Code++1 gk
exceeds all the strong competitors on all long doc-
ument summarization datasets and lifts SOTA by
0.35 point on average. For FiE, which is used to
generate summaries for arXiv and PubMed, we
choose the chunk size [= 256, and choose the last

SWe have achieved 24.1 R2 score on CNNDM using ex-
posure debiasing to address the mismatch between teacher
forcing and student forcing learning, as we will describe in
detail in a future publication.

5100

. LongTSXLARGE LOHgTSLARGE PEGASUS. prce Z—Code++LARGE
Dataset Prior SOTA 3B 705M A70M 710M
MediaSum 19.7 19.7 19.0 - 20.2
MultiNews 21.1% 19.4 18.4 18.7 21.6
arXiv 21.9° 21.9 20.6 17.2 22.5
PubMed 24.8 24.8 24.7 19.6 24.9
Average | 219 | 215 20.7 18.5 77)7)

Table 4: Comparison results on long input summarization tasks. Best numbers are in Bold. “PRIMER (Xiao et al.,

2021), bTop-Down Transformer (Pang et al., 2022)

Model ‘Conciseness Fluency No-hallucinations Informativeness | Overall
UL2905 0.53 0.52 0.54 0.49 0.50
BARTYppeE 0.50 0.50 0.52 0.49 0.49
PEGASUSLarge 0.52 0.49 0.49 0.49 0.49
T5118 0.49 0.50 0.49 0.48 0.47
Z-Code++rapge 0.50 0.51 0.55 0.49 0.51

Table 5: Human evaluation results on the XSum leaderboard.

Pal.Ms408
540B

mTS5xuaree MTSiare Z-Codet++iarce

Dataset 3B 705M 710M

#Training Tokens | so0B | 1T IT 500B
Cross-lingual summarization

WikiLingua (ru — en) 18.6 14.6 11.2 159
WikiLingua (vi — en) 19.1 14.9 10.9 16.7
WikiLingua (es — en) 20.9 17.2 12.6 17.7
WikiLingua (tr — en) 23.1 18.3 14.5 229
Average 20.4 16.3 12.3 18.3

Multilingual summarization

MLSum (de) 33.1 36.2 354 36.8
MLSum (es) 12.0 13.8 123 14.8
Average 22.6 25.0 239 25.8

Table 6: Evaluation results on multi-lingual summariza-
tion tasks. Best numbers excluding PalLMg,0p are in
Bold.

layer of encoder as fusion layer based on the exper-
iment results. Specifically, Z-Code++rrgg OUtper-
forms LongT53p with less than 1/3 of parameters.
These results demonstrate both the effectiveness
and flexibility of Z-Code++ by using Disentangled-
Attention to encode word dependencies.

3.2.3 Human Evaluation

As human evaluation is the most reliable measure-
ment of the quality of natural language generation
models, we submit the test results of XSum to the
leaderboard (Khashabi et al., 2021) which requires
human raters to compare the generated summaries
side by side with human written references. Please
check the paper of the leaderboad (Khashabi et al.,
2021) to get more details of human evaluation pro-
cess including instructions, dataset preparing, pay-
ments and demographics of the raters. We list the

human evaluation results in Table5. Z-Code++ out-
performs all the other models, e.g., BARTpggE,
PEGASUSLARGE, T511B’ UngoB(Tay et al., 2022),
on the leaderboard in terms of human-overall score.
As the human evaluation score is an average of side-
by-side preference comparison scores, a score of
0.51 indicates that the annotators prefer the output
of Z-Code++ to the human written references. Fur-
ther more, while hallucination is one of the most
critical problems for abstractive summarization, Z-
Code++ does not suffer much, i.e., 0.55, among the
leaderbard. The human evaluation results validate
that Z-Code++ produces higher quality summaries
than other models.

3.2.4 Results on Multilingual Summarization

Following GEM-benchmark (Gehrmann et al.,
2021), we evaluate the performance of Z-
Code++pppee © on multilingual summarization
with WikiLingua and MLSum. We compare Z-
Code++r.arce With mT5;arce and mT5xiarge. The
results of PalLMs40g, a state of the art PLM, are
also listed in Table 6. Compared with mT5xy prge,
Z-Code++rarge achieves substantially better perfor-
mance across all the tasks with only 1/3 parameters
and half training data. In addition, we observe a sig-
nificant performance gap between Z-Code++prge
and PalLMgsog on WikiLingua, which is not sur-
prising due to the sharp difference in model size
and capacity. However, Z-Code++pprce Surpasses

®Note that Z-Code++1spee for multilingual summarization
is differently trained. Refer to 3.1 for more details.

5101

Pal.LMsa0s on MLSum by a large margin, i.e., 3.7%
on MLSum(de), 2.8% on MLSum(es), albeit Z-
Code++rapee has less than 1/500 parameters. We
believe that by scaling up Z-Code++ to a moderate
size (e.g., 10B), the performance gap on WikiLin-
gua would be mitigated. We leave it to future work.

3.2.5 Results on Low-Resource
Summarization

We explore how well knowledge learned in dif-
ferent pre-training stages can generalize to low-
resource summarization scenarios, i.e. zero/few-
shot evaluation. For the grounded pre-training
phase, we choose to include MediaSum, Multi-
News, NewsRoom, and WikiHow datasets. Cor-
responding instructions are listed in Table 1. We
reckon that incorporating diverse datasets and in-
structions is beneficial, which we leave it to future
work. For the fine-tuning stage, following the set-
ting in Zhang et al. (2020), we randomly select the
number of training data to 0, 10, 100, and 1000,
and sample examples from XSUM, CNNDM, and
SAMSum, and then fine-tune Z-Code++ until no
significant improvement on the validation set is
observed. Note that O denotes zero-shot evalua-
tion. Table 11 presents the results. By fine-tuning
first-phase pre-trained model, Z-Code++p ppge OUt-
performs T5pprge by more than 3 points on av-
erage. PEGASUSpree exceeds Z-Code++rarge
when the number of training examples is less than
100, which is foreseeable as PEGASUS; arge i8S
pre-trained with a pseudo summarization objective.
However, Z-Code++ppree performs significantly
better than them when it is trained with more than
100 examples, showing strong generalization in the
few-shot setting. More importantly, with grounded
pre-training, Z-Code++parcg beats all the compet-
ing models by a large margin in both zero and
few-shot settings, outperforming PEGASUSy apge
by 5.7/1.5/3.3 points on average. This suggests
that instructions-grounded pre-training enables ef-
fective knowledge transfer to downstream low-
resource tasks.

4 Conclusions

We present Z-Code++, an efficient and effective
pre-trained language model optimized for abstrac-
tive text summarization. The model extends the
encoder-decoder model using three techniques.
The first is a two-phase pre-training process, where
the model is first pre-trained using text corpora
for language understanding, and then is continually

Model ‘ 0 10 100 1000 | Average
\ XSUM
T51arcE 23 25 55 94 4.9

PEGASUSparee | 30 35 164 182 | 103
Z-Code++ ez | 0.1 2.1 123 173 | 80
Z-Codet+ippee | 137 140 17.5 189 | 16.0

CNNDM

TStarcE 49 51 77 112 27
PEGASUSparce | 13.3 158 182 194 | 16.7
Z-Code++)pes | 01 1.5 150 183 8.7
Z-Code++apee | 17.3* 17.3* 184 19.6 | 182

SAMSum

TSLarce 13 40 104 178 | 84
PEGASUSpuree | 64 117 198 244 | 156
Z-Code++ pee | 0.1 26 202 263 | 123
Z-Codet+ianee | 79 174 223 281 | 189

Table 7: ROUGE-2 score in different summarization
datasets. Results are shown on their full test sets us-
ing 10, 100, and 1000 training examples. 0 denotes
zero-shot results. Results marked with * mean that
unfine-tuned checkpoints perform the best, i.e., zero-
shot performance is better than the fine-tuned one. Z-
Code++;[ARGE refers to fine-tuning from phase 1 pre-
trained model. Z-Code++ppee fine-tuned from two-
phase pre-trained model.

pre-trained on summarization corpora for grounded
text generation. The second technique is the use
of the disentangled attention mechanism, where
each word is represented using two vectors that
encode its content and position, respectively. The
third is the fusion-in-encoder method for encoding
long sequence inputs. We present a comprehensive
empirical study to validate the effectiveness of Z-
Code++. The model creates new state of the art
on 9 out of 13 text summarization tasks across 5
languages. In addition, we show that our model is
parameter-efficient in that it outperforms the 600x
larger PalLMs40g on XSum, and the finetuned 200x
larger GPT3;75sg5 on SAMSum. Z-Code++ also
generalizes well to low-resource downstream tasks.
For example, in zero-shot and few-shot settings,
our model outperforms more substantially the com-
peting models.

However, evaluation (Liang et al., 2022) and
hallucinations are still two long-standing problems
of summarizations that we do not touch with in this
work, in the future we will 1) explore evaluation
metrics that correlate well with human experience,
2) learn to summarize to better align with human
preferences (Stiennon et al., 2020; Ouyang et al.,
2022), and 3) ground summarization models on

5102

world knowledge to largely reduce hallucinations
(LeCun, 2022; Hafner et al., 2023).

Limitations

In this paper, we introduce Z-Code++, a robust
pre-trained model tailored for summarization tasks.
However, it should be noted that there are certain
limitations to our model. Firstly, the model is not
versatile enough as it is specifically designed for
summarization. It is unclear whether it performs
well on other natural language tasks. Secondly,
while FiE can handle document summarization,
there are still significant potential for improving
cost efficiency. Lastly, the evaluation of multilin-
gual summarization is not thorough enough due to
the limitations of available datasets. We intend to
address these limitations in our future work.

Ethics Statement

The same as all existing generative language mod-
els, the generated text of Z-Code++ raises various
ethical considerations. One crucial consideration
is the issue of potential hallucinations in the sum-
maries generated by the model. The summaries
produced by a generative model may not neces-
sarily be faithful to the original article or entirely
factual which may mislead the users to make incor-
rect decisions based on the summary without addi-
tional knowledge. In addition, another important
consideration is the potential for bias in generated
summaries, such as bias based on gender, race, and
other factors.

References

Armen Aghajanyan, Anchit Gupta, Akshat Shrivas-
tava, Xilun Chen, Luke Zettlemoyer, and Sonal
Gupta. 2021. Muppet: Massive multi-task rep-
resentations with pre-finetuning. arXiv preprint
arXiv:2101.11038.

Mehdi Allahyari, Seyedamin Pouriyeh, Mehdi Assefi,
Saeid Safaei, Elizabeth D Trippe, Juan B Gutier-
rez, and Krys Kochut. 2017. Text summariza-

tion techniques: a brief survey. arXiv preprint
arXiv:1707.02268.

Payal Bajaj, Chenyan Xiong, Guolin Ke, Xiaodong Liu,
Di He, Saurabh Tiwary, Tie-Yan Liu, Paul Bennett,
Xia Song, and Jianfeng Gao. 2022. Metro: Efficient
denoising pretraining of large scale autoencoding lan-
guage models with model generated signals. arXiv
preprint arXiv:2204.06644.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind

Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Asli Celikyilmaz, Elizabeth Clark, and Jianfeng Gao.
2020. Evaluation of text generation: A survey. arXiv
preprint arXiv:2006.14799.

Sumit Chopra, Michael Auli, and Alexander M Rush.
2016. Abstractive sentence summarization with at-
tentive recurrent neural networks. In Proceedings of
the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 93-98.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. ELECTRA: Pre-
training text encoders as discriminators rather than
generators. In ICLR.

Arman Cohan, Franck Dernoncourt, Doo Soon Kim,
Trung Bui, Seokhwan Kim, Walter Chang, and Nazli
Goharian. 2018. A discourse-aware attention model
for abstractive summarization of long documents.
arXiv preprint arXiv:1804.05685.

Ahmed El-Kishky, Vishrav Chaudhary, Francisco
Guzmén, and Philipp Koehn. 2019. Ccaligned: A
massive collection of cross-lingual web-document
pairs. arXiv preprint arXiv:1911.06154.

Alexander R Fabbri, Irene Li, Tianwei She, Suyi Li,
and Dragomir R Radev. 2019. Multi-news: A
large-scale multi-document summarization dataset

and abstractive hierarchical model. arXiv preprint
arXiv:1906.01749.

Jianfeng Gao, Chenyan Xiong, Paul Bennett, and
Nick Craswell. 2022. Neural approaches to con-
versational information retrieval. arXiv preprint
arXiv:2201.05176.

Sebastian Gehrmann, Tosin Adewumi, Karmanya Ag-
garwal, Pawan Sasanka Ammanamanchi, Aremu
Anuoluwapo, Antoine Bosselut, Khyathi Raghavi
Chandu, Miruna Clinciu, Dipanjan Das, Kaustubh D
Dhole, et al. 2021. The gem benchmark: Natural lan-
guage generation, its evaluation and metrics. arXiv
preprint arXiv:2102.01672.

Sebastian Gehrmann, Elizabeth Clark, and Thibault Sel-
lam. 2022. Repairing the cracked foundation: A sur-
vey of obstacles in evaluation practices for generated
text. arXiv preprint arXiv:2202.06935.

Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Alek-
sander Wawer. 2019. Samsum corpus: A human-
annotated dialogue dataset for abstractive summa-
rization. arXiv preprint arXiv:1911.12237.

5103

Max Grusky, Mor Naaman, and Yoav Artzi. 2018.
Newsroom: A dataset of 1.3 million summaries
with diverse extractive strategies. arXiv preprint
arXiv:1804.11283.

Mandy Guo, Joshua Ainslie, David Uthus, Santiago On-
tanon, Jianmo Ni, Yun-Hsuan Sung, and Yinfei Yang.
2021. Longt5: Efficient text-to-text transformer for
long sequences. arXiv preprint arXiv:2112.07916.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and
Timothy Lillicrap. 2023. Mastering diverse do-
mains through world models. arXiv preprint
arXiv:2301.04104.

Yaru Hao, Li Dong, Hangbo Bao, Ke Xu, and Furu Wei.
2021. Learning to sample replacements for electra
pre-training. arXiv preprint arXiv:2106.13715.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. 2021.
Debertav3: Improving deberta using electra-style pre-
training with gradient-disentangled embedding shar-
ing. arXiv preprint arXiv:2111.09543.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2020. Deberta: Decoding-enhanced
bert with disentangled attention. In International
Conference on Learning Representations.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-

tation of large language models. arXiv preprint
arXiv:2106.09685.

Gautier Izacard and Edouard Grave. 2020. Leverag-
ing passage retrieval with generative models for
open domain question answering. arXiv preprint
arXiv:2007.01282.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu,
Dan Su, Yan Xu, Etsuko Ishii, Yejin Bang, Andrea
Madotto, and Pascale Fung. 2022. Survey of halluci-
nation in natural language generation. arXiv preprint
arXiv:2202.03629.

Mandar Joshi, Dangi Chen, Yinhan Liu, Daniel S Weld,
Luke Zettlemoyer, and Omer Levy. 2020. Spanbert:
Improving pre-training by representing and predict-
ing spans. Transactions of the Association for Com-
putational Linguistics, 8:64-717.

Daniel Khashabi, Gabriel Stanovsky, Jonathan Bragg,
Nicholas Lourie, Jungo Kasai, Yejin Choi, Noah A
Smith, and Daniel S Weld. 2021. Genie: A leader-
board for human-in-the-loop evaluation of text gener-
ation. arXiv preprint arXiv:2101.06561.

Byeongchang Kim, Hyunwoo Kim, and Gunhee Kim.
2018. Abstractive summarization of reddit posts
with multi-level memory networks. arXiv preprint
arXiv:1811.00783.

Woijciech KryScinski, Nitish Shirish Keskar, Bryan Mc-
Cann, Caiming Xiong, and Richard Socher. 2019.
Neural text summarization: A critical evaluation. In

Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-1JCNLP), pages 540-551.

Faisal Ladhak, Esin Durmus, Claire Cardie, and Kath-
leen McKeown. 2020. Wikilingua: A new bench-
mark dataset for cross-lingual abstractive summariza-
tion. arXiv preprint arXiv:2010.03093.

Guillaume Lample and Alexis Conneau. 2019. Cross-
lingual language model pretraining. NeurIPS.

Yann LeCun. 2022. A path towards autonomous ma-
chine intelligence version 0.9. 2, 2022-06-27. Open
Review, 62.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris
Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Ku-
mar, et al. 2022. Holistic evaluation of language
models. arXiv preprint arXiv:2211.09110.

Yang Liu and Mirella Lapata. 2019a. Hierarchical trans-
formers for multi-document summarization. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5070—
5081.

Yang Liu and Mirella Lapata. 2019b. Text summariza-
tion with pretrained encoders. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-1JCNLP), pages 3730-3740.

Ramesh Nallapati, Bowen Zhou, Cicero dos Santos,
Caglar Gulcehre, and Bing Xiang. 2016. Abstractive
text summarization using sequence-to-sequence rnns
and beyond. In Proceedings of The 20th SIGNLL
Conference on Computational Natural Language
Learning, pages 280-290.

Shashi Narayan, Shay B Cohen, and Mirella Lap-
ata. 2018. Don’t give me the details, just the
summary! topic-aware convolutional neural net-
works for extreme summarization. arXiv preprint
arXiv:1808.08745.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow in-
structions with human feedback. arXiv preprint
arXiv:2203.02155.

Bo Pang, Erik Nijkamp, Wojciech KryS$cinski, Sil-
vio Savarese, Yingbo Zhou, and Caiming Xiong.
2022. Long document summarization with top-
down and bottom-up inference. arXiv preprint
arXiv:2203.07586.

Ramakanth Pasunuru, Asli Celikyilmaz, Michel Galley,
Chenyan Xiong, Yizhe Zhang, Mohit Bansal, and
Jianfeng Gao. 2021. Data augmentation for abstrac-
tive query-focused multi-document summarization.

5104

In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 13666—13674.

Baolin Peng, Michel Galley, Pengcheng He, Chris
Brockett, Lars Liden, Elnaz Nouri, Zhou Yu, Bill
Dolan, and Jianfeng Gao. 2022. Large-scale pre-
training for goal-directed dialogue. Technical report,
Microsoft Technical Report.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAl
Blog, 1(8).

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text

transformer. Journal of Machine Learning Research,
21(140):1-67.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions
for machine comprehension of text. In Proceedings
of the 2016 Conference on Empirical Methods in
Natural Language Processing.

Sascha Rothe, Joshua Maynez, and Shashi Narayan.
2021. A thorough evaluation of task-specific pre-
training for summarization. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 140-145.

Alexander M Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 379-389.

Victor Sanh, Albert Webson, Colin Raffel, Stephen
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja,
et al. 2022. Multitask prompted training enables zero-
shot task generalization. In The Tenth International
Conference on Learning Representations.

Holger Schwenk, Guillaume Wenzek, Sergey Edunov,
Edouard Grave, and Armand Joulin. 2019. Ccmatrix:
Mining billions of high-quality parallel sentences on
the web. arXiv preprint arXiv:1911.04944.

Thomas Scialom, Paul-Alexis Dray, Sylvain Lamprier,
Benjamin Piwowarski, and Jacopo Staiano. 2020. M-
sum: The multilingual summarization corpus. arXiv
preprint arXiv:2004.14900.

Abigail See, Peter J Liu, and Christopher D Man-
ning. 2017. Get to the point: Summarization
with pointer-generator networks. arXiv preprint
arXiv:1704.04368.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel
Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. 2020. Learn-
ing to summarize with human feedback. Advances
in Neural Information Processing Systems, 33:3008—
3021.

Yi Tay, Mostafa Dehghani, Vinh Q Tran, Xavier Gar-
cia, Dara Babhri, Tal Schuster, Huaixiu Steven Zheng,
Neil Houlsby, and Donald Metzler. 2022. Unify-
ing language learning paradigms. arXiv preprint
arXiv:2205.05131.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2019.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. In 7th Inter-
national Conference on Learning Representations,

ICLR 2019.

Yiren Wang, ChengXiang Zhai, and Hany Hassan. 2020.
Multi-task learning for multilingual neural machine
translation. In Proceedings of the 2020 Conference

on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1022—-1034.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. 2021. Finetuned lan-
guage models are zero-shot learners. arXiv preprint
arXiv:2109.01652.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long Papers), pages 1112-1122. Association for
Computational Linguistics.

Wen Xiao, Iz Beltagy, Giuseppe Carenini, and Arman
Cohan. 2021. Primer: Pyramid-based masked sen-
tence pre-training for multi-document summarization.
arXiv preprint arXiv:2110.08499.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale,
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and
Colin Raffel. 2021. mt5: A massively multilingual
pre-trained text-to-text transformer. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 483-498.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter Liu. 2020. Pegasus: Pre-training with extracted
gap-sentences for abstractive summarization. In In-
ternational Conference on Machine Learning, pages
11328-11339. PMLR.

Longxiang Zhang, Renato Negrinho, Arindam Ghosh,
Vasudevan Jagannathan, Hamid Reza Hassanzadeh,
Thomas Schaaf, and Matthew R Gormley. 2021.
Leveraging pretrained models for automatic summa-
rization of doctor-patient conversations. In Findings
of the Association for Computational Linguistics:
EMNLP 2021, pages 3693-3712.

Chenguang Zhu, Yang Liu, Jie Mei, and Michael Zeng.
2021. Mediasum: A large-scale media interview
dataset for dialogue summarization. arXiv preprint
arXiv:2103.06410.

5105

http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://aclweb.org/anthology/N18-1101
http://aclweb.org/anthology/N18-1101

Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yan-
ping Huang, Jeff Dean, Noam Shazeer, and William
Fedus. 2022. Designing effective sparse expert mod-
els. arXiv preprint arXiv:2202.08906.

5106

A Appendix

A.1 Hyper parameters

Hyper-parameter ‘ Z-Code++1 ARGE

Warmup Steps {50,100,500,1000,1500}
Learning Rates {5e-6, 8e-6, 9e-6, le-5}
Batch Size {16,32,64}
Weight Decay 0.01
Maximun Training Epochs {10,20}
Learning Rate Decay Linear

Adam e le-6

Adam f; 0.9

Adam (s 0.999
Gradient Clipping 1.0

Beam search size {2,4,5,8}
Length penalty {0.5-1.2}
Repeated nGram blocking {0,3}

Table 8: Hyper-parameters for fine-tuning Z-Code++ on
summarization tasks.

Hyper-parameter | Z-Code++LarGE

Warmup Steps {1500}
Learning Rates {5e-6, 1e-5, 2e-6}
Batch Size {64}
Weight Decay 0.01
Maximun Training Epochs {10,20}
Learning Rate Decay Linear
Adam € le-6
Adam S 0.9
Adam [0.999
Gradient Clipping 1.0
Beam search size {5,8}
Length penalty {0.5-1.2}
Repeated nGram blocking {0,3}

Table 9: Hyper-parameters for Z-Code++ grounded
training.

A.2 Rouge scores of summarization tasks

We list the rouge scores of summarizaiton tasks in
table10

A.3 Fusion-in-Encoder structure

In figure 3, we show the architecture of FiE.

A.4 Ablation study

We conducted a comprehensive experiment to ex-
plore what is important for the encoder’s language
understanding ability. Specifically, we experiment
on the natural language inference task, e.g., MNLI
(Williams et al., 2018), the question answering task,

Task ‘ Eval ‘ Metrics
English Summarization

XSum test | 47.7 24.6 39.7
CNNDM 449 222 41.8
NewsRoom 455 333 415
WikiHow 464 22.1 452
SAMSum 546 30.3 46.1
Reddit TIFU 31.0 11.6 25.3
AESLC 389 225 37.7
MediaSum 36.9 202 335
MultiNews 479 36.8 439
arXiv 50.0 22.5 449
PubMed 51.1 249 469

Multi-Lingual Summarization

WikiLingua(ru — en) | test | 38.8 159 32.7
WikiLingua(vi — en) 393 16.7 332
WikiLingua(es — en) 41.5 17.7 345

WikiLingua(tr — en) 46.5 229 402
MLSum(de) test | 47.9 36.8 439
MLSum(es) 329 14.8 26.5

Table 10: ROUGE-1/ROUGE-2/ROUGE-L results on
summarization tasks.

\ Outputs J

‘ Decoder

) Cross

Attention
[Chunk0 | (Chunki | | .. | (ChunkN | Local
(Chunk0 | [Chunki | | ' [ChunkN \} Encoding

Layers
Input token sequence

Fusion-in-Encoder

Figure 3: The structure of Fusion-in-Encoder.

e.g., SQuAD (Rajpurkar et al., 2016), the summa-
rization tasks, e.g., XSum (Narayan et al., 2018)
and CNNDM (See et al., 2017). The results in
Table 12 show that using disentangled attention
improves MNLI-matched/mismatched accuracy by
0.9%/1.2%, indicating an improvement in the en-
coder’s language understanding ability. This im-
provement is also reflected in the performance of
two summarization tasks, which see an improve-
ment in R2 scores by 0.39% and 0.22%. Removing
RTD significantly decreased performance, indicat-
ing that it is essential for improving the model’s
NLU capability.

A.5 Evaluate on NLU tasks

In order to assess the model’s effectiveness on nat-
ural language understanding (NLU) tasks, we con-
ducted experiments using the eight NLU tasks from

5107

Model 0 10 100 1000
XSUM

TSLance 12.8/23/9.8 13.2/2.5/10.0 21.5/55/17.0 31.2/9.4/23.8

PEGASUSpunee | 19.3/3.0/12.7 19.4/3.5/14.02 39.07/16.4/31.3 41.6/18.2/33.3

Z-Code++]per | 3.6/0.13.7 167/2.1/12.6 353/12.3/27.5 40.9/17.3/32.8

Z'COde++LARGE

36.6/13.7/28.6

37.4/14.0/29.1

40.6/17.5/30.0

41.9/18.9/33.6

CNNDM

T5 LARGE
PEGASUS LARGE

Z-Codet+ yrer
Z'COde++LARGE

18.5/4.9/13.3
32.9/13.3/29.4
3.5/0.1/3.1
40.0/17.3/25.3%

19.0/5.1/13.6
37.6/15.8/33.5
11.9/1.5/8.7

40.0/17.3/25.3%

24.2/7.717.5
40.3/18.2/37.0
37.3/15.0/25.5
41.1/18.4/27.5

31.9/11.2/21.4
41.7/19.4/38.3
40.7/18.3/28.3
42.0/19.6/28.9

SAMSum
T51.arcE 9.4/1.3/8.2 14.0/4.0/12.0 29.6/10.4/23.5 41.4/17.8/32.8
PEGASUSqapee | 26.3/6.4/20.5 37.0/11.7/28.1 45.0/19.8/36.1 49.3/24.4/40.6
Z—Code++}:ARGE 6.0/0.1/5.4 13.6/2.6/11.0 44.7/20.2/36.7 50.9/26.3/42.3
Z-Code++iarcE 26.5/7.9/20.5 40.27/17.4/33.7 47.6/22.3/38.7 52.2/28.1/43.9

Table 11: ROUGE-1/ROUGE-2/ROUGE-L scores in different summarization datasets. Results are shown on
their full test sets using 10, 100, and 1000 training examples. 0 denotes zero-shot results. Results marked with *
mean that unfine-tuned checkpoints perform the best, i.e., zero-shot performance is better than the fine-tuned one.
Z-Code++EARGE refers to fine-tuning from phase 1 pre-trained model. Z-Code++papee fine-tuned from two-phase

pre-trained model.

Model #Traing | MNLI-m/mm | SQUAD v1.1 XSum CNNDM
Tokens Acc F1/EM R1/R2/RL R1/R2/RL
TSease | 1T | 87.1/862 | 92.1/854 | 42.96/20.38/35.10 | 42.05/20.34/39.40
Our Implementations
ZCode++pase | 130B | 89.6/89.1 92.4/85.6 | 44.04/21.05/36.00 | 43.45/20.71/40.31
- DA 88.4/88.2 91.5/84.4 | 43.58/20.66/35.83 | 43.24/20.49/40.09
- DA - RTD 87.3/86.9 90.5/83.5 | 43.31/20.28/35.32 | 43.10/20.35/39.93

Table 12: Ablation study of the impact of encoder performance on generation tasks.

the GLUE dataset (Wang et al., 2019). These tasks
are commonly used to evaluate sentence classifica-
tion performance in machine learning. Our model,
Z-Code++, was tested using two approaches: adapt-
ing only the encoder and fine-tuning with a clas-
sification head, similar to BERT, or adapting the
encoder-decoder and treating the task as a genera-
tion task, similar to T5. We compared Z-Code++
to other encoder-based PLMs with similar struc-
tures, including BERT, RoBERTa, ELECTRA, De-
BERTa, and DeBERTaV3, as well as TS for the
encoder-decoder comparison.

The results, shown in Table 13, demonstrate that
Z-Code++ performs comparably or better than the

other models on all tasks. In particular, Z-Code++
outperformed the other encoder PLMs by an av-
erage of more than 1% and outperformed T5 on
all tasks with an average improvement of 1.98% in
test scores. These results demonstrate Z-Code++
as a strong universal language model with excel-
lent performance on generation tasks and superior
performance on NLU tasks.

A.6 Evaluate on NLG tasks

We evaluated the language generation performance
of Z-Code++ on a range of English tasks, in-
cluding abstractive document summarization tasks
(XSum, CNNDM, Wikilingual-en), a conversa-

5108

Model Eval|CoLA |QQP| MNLI-m/mm| SST-2| STS-B| QNLI| RTE| MRPC| Avg.
Mcc | Acc Acc Acc Corr | Acc | Acc| Acc

#Train 8.5k |364k 393k 67k 7k 108k | 2.5k| 3.7k

Encoder-Only

BERT} prce Dev| 60.6 |91.3 86.6/- 932 | 90.0 | 923 | 70.4| 88.0 | 84.05

RoBERTa; pper 68.0 {92.2 90.2/90.2 964 | 924 | 939 | 86.6| 90.9 | 88.82

ELECTRA ArgE 69.1 (924 90.9/- 969 | 92.6 | 950 | 83.0| 90.8 | 89.46

DeBERTa; srcr 70.5 [92.3 91.1/91.1 96.8 92.8 | 95.3 | 88.3] 919 | 90.00

DeBERTaV3i arer 75.3 193.0 91.8/91.9 969 | 93.0 | 96.0 | 92.7| 92.2 | 91.37

Z-Code++ 75.5 [92.8 91.7/91.5 96.3 93.1 | 95.8 | 924| 924 | 91.23

Encoder-Decoder

T51arcE Test| 61.2 |89.9 89.9/89.6 96.3 89.9 | 948 | 87.2| 89.9 | 87.35

Z-Code++ Test| 69.2 [90.0 91.0/90.9 979 | 91.2 | 951 | 90.7| 89.6 | 89.33

Z-Code++ Dev| 86.2 |92.4 91.4/91.4 96.5 925 | 952 |92.1| 91.2 | 92.19

Table 13: Comparison results on the GLUE development set. To make a fair comparison, following previous work
on encoder models, we evaluate Z-Code++ with development set. For Encoder-Decoder model we follow TS5 to
fine-tune all tasks jointly and submit result on test set to GLUE evaluation server.

tional summarization task (SAMSum), data-to-text
tasks (WebNLG-en, E2ZENLG) and a question an-
swering task (SQuAD v1.1). We compared the
performance of the Z-Code++ model to other state-
of-the-art models with similar architectures and
parameters, as shown in Table 14.

Results show that Z-Code++ outperforms all
of the other models’ scores by a large margin in
terms of ROUGE and BLEU scores. For exam-
ple, Z-Code++ significantly outperformed TS5y arge
on CNNDM by 1% in terms of ROUGE-2 score,
on the WebNLG-en task by 6.9%, and about 1%
BLEU score on dialog response generation tasks.
Even though it has less than 1/3 the parameters of
T5xrarge, Z-Code++ outperformed PEGASUS on
SAMSum task by 4% in terms of ROUGE-2 score.
We conjecture that PEGASUS is a model specifi-
cally optimized for summarization using 1500GB
of news data, which may have introduced a domain
mismatch with the conversational summarization
task. We also compared Z-Code++ to other state-
of-the-art models with extremely large parameters,
including PalLM, GPT3, and UL2. Z-Code++ out-
performed PalLM on three out of four tasks by a
large margin, even though it has less than 1/600 the
parameters of PaLM. Z-Code++ also outperformed
UL2505 on four out of five tasks, even though it
has less than 1/20 the parameters of UL2505. These
results demonstrate the efficiency of the Z-Code++
model.

5109

Dataset Metric BARTLarce ~ PEGASUSparce TSLarcE TSxLarce PalLM GPT3 UL2 Z-Code++
400M 500M 800M 3B 540B 175B 20B 800M
XSum R1/R2/RL | 45.1/22.3/37.3 47.2/24.6/39.4 44.3/22.0/36.7 - -121.2/- - -/26.6/- | 47.7/24.7/39.7
CNNDM R1/R2/RL | 44.2/21.3/40.9 44.2/21.5/41.1 43.6/21.4/40.6 42.7/21.0/39.9 - - -121.9/- | 44.9/22.0/41.8
SAMSum RI/R2/RL | 53.4/28.7/44.2 50.2/26.3/46.2 51.0/27.0/46.6 - - 53.8/29.8/45.9 -/29.6/- | 54.6/30.3/46.1
WebNLG-en | R1/R2/RL - - 67.1/39.6/51.8 75.4/49.4/59.5 | -/49.3/- - -/55.4/- | 79.0/56.3/64.6
E2E NLG R1/R2/RL - - 70.8/41.7/49.5 70.8/41.7/49.7 | -/45.3/- - -146.5/- | 74.8/46.9/54.0

Table 14: Comparison results on English NLG tasks.

5110

ACL 2023 Responsible NLP Checklist

A For every submission:

¥ Al. Did you describe the limitations of your work?
Limitations

¥ A2. Did you discuss any potential risks of your work?
Limitations

¥ A3. Do the abstract and introduction summarize the paper’s main claims?
Abstract and Instruction

A4. Have you used Al writing assistants when working on this paper?
Left blank.

B Did you use or create scientific artifacts?
Left blank.

O B1. Did you cite the creators of artifacts you used?
No response.

0J B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
No response.

0 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?

No response.

0J B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
No response.

L1 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
No response.

0J B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
No response.

C ¥ Dpid you run computational experiments?
Section 3, experiments
¥ C1. Did you report the number of parameters in the models used, the total computational budget

(e.g., GPU hours), and computing infrastructure used?
Section 3.1, experiment setup

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on Al writing
assistance.

5111

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

v C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Section 3, experiments and appendix A 1

v C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?

Section 3, experiments

v C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?

Section 3, experiments

D ¥ Did you use human annotators (e.g., crowdworkers) or research with human participants?

Section 3, experiments

O DI1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Not applicable. We quote our results from public benchmark https://leaderboard.allenai.org/genie-
mt/submissions/public which run human evaluation from their backend.

L1 D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?

Not applicable. We quote our results from public benchmark https://leaderboard.allenai.org/genie-
mt/submissions/public which run human evaluation from their backend.

[0 D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?

Not applicable. We quote our results from public benchmark https://leaderboard.allenai.org/genie-
mt/submissions/public which run human evaluation from their backend.

[l D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Not applicable. Left blank.

(] D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Not applicable. We quote our results from public benchmark https://leaderboard.allenai.org/genie-
mt/submissions/public which run human evaluation from their backend.

5112

