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Figure 1: A selection of images generated by DALLE-mega, Stable Diffusion 2, DALLE-2, and AltDiffusion,

airplane,” and “face” across English, Spanish, German, Chinese

(simplified), Japanese, Hebrew, and Indonesian. Coverage of the concepts varies considerably across model and
language, and can be observed in the consistency and correctness of images generated under simple prompts.

Abstract

We propose “Conceptual Coverage Across
Languages” (CoCo-CroLa), a technique for
benchmarking the degree to which any gener-
ative text-to-image system provides multilin-
gual parity to its training language in terms
of tangible nouns. For each model we can as-
sess “conceptual coverage” of a given target
language relative to a source language by com-
paring the population of images generated for a
series of tangible nouns in the source language
to the population of images generated for each
noun under translation in the target language.
This technique allows us to estimate how well-
suited a model is to a target language as well
as identify model-specific weaknesses, spuri-
ous correlations, and biases without a-priori
assumptions. We demonstrate how it can be
used to benchmark T2I models in terms of mul-
tilinguality, and how despite its simplicity it is
a good proxy for impressive generalization.

1 Introduction

Neural text-to-image models convert text prompts
into images (Mansimov et al., 2016; Reed et al.,
2016) using internal representations reflective of
the training data population. Advancements in con-
ditional language modeling (Lewis et al., 2020),
variational autoencoders (Kingma and Welling,
2014), GANs (Goodfellow et al., 2020), multi-
modal representations (Radford et al., 2021), and
latent diffusion models (Rombach et al., 2022) have
given rise to sophisticated text-to-image (T2I) sys-
tems that exhibit impressive semantic generaliza-
tion capabilities, with which they generate coher-
ent, visually-appealing images with novel combi-
nations of objects, scenarios, and styles (Ramesh
et al., 2021). Their semantic latent spaces (Kwon
et al., 2022) ground words to associated visuals
(Hutchinson et al., 2022). Characterizing the limits
of these systems’ capabilities is a challenge. They
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Figure 2: We hypothesize that a model’s ability to gen-
erate creative, compositional images depicting tangible
concepts (e.g., astronaut, horse, soup, bear) is predicated
on its ability to generate simple images of the concepts
alone. Samples from Ramesh et al. (2022).

are composed of elements trained on incomprehen-
sibly large (Prabhu and Birhane, 2020; Jia et al.,
2021), web-scale data (Gao et al., 2021; Schuh-
mann et al., 2021), hindering training-data-centric
model analysis (Mitchell et al., 2019; Gebru et al.,
2021) to address this problem.

Demonstrations of novel T2I model capabili-
ties tend to rely on the subjective impressiveness
of their ability to generalize to complex, novel
prompts (Figure 2). Unfortunately, the space of
creative prompts is in principle infinite. However,
we observe that impressive creative prompts are
composed of known, tangible concepts.

Can we directly evaluate a model’s knowledge
of these tangible concepts as a partial proxy for its
capability to generalize to creative novel prompts?
Perhaps. But finding a diverse set of significant
failure cases of basic concept knowledge for these
models is challenging—in their training language.

We observe that when prompted with simple
requests for specific tangible concepts in a con-
strained style, T2I models can sometimes gener-
ate consistent and semantically-correct images in
languages for which they received limited train-
ing (Figure 1, Figure 3). We refer to this capac-
ity as concept possession by said model in said
language. At scale, we can assess the language-
concept possession for a diverse array of concepts
and languages in a model to attempt to describe its
overall multilingual generalization capability. We
refer to the degree of this capability as the model’s
multilingual conceptual coverage. In this work we:

1. Introduce objective measures of multilin-
gual conceptual coverage in T2I models that
compare images generated from equivalent
prompts under translation (Figure 4).

2. Release CoCo-CroLa, a benchmark set for
conceptual coverage testing of 193 tangible
concepts across English, Spanish, German,
Chinese, Japanese, Hebrew, and Indonesian.
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Figure 3: Although DALL-E mini (Dayma et al., 2021)
is ostensibly trained only on English data, when elicited
with “big dog” in Spanish, Indonesian, and Japanese
it generalizes the “dog” concept to ES and ID, while
exhibiting an offensive concept-level collision in JA.

3. Validate the utility of conceptual coverage
analysis with a preliminary pilot study sug-
gesting that generalization to complex, cre-
ative prompts follows concept possession.

Our benchmark enables fine-grained concept-
level model analysis and identification of novel
failure modes, and will guide future work in in-
creasing the performance, explainability, and lin-
guistic parity of text-to-image models.

2 Motivation & Related Work

This work is an attempt to produce a scalable, pre-
cise technique for characterizing conceptual cover-
age with minimal assumptions about the concepts
or models themselves. In this section we lay out
our motivations alongside relevant related work.

Benchmarks enabling model comparability
have been a driving force in the development of
pretrained language models (LM) (Devlin et al.,
2019). For classification and regression tasks, eval-
uation under fine-tuning (Howard and Ruder, 2018;
Karpukhin et al., 2020) is a straightforward and
practical proxy for pretrained LM quality (Dodge
et al., 2020) (e.g., for encoder-only transformer
networks (Liu et al., 2019)). For these classifica-
tion models, higher performance on benchmark
datasets (Lai et al., 2017; Rajpurkar et al., 2018;
Wang et al., 2019) became the epitome of LM ad-
vancement. However, other important qualities in
models including degree of social biases (Sheng
et al., 2019) and robustness (Clark et al., 2019)
arising from biases in training data (Saxon et al.,
2021) can only be captured by more sophisticated
benchmarks that go beyond simple accuracy (Cho
et al., 2021). CheckList represented an influen-
tial move in this direction by benchmarking model
performance through behavioral analysis under
perturbed elicitation (Ribeiro et al., 2020).

In contrast, generative large language models
(LLMs) such as GPT-3 (Brown et al., 2020) have
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Prompt Templates
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Translation-Aligned

Concept List
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es: "un foto de {{word
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dog,perro,hund,¥f)...

library,biblioteca,...

sea,mar,meer,i§,18,0... Language- Stable
airplane,avion JRITHE.. —»  specific Diffusion 2.0
pizza,pizza, £ nws... prompt sub

Prompts *
T2I Model Wrapper

Text-to-Image Models as Black Boxes

Precomputed CLIP embs

Distinctiveness:
(SD2, EN, airplane)

Avg Cos.

\ Similarity

Coverage (rel. EN):
(SD2, ES, airplane)

Self-consistency:
(SD2, JA, airplane)

Figure 4: CoCo-CroLa assesses the cross-lingual coverage of a concept in a model by plugging all the term
translations into prompt templates, generating a set of images from a model under test, extracting their corresponding

CLIP embeddings, and computing concept-level

, coverage, and self-consistency for the concept

with respect to each language. (Demo and code available at github.com/michaelsaxon/CoCoCroLa)

a broader range of outputs, use-cases, and capabil-
ities, making evaluation more difficult. For many
text-generative tasks such as summarization and
creative text generation, the crucial desired qual-
ity is subjective, and challenging to evaluate (Xu
et al., 2022). However, as these LLMs operate in a
text-only domain, existing supervised tasks could
be ported to few-shot or zero-shot evaluations of
LLM capabilities (Srivastava et al., 2022). While
performance on these benchmarks isn’t directly in-
dicative of the impressive generative performance
and generalization capabilities, they are a means to
measure improvement (Suzgun et al., 2022).

Text-to-image models are even more difficult
to evaluate than LLMs. Unlike in LLMs, there are
no objective evaluation tasks that can be directly
ported as proxy evaluations. For example, while
GPT-3 was introduced with impressive zero-shot
performance across many classification tasks, the
T2I model DALL-E 2 was primarily introduced
with human opinion scores and cool demo images
(Ramesh et al., 2022). Prior efforts in developing
T2I evaluations such as Drawbench (Saharia et al.,
2022) and DALL-Eval (Cho et al., 2022) fall into
the trap of trying to build “everything benchmarks”
for which whether the benchmark accurately re-
flects the practical task being asked of the computer
in its real-world context is difficult to assess (Raji
et al., 2021). We instead seek to build an atomic
benchmark which narrowly and reliably captures a
specific characteristic—conceptual knowledge as
reflected by a model’s ability to reliably generate
images of an object.

Multilingual conceptual coverage is a high-
variation T2I model performance setting. (Fig-
ure 1) Perhaps more importantly, it has immediate

value, as work on improving T2I model multilin-
guality has has been proposed, but hampered by a
lack of evaluation metrics.

Chen et al. (2022) introduce AItCLIP and Alt-
Diffusion, models produced by performing multi-
lingual contrastive learning on a CLIP checkpoint
for an array of non-English languages including
Japanese, Chinese, and Korean. Without an objec-
tive evaluation benchmark, they can only demon-
strate their improvement through human evalua-
tion of impressive but arbitrary examples. CoCo-
CroLa improves this state of affairs by enabling
CheckList-like direct comparison of techniques for
reducing multilingual conceptual coverage dispari-
ties as an objective, capabilities-based benchmark.

Excitingly, we find that conceptual coverage is
upstream of the impressive T2I model creativity
that model developers and end-users are fundamen-
tally interested in. This means that not only is
CoCo-CroLa an objective evaluation of T2I system
capabilities, it is also a proxy measure for the
deeper semantic generalization capabilities we
are interested in enhancing in second languages,
as we demonstrate in subsection 5.6.

3 Definitions & Formulations

We define a multilingual concept over languages
L as a set of words in each language carrying the
same meaning and analogous colloquial use. We
refer to the equivalent translation of concept ¢y in
language £ as cy, 4.

Given a set of concepts C), test language ¢, a min-
imal eliciting prompt' MP,, text-to-image model

'We define a minimal eliciting prompt as a short sentence
with a slot for concept work insertion, intended to enforce
style consistency without interfering with the concept.
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Figure 5: A diagram of our approach for producing the aligned noun concept list across the target language set using
an ensemble of cloud translation services and BabelNet. Full description of this method in Appendix A.

f, and a desired number of images-per-concept n,
we sample n|C||L| images I, ¢;, where

Iey 0 ~ f(MPg(ckp)) (1)

For every concept word in the language ¢ ¢, € C.
Given an image feature extractor F', some simi-
larity function Sim(+, -), we assess whether f pos-
sesses concept ci ¢ in the test language if using
the following metrics from the concept-image set
ey, p.i}izo (CoCo-CroLa scores in Figure 4):

The images are distinct if they
tend to not resemble the population of images gen-
erated for other concepts in the target language.

Formally, we compute our (inverse) distinctive-
ness score Dt(f, ¢, cj) relative to m images sam-
pled from other concepts in C":

F(leyi)s F(len b))

2
s ~U{0,n} 3)

m n
Z >_SiM
1=0i=0

crp ~ O\ cry,

Self-consistency. The images are self-consistent
if they tend to resemble each other as a set.
Formally, we compute the self-consistency score
Sc(f, 4, cr) as:
Se=t 3 (i SIM(F Loy .0 (Lo .0) 1)
“4)
We subtract 1 from each step in the numera-
tor and n from the denominator so that identical
matches generated image to itself.

Correctness. The images are correct if they faith-
fully depict the object being described.

Rather than assess this using a classification
model (hindering generality depending on the
pretrained classifier), we use faithfulness rela-
tive to a source language /s, cross consistency
Xc(f, 4, cp, ls) as a proxy:

n n
2{:25: M(E (L g,1)s F'(Ley g,5)) (5)
j=014=0

It is important to note that in the source language
(eg. English), Xc = Sc, as for that language both
metrics are essentially comparing the same (con-
cept, language) pair to itself.

Thus we augment with a second language-
grounded correctness score, utilizing the average
text-image similarity score of the English concept
text against the set of generated images, for a CLIP
image encoder F' and text encoder F}, Wc:

1 n
We=—3 Filcke) Flos)  (©)
i=0

4 Approach

We compute distinctiveness, self-consistency, and
correctness scores across English, Spanish, Ger-
man, Chinese (Simplified), Japanese, Hebrew, and
Indonesian on the models listed in Table 1.

For each (language, concept) pair, we generate
10 images for analysis. We use a CLIP (Radford
et al., 2021) checkpoint from HuggingFace? as our
semantic visual feature extractor ', and cosine
similarity as our similarity function (S1M(a, b) =
a - b/||al|||b||). We collect a translation-aligned
concept list C' using techniques described in sub-
section 4.1 and depicted in Figure 5. We release our
list generation code, testing code, feature extraction
code, and final concept list as CoCo-CroLa v1.0°.

4.1 Translation-aligned concept set collection

We automatically produce an aligned multilingual
concept list, where meaning, colloquial usage, and
connotations are preserved as well as possible. We

2HF: openai/clip-vit-base-patch32.
*Demo and code: github:michaelsaxon/CoCoCrola
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Model Authors (Year) Repository Training Language
DALL-E Mini Dayma et al. (2021) github:borisdayma/dalle-mini EN

DALL-E Mega | | |

CogView 2 Ding et al. (2021) github: THUDM/CogView ZH

StableDiffusion 1.1
StableDiffusion 1.2

Rombach et al. (2022)

HF : CompVis/stable-diffusion-v1-1 EN
HF : CompVis/stable-diffusion-v1-2 |

StableDiffusion 1.4 HF : CompVis/stable-diffusion-v1-4 No language filter
StableDiffusion 2 HF:stabilityai/stable-diffusion-2 \

DALL-E 2 Ramesh et al. (2022) openai.com/dall-e-2/ (no checkpoints) No language filter
AltDiffusion m9 Chen et al. (2022) HF :BAAI/ALtDiffusion-m9 EN, ES, FR, IT, RU, ZH, JA, KO

Table 1: The set of text-to-image models we evaluated with CoCo-CroLa v1.0. Some monolingual models may
integrate pretrained elements such as CLIP checkpoints that have been trained on multilingual data.

DALL-E Mini Histograms

DALL-E 2 Histograms

CogView2 Histograms
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Figure 6: Histograms of the distribution of correctness cross-consistency (Xc) for each test language for six assessed
models. Rightward probability mass reflects better conceptual coverage.

identify tangible nouns describing physical objects,
animals, people, and natural phenomena as a class
of concepts that are both straightforward to evaluate
and tend toward relative ubiquity in presence as
words across languages and cultures, to the extent
this ubiquity can be ensured through automated
means.

Automated production is desirable for this task,
as it enables new languages to be easily added in
the future. To minimize translation errors we utilize
both a large knowledge graph of terminology and
an ensemble of commercial machine translation
systems to produce an aligned concept list (Fig-
ure 5). Full details for our translation pipeline, as
well as the full concept list, are in Appendix A.

4.2 Making minimal eliciting prompts

As discussed in section 3, an ideal prompt template
would enforce stylistic consistency in the gener-
ated outputs without introducing biases that inter-
fere with the demonstration of concept possession.

Following Bianchi et al. (2022) we build simple
prompts of the form, “a photograph of ”,
which we manually translate into target languages.
This simple template-filling approach will intro-
duce grammatical errors for some languages. We

briefly investigate if this matters in Appendix B.

4.3 Applying the metrics for analysis

We assess Dt, Sc, Xc, and Wc for each (concept,
language) pair for each model. Using these we
compare models and assess the validity of concep-
tual coverage as a proxy for generalization.

5 Findings

Figure 6 shows histograms for the distributions
of the cross-consistency correctness proxy score
Xc for each concept, relative to the training lan-
guage (either English or Chinese) for DALL-E
Mini, DALL-E 2, CogView 2, Stable Diffusion
1.4, Stable Diffusion 2, and AltDiffusion across the

4835


https://github.com/borisdayma/dalle-mini
https://github.com/THUDM/CogView
https://huggingface.co/CompVis/stable-diffusion-v1-1
https://huggingface.co/CompVis/stable-diffusion-v1-2
https://huggingface.co/CompVis/stable-diffusion-v1-4
https://github.com/Stability-AI/stablediffusion
https://openai.com/dall-e-2/
https://huggingface.co/BAAI/AltDiffusion-m9/tree/main

Iy
o

o
o

0.8

o
o
o
o

o
S

ID-EN Cross. Consistency
o
IS

DE-EN Cross. Consistency

o
N
o
N

JA-EN Cross. Consistency

o o o Iy
IS o ® o

JA-EN Cross. Consistency

o
N

o

)
o
o

0.2 0.4 0.6 0.8
ES-EN Cross. Consistency

1.0 0.2 0.4 0.6 0.8

ES-EN Cross. Consistency

1.0

0.0
0.0 0.2 0.4 0.6 0.8

ZH-EN Cross. Consistency

0.2 0.4 0.6 0.8 1.0

ES-EN Cross. Consistency

1.0

Figure 7: The correctness score for every (concept, model) pair for (right to left) ES vs DE, ES vs ID, ES vs JA,
and ES vs JA. Languages sharing scripts (ES/DE/ID and JA/ZH) are more correlated than those that don’t (ES/JA).

Stable Diffusion 2

EN -
ES ‘r—)
DE

TR o T
ID ainlin

04 06 o8
Correctness (EN-lang Cross-Consistency)

(a) High-coverage concepts

DALL-E 2

06 o
Correctness (EN-lang Cross-Consistency)

(b) Low-coverage concepts

Figure 8: We automatically identify (a) high-coverage concepts in Stable Diffusion 2 (ES, rabbit), (JA, snow), (ID,
guitar) and (b) low-coverage concepts in DALL-E 2 (EN, prince), (ZH, ticket), (HE, eye) using correctness Xc.

seven test languages. This plot clearly depicts that
for the primarily English-trained models (DALL-
E Mini, Stable Diffusion 1.4, Stable Diffusion 2),
English-language performance (a high-mean dis-
tribution of high-EN-EN consistency concepts) is
considerably better than the other languages. Simi-
larly, for CogView?2, trained on Chinese, the Chi-
nese distribution of ZH-ZH scores is considerably
better than the others, which do equally bad.

DALL-E 2 recieved open-ended multilingual
training, and exhibits more consistent acceptable
performance across the European and East Asian
languages being tested. AltDiffusion, which has
had its CLIP text encoder contrastively trained
against multilingual representations on 9 languages
(including ES, DE, ZH, and JA) exhibits higher
performance on its training languages than its non-
training languages (HE and ID).

Correctness distributions for Spanish, German,
and Indonesian look roughly similar (in terms of
mean and variance) for all models but AltDiffu-
sion. This is particularly interesting because they
are the three non-English languages that also use
the Latin alphabet. Figure 7 compares the correct-
ness Xc score for every concept, in every model,
across pairs of languages that fully or partially
share scripts (ES, DE, ID), (ZH, JA) and two lan-
guages that don’t (JA, ES). Across pairs of lan-

guages that share scripts, there is a high correlation
between possession of a given concept in one lan-
guage and the other. A consistent trend across all
models was poor performance on Hebrew, which is
both considerably lower-resource compared to the
other six test languages, and uses its own unique
writing system.

5.1 Correctness feature captures possession

Figure 8 shows how choosing samples of an im-
age generated by a model, elicited by a high- or
low-correctness score naturally reveals in which
languages which concepts are possessed (e.g., Sta-
ble Diffusion 2 possesses ES:rabbit, JA:snow, and
ID:guitar.) When a model possesses a concept, the
outputted images are often visually similar with the
tangible concept set in similar scenarios.

5.2 Types of concept non-possession

A model not possessing a concept can manifest
in a few different scenarios depicted in Figure 8
(b). DALL-E 2 doesn’t possess “prince” in English
because it outputs a variety of different images,
including human portrait photos, and pictures of
photos, toys, and dogs. The existence of these non-
specific error cases reflects the imperfect nature of
our automated concept collection pipeline. Remov-
ing these poorly specified concepts is one way we
plan to improve CoCo-CroLa in future releases.
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EN ES DE ZH JA HE 1D Avg

Model Xc We Xc Wec Xc We X We Xec We X We Xc Wec Xc We
DALL-E Mega 81 28 65 26 64 26 29 21 32 21 28 19 51 25 50 24
DALL-E Mini 78 27 59 25 50 23 33 21 31 21 34 20 49 24 48 23
SD 1.1 69 26 52 23 46 22 32 19 37 21 28 17 39 21 43 21
SD1.2 71 26 48 23 44 22 28 19 35 21 24 17 37 21 41 21
SD 1.4 69 26 46 23 40 22 26 20 34 21 24 17 34 21 39 21
SD 2 76 27 54 24 51 24 34 19 31 21 29 17 37 21 45 22
CogView 2 37 20 42 20 39 20 62 25 40 21 38 20 42 20 43 21
DALL-E 2 61 27 55 27 54 26 44 25 42 22 36 19 42 25 48 24
AltDiffusion m9 64 26 59 25 49 22 55 25 55 25 38 20 43 22 52 23
Avg 67 26 53 24 49 23 38 22 38 21 31 18 42 22

Table 2: Correctness scores (Xc and Wc) averaged for all concepts within a column language for all models. Note
that Xc for CogView?2 is relative to ZH rather than EN. AltDiffusion performs best in terms of total average Xc,

and number of Xc or Wc column “wins.” DALL-E Mega performs best on Latin languages and average Wc.

A second type of possession failure we observe,
we dub specific collisions. For example, Figure 1
and Figure 3 show JA collisions for the DALL-E
mini/mega family. Both models consistently gen-
erate images of humans for “dog” but pictures of
green landscape scenes for “airplane.” While these
generated concepts are incorrect, they represent
an incorrect mapping to a different concept rather
than a mere lack of conceptual possession. We also
observe cases where specific collisions only occur
part of the time, such as in the case of DALL-E 2
and ZH:ticket (Figure 8 (b)).

Finally, we observed cases of generic collisions.
For example, DALL-E 2 consistently generates
images of desert or Mediterranean scenery when
prompted with “eye” in Hebrew (Figure 8 (b)). This
pattern shows up across a diverse set of models
and prompts. Figure 1 shows how across “dog,
“airplane,” and “face,” DALL-E mega, Stable Dif-
fusion 2, and DALL-E 2 seem to generate vaguely-
Israel-looking outdoor scenes regardless of elicit-
ing concept. This is probably reflective of a small
sample-size bias in the training data.

’

5.3 Model comparison

Table 2 shows the the use of correctness scores in
the CoCo-CroLa benchmark to compare the 9 mod-
els. As expected, given its multilingual training
regimen, AltDiffusion m9 outperforms the other
T2I models on average, and in terms of total wins.
It is particularly strong relative to the other models
in Japanese and Chinese (with the exception of the
Chinese-only CogView 2, which is best on Chinese
but worst on average overall for both Xc and Wc).

However, despite the strong average perfor-
mance of AltDiffusion, there’s a lot of room for
improvement. For example, its improvements in

terms of JA and HE performance come at a cost of
significantly reduced EN and DE performance rela-
tive to Stable Diffusion 2, its initialization check-
point. The CoCo-CroLa benchmark can guide fu-
ture work in adapting T2I models to further multi-
linguality without losing conceptual coverage on
source languages.

L
T ES -
i DE L

;JA | ‘ .‘ |
B ™

T
0.0 0.2 0.4 0.6
Inverse Distinctiveness

Language

T
0.8

Figure 9: Histograms of the
scores for all models and all concepts. A model-by-
model breakdown is presented in Figure 12.

5.4 Distinctiveness captures generic collisions

Figure 9 shows the distribution of the

score Dt. On this plot, more rightward
probability mass indicates a distribution of con-
cepts for which distinctiveness is low relative to
a generic sample of images produced by a given
model in that language. The four Latin script lan-
guages (EN, ES, DE, ID) exhibit the lowest in-
verse distinctiveness, and are thus the least prone
to producing generic failure images. Hebrew is an
outlier for having high concept-level Dt. Across
many models. This is probably because it is the
most low-resource language in our list by far, and
doesn’t benefit from script sharing.
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keyboard 0.491 27 keyboard 0.489 26 v keyboard 0.462 24 X
snow 0759 26 v snow 0704 25 ¢ snow 0.671 25 ¢

Stable Diffusion 2

MRS
Concept Xc Wc

Concept Xc W Concept Xc Wce

dog 0702 26 v dog 0.643 26 dog 0677 26
fire 0669 23 v fire 0.658 23 v fire 0639 23 ¢
moon 0704 27 v moon 0723 28 v moon v

0.607 24

Stable Diffusion 2

‘r\
e

Concept Xc Wce Concept Xc Wc Concept Xc Wc

bird 0726 27 v bird 0.697 26 v bird 0.655 26 ¢
keyboard 0.837 29 keyboard 0.789 29 keyboard 0.797 29 ¢
snow 0.846 26 ¢ snow 0818 26 v snow 0808 26 ¢

dog 0.748 26 v dog 0712 26 v dog 0582 25 v
fire 0775 25 v fire 0.620 23 v fire 0292 20 X
moon 0.756 28 v moon 0763 29 v moon 0282 19 X

(a) “a bird using a keyboard in the snow”

(b) “a dog made of fire standing on the moon”

Figure 10: Cross-model analysis of more complicated, creative prompts combining concepts including “snow,”
“keyboard,” “bird,” “dog,” “fire,” and “moon.” We find that if a model is found to not possess a concept, it will not
be able to produce more complicated prompts including the concept. This validates CoCo-CroLa as an efficient
way to capture an overview of a model’s generalization capabilities.

5.5 Ranking concepts by Xc

For a given model and language, CoCo-CroLa can
be used as a concept-level analysis tool. For exam-
ple, by performing the same ranking over a specific
(model, language) pair, we can find the most well-
covered and poorly-covered concepts for that pair.
For all models and languages, an interactive rank-
ing demo based on ascending and descending Xc
and Wc is available at saxon.me/coco-crola/.
For example, we found “snow” to be a concept
possessed in EN and ES for DALL-E Mega, AltD-
iffusion, and Stable Diffusion, but only possessed
in JA by Stable Diffusion 2. A similar situation
holds for “dog” and “fire,” with AltDiffusion.

5.6 Concept possession as a proxy

In this section we will discuss how an inability
for a model to use some concept in complex,
creative prompts is implied by our detected non-
possession of said concept, thereby validating the
CoCo-CroLa atomic evaluation paradigm.

To investigate this we manually translated two
creative prompts including concepts found to be dif-
ferentially present in DALL-E Mega, AltDiffusion,
and Stable Diffusion subsection 5.5 from English

into Spanish and Japanese. The prompts were: “a
bird using a keyboard in the snow,” (ES: “un pa-
jaro usando un teclado en la nieve,” JA: “Z5|C % —
R—=RZ{H 5 TWW3AE”) and “a dog made of
fire standing on the moon,” (ES: “un perro hecho
de fuego pisando en la luna,” JA: “’X T T& /=K
MHICT. 5 TV 37).

Figure 10 clearly shows that, using thresholds
for non-possession of Xc < 0.5 and We < 25, if a
concept is not possessed by a model according
to CoCo-CroLa, it will be unable to successfully
generate creative images containing it.

However, other capabilities including composi-
tionality and perhaps a sort of verb-level concep-
tual possession are probably also required in order
to make the converse (possession implies capabil-
ity to generate creatively) to be true—yet we have
no method to capture such possession. This is a
promising direction for future work.

Thus, concept-level coverage in a model can be
used as a proxy for generalization capabilities to
more complex prompts containing the concept, at
least in the case of tangible noun concepts. This
is good news, as it enables assessment of the in-
finite space of creative prompts from a finite,
constrained set of atomic concepts.
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6 Conclusion

Multilingual analysis of text-to-image models is de-
sirable both to improve the multicultural accessibil-
ity of T2I systems and to deepen our understanding
of their semantic capabilities and weaknesses. An-
alyzing a model’s conceptual coverage is a simple
and straightforward way to do this.

We demonstrated that these concepts are core
building blocks for producing impressive images,
and that analyzing the concepts is a useful proxy for
assessing the creative capabilities of T2I models.

Our technique, CoCo-CroLa is a first step to-
ward further work in this domain. Following our
recipe, larger benchmarks containing more lan-
guages and concepts can be built easily.

Limitations

The CoCo-CroLa benchmark generating procedure
is intended to yield multilingual evaluations that
can be scaled to even larger sets of concepts and
languages without experienced annotators. In the
interests of both concept and language quantity
scale, we opted for an automated procedure which
leverages machine translation systems, which can
introduce translation errors. Furthermore, variation
in the nuance or normative meaning of concepts,
particularly culturally contested ones such as “face,”
(Engelmann et al., 2022) “person,” or “man” will in-
evitably drive some variance in expected outputs by
users across language communities. This cultural
variation will place an unavoidable upper bound on
the performance of inherently cross-cultural bench-
marks such as CoCo-CroLa.

Additionally, typological variation between lan-
guages can introduce complications in applying our
framework. For example, while simple template
filling for prompting is straightforward in Chinese,
which requires no word-dependent articles, in En-
glish phonological properties of the word govern
the preceding article, and in Spanish and German
grammatical gender do the same. Hebrew has gen-
dered nouns, adjectives, and verbs but not articles,
on the other hand. Overall, it appears that these
have limited influence as grammaticality isn’t a
crucial feature in the prediction of image tokens
performed in T2I models, Appendix B.

While doing so aids in the scalability of the
approach, using CLIP as a feature extractor for
computing the metrics, particularly correctness Xc
and Wc, potentially introduces biases due to the
English-primary data that CLIP is pretrained on.

Future work could test this hypothesis by compar-
ing the performance of CoCo-CroLa’s CLIP-based
features with Xc computed using Inception features
(as in FID) (Chong and Forsyth, 2020) or with ded-
icated concept-level purpose-trained classifiers.

Ethics Statement

Images of human faces are generated by our model.
To mitigate the minor risk of resemblance to real
people, we have downsampled all images. How-
ever, we believe this risk is mitigated by the lack
of personal names in the querying data. Further-
more, we believe demonstrating that human faces
are generated and under which conditions they are
is important for documentation of bias (Paullada
et al., 2021) and harm risks in these models.

License information is provided in our project
page (saxon.me/coco-crola) and project reposi-
tory (github:michaelsaxon/CoCoCrola).
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A Details on producing the concept list

Source language term lists. We first produce a
list of English nouns by collating words in term fre-
quency lists extracted from TV closed captions and
contemporary fiction novels from Wiktionary*, and
filter for the 2000 most frequent words in this com-
bined list, and augment it with class label names
from CIFAR100 (Krizhevsky et al., 2009).

Finding good translations. We feed the list En-
glish words into a custom translation pipeline,
which simultaneously queries BabelNet (Navigli
and Ponzetto, 2010), and an ensemble of four
commercial translation systems: Google Translate,
Bing Translate, Baidu Translate, and iTranslate”.

In response to an English query, the BabelNet
API returns a collection of “SynSets,” subgraphs
of a combined multilingual word and entity graphs
centered on a node the query word maps to (see Fig-
ure 5 for examples). Each subgraph links to multi-
ple other nodes, containing terms in both the source
language and the target language. These edges can
represent, for example, the titles of Wikipedia ar-
ticles in different language editions of Wikipedia
that are marked as being equivalent, thus ensuring
that by checking against SynSet edges, a degree of
human validation is included automatically. The
synset also contains information about whether a
given word is a noun. If it is not a noun, the candi-
date concept is discarded.

To choose the best translation from those edges,
the returned translations into the target languages of
the English term from the commercial translation
services are melded by first sorting all returns by
number of languages in the return query (in the case
that one translation service covers more languages
than others), and filling in missing translations by
prioritizing alignment in the shared language trans-
lations. If any target language is missing a word
for a concept at the conclusion of this process, that
concept is discarded from the final list.

Post-filtering. Once a list of melded translations
from the commercial service is returned, each row
in the candidate aligned concept list is checked
against the corresponding BabelNet SynSets to en-
sure each translation is present as a connected node,
for pseudo-human evaluation. At the end of this
process, a list of approximately 250 concepts is re-

4en.wiktionary.org/wiki/Wiktionary: Frequency_
lists/Contemporary_fiction, .../TV/2006/1-1000
Using the translators PyPi package.
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turned. Finally, we manually remove terms that are
verb-noun collisions (e.g. hike) to ensure this am-
biguity didn’t drive any poor translations. The final
list for CoCo-CroLa v1.0 contains 193 concepts.

A.1 Full concept list

The (English) concepts are: eye, hand, head, smile,
face, room, door, girl, person, man, love, watch,
arm, hair, mother, car, mom, dad, table, phone, fa-
ther, grin, mouth, kid, family, finger, world, shirt,
ground, sister, chair, kitchen, woman, beer, hill,
metal, hotel, princess, bench, detail, bird, cigarette,
history, plastic, pizza, airplane, male, backpack,
judge, dragon, sea, bike, female, garden, meal, toy,
ship, flame, tail, library, weapon, cd, rope, cafete-
ria, porch, queen, duck, lake, television, boat, tent,
roof, ticket, cop, milk, soldier, tank, thigh, belt,
sandwich, bullet, teenager, apple, wine, supply,
captain, cheese, feather, mask, prince, beaver, seal,
stingray, shark, rose, bottle, mushroom, orange,
pear, pepper, keyboard, lamp, telephone, couch,
bee, beetle, butterfly, caterpillar, cockroach, tiger,
wolf, bridge, castle, house, road, cloud, forest,
mountain, camel, chimp, kangaroo, fox, raccoon,
lobster, spider, worm, baby, crocodile, lizard, di-
nosaur, snake, turtle, hamster, rabbit, squirrel, tree,
bicycle, train, tractor, jump, men, moon, clothes,
neck, fire, tire, teacher, movie, dog, ring, eyebrow,
sun, tall, doctor, sky, apartment, shoe, rock, daugh-
ter, girlfriend, bar, ball, hallway, tv, teeth, police,
field, wife, brain, pants, tongue, cup, computer, bot-
tom, bell, aunt, clock, suit, plate, chocolate, snow,
guitar, truck, church, husband, van, blanket, bowl,
mama, cookie, hat, monster, ceiling.

All translations are provided at the repository
and demo page (saxon.me/coco-crola).

B Validating the prompt templates

As mentioned in subsection 4.2, the simple
template-based approach to generating prompts for
concepts leads to the introduction of grammatical
errors, e.g. “a photograph of dog.”

However, it is questionable whether small gram-
matical or logical errors like missing articles mat-
ters for high-resourced, well-covered languages
like English. After all, the models are clearly able
to generate high quality “photograph of dog” pic-
tures without the word “a” in the sentence (Figure
1). But, does the prompt phrasing matter for lower-
performance languages in a model? To investigate
the impact of prompt phrasing on conceptual cov-

erage, we tested a variety of English, Spanish and
Chinese prompt phrasings on the concepts “dog,”
“sea,” “airplane,” and “ship” (selected for their wide
distribution across the cross-correlation correctness
metric range).

For the English prompts, we experimented with
including the articles “a,” “the,” “my,” and “an,’
as well as using the words “photograph,” “image,
“photo,” and “picture.” For Spanish, we used vari-
ations on the phrase “un foto de” (a photo of), in-
cluding the same set of articles in English “un/una,”
“el/la,” “mi,” “tu,” (your) and “nuestra/o” (our). For
Chinese, we tried examples that both included and
excluded the possessive particle “FY” (de), as well
as the words “H& /5 (zhaopian) and “& ™ (tu-
pian) for picture/photograph, and including or ex-
cluding the prepended phrase “—5K” (yi zhang) to
create the meaning “one photograph.” We reran the
full 193 concept image generations in those three
languages for Stable Diffusion 2 and AltDiffusion.

We found limited impact across all of these di-
mensions. Full details available in our anonymous
demo at saxon.me/coco-crola.

]

C Additional Plots

Figure 11 shows the language-wise histograms for
correctness scores for all nine models.

Figure 12 shows the language-wise histograms
for inverse distinctiveness scores for all nine mod-
els. On this set of plots, the tendency for Hebrew
to be an outlier in terms of inverse distinctiveness
(ie, having lots of generic collisions for concept
failures) is clearly illustrated. However, other note-
worthy outliers are DALL-E Mini and Mega per-
forming worse on Chinese and Japanese (possibly
script-driven) and CogView 2 having surprisingly
low inverse distinctiveness for non-Chinese (non-
training) languages in spite of low correctness.

Figure 13 shows the language-wise histograms
for the self-consistency scores for all nine models.
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Figure 11: Histograms of the distribution of correctness cross-consistency (Xc) for each test language for all
assessed models. Rightward probability mass reflects better conceptual coverage.
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Figure 13: Distribution of self-consistency scores (Sc) for each test language for all assessed models.
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