Query Structure Modeling for Inductive Logical Reasoning
Over Knowledge Graphs

Siyuan Wang', Zhongyu Wei'>; Meng Han’,
Zhihao Fan', Haijun Shan*, Qi Zhang’, Xuanjing Huang’
School of Data Science, Fudan University, China
2Research Institute of Intelligent and Complex Systems, Fudan University, China
3Huawei Poisson Lab, China *CEC GienTech Technology Co., Ltd, China
3School of Computer Science, Fudan University, China
{wangsy18,zywei,fanzh18,qz,xjhuang } @ fudan.edu.cn
hanmeng12 @huawei.com; haijun.shan@gientech.com

Abstract

Logical reasoning over incomplete knowledge
graphs to answer complex logical queries is
a challenging task. With the emergence of
new entities and relations in constantly evolv-
ing KGs, inductive logical reasoning over KGs
has become a crucial problem. However, pre-
vious PLMs-based methods struggle to model
the logical structures of complex queries, which
limits their ability to generalize within the same
structure. In this paper, we propose a structure-
modeled textual encoding framework for induc-
tive logical reasoning over KGs. It encodes
linearized query structures and entities using
pre-trained language models to find answers.
For structure modeling of complex queries,
we design stepwise instructions that implic-
itly prompt PLMs on the execution order of
geometric operations in each query. We fur-
ther separately model different geometric oper-
ations (i.e., projection, intersection, and union)
on the representation space using a pre-trained
encoder with additional attention and maxout
layers to enhance structured modeling. We con-
duct experiments on two inductive logical rea-
soning datasets and three transductive datasets.
The results demonstrate the effectiveness of our
method on logical reasoning over KGs in both
inductive and transductive settings. '

1 Introduction

Logical reasoning over knowledge graphs (KGs)
aims to answer complex logical queries given large-
scale KGs (Guu et al., 2015; Hamilton et al., 2018).
Recent years have witnessed increasing attention
on logical reasoning over widely used KGs such as
Freebase (Bollacker et al., 2008), Yago (Suchanek

*Corresponding author
'Codes are publicly available at https://github.com/
WangsyGit/InductivelR.

(a) Logical query for Training:

q1= vy.3v:Win(TuringAward, v) A Citizen(Canada, v)
A Graduate(v, v;)
Turing Wi

Award d Graduate
Uy
Canada C\\'\i"‘“

G, = V2.3 vy, vy:Country(WinterOlympics, v1) N President(vy, v,)
A Spouse(v;, V)

i
1
1
1
I
1
1
1
I
'
1
1
1
I
! Where did Canadian citizens with Turing Award graduate?
I
1
1
1
1
I
1
1
1
I
1
1
1
1

Winter Hold amy President 4™ Spouse
Olympics @ @ F
”Who are spouses of presidents of countries that held Winter Olympics?”

q3= v,.3v :Win(AcademyAwards, v) A Citizen(Canada, v) A
MaidenWork(v, vy)

(Academy | _wi,

(_ Awards) Maiden work
e 1%
o™
‘ Canada C
”What are the maiden works of Canadian Academy Awards winners?”

q4= V7.3 v, v, :Director(FireDownBelow, v1) A Children(vy, v,)
A Profession(vy, v;)
Fire Down | Director Y Children Y Profession
Below W &Y V2

”What are the professions of the children of Fire Down Below’s director?”

__

Figure 1: Examples of inductive logical reasoning over
KGs: testing queries contain unseen entities and rela-
tions (in red) during training. Each query is associated
with an intrinsic logical structure and its natural lan-
guage interpretation.

et al., 2007), NELL (Carlson et al., 2010) and Wiki-
data (Vrandeci¢ and Krotzsch, 2014). With missing
relations in the KG, it is challenging to deduce cor-
rect answers to complex queries by traversing the
graph. Previous work primarily focuses on trans-
ductive logical reasoning where the training and
testing are done on the same KG with the same
group of entities. They typically rely on geomet-
ric embedding-based methods to map both entities

4706

Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 4706-4718
July 9-14, 2023 ©2023 Association for Computational Linguistics

https://github.com/WangsyGit/InductiveLR
https://github.com/WangsyGit/InductiveLR

and queries into a joint low-dimensional vector
space (Hamilton et al., 2018; Ren et al., 2020; Ren
and Leskovec, 2020). The goal is to push the em-
beddings of answer entities and queries to be close
to each other, allowing answers to be predicted
through embedding similarity even when the in-
volved relation is absent. In contrast, the inductive
setting of logical reasoning has been rarely studied
which requires generalizing to unseen entities and
relations or even new KGs. As real-world KGs are
usually dynamic with emerging unseen entities and
relations, it’s significant to explore the inductive
setting for complex query answering.

Existing research on inductive logical reasoning
mainly follows two directions. The first inherits
embedding-based methods and incorporates type
as additional information to improve inductive ca-
pability (Hu et al., 2022), which can not general-
ize to unseen types of entities and relations. The
second direction leverages pre-trained language
models (PLMs) to encode textual information of
entities/relations for generalization to unseen ele-
ments (Wang et al., 2021b; Daza et al., 2021; Wang
et al., 2021a). PLMs-based approaches provide
more flexible solutions and generate better results.
However, they only explore link prediction tasks of
one-step reasoning, and simply linearize the triplet
or subgraph into text sequence without modeling
explicit reasoning structure (Yao et al., 2019; Zha
et al., 2022). An example is shown in Figure 1.
Two findings stand out. (1) The query ¢; and go
appear to be similar in format (both as a conjunc-
tion of three terms) but actually have different log-
ical structures. PLMs-based methods that encode
flattened queries can not model this structure infor-
mation for correct logical reasoning. (2) Although
queries g1 and g3 (also g3 and q4) contain differ-
ent elements, they share the same logical structure.
Motivated by these, we argue that structure model-
ing of different complex queries can further boost
the generalization ability of logical reasoners.

In this paper, we propose to model query struc-
ture for inductive logical reasoning over KGs.
Specifically, we transform the query structure into
a sequence using textual names of involved enti-
ties, relations, and logical operators. For complex
query structures composed of multiple geometric
operations over entities and relations, we introduce
two measures to enable logical structure modeling
during text encoding. First, we design stepwise
instructions for different query types to indicate

which operation in the query structure should be
conducted at each step and feed them as the struc-
tural prompt to PLMs. Besides, we extend the
pre-trained encoder with an additional attention
layer and a maxout layer to respectively model dif-
ferent geometric operations including projection,
intersection, and union on the representation space,
to implicitly inject structured modeling into PLMs.
Our proposed method is a generic inductive frame-
work, which can be plugged into different PLMs
for better performance.

We conduct experiments on two datasets for in-
ductive logical reasoning over KGs, FB15k-237-
V2 and NELL-V3 (Teru et al., 2020) as well as
three transductive datasets, FB15k (Bordes et al.,
2013), FB15k-237 (Toutanova and Chen, 2015),
and NELL995 (Xiong et al., 2017). The results
demonstrate that our method achieves strong induc-
tive performance on unseen entities and relations,
even across different KGs, without sacrificing logi-
cal reasoning capability and generalizability to new
query structures.

2 Methodology

In this work, we study the task of complex logi-
cal reasoning over KGs. The input is a first-order
logic query ¢ which can include any set of ex-
istential quantification (3), conjunction (A), and
disjunction (V) operators (such as the query in
Figure 1). Our goal is to predict a set of entities
A = {a1,as,as...} that answer the query ¢ based
on an incomplete KG G = (£, R) which consists
of a set of triplets (h, r, t) but lacks several involved
relations. Here h,t € £ are the head and tail enti-
ties and € R is the relation between them. We
mainly focus on the inductive setting of KG logi-
cal reasoning, where the evaluated queries contain
entities/relations that are completely unseen during
the training period.

Figure 2 shows the overall architecture of our
model. We propose to encode the text sequences
of query structures and predict the answer entities
based on representation similarity for inductive log-
ical reasoning over KGs. In this section, we first
list different types of query structures studied in
logical reasoning over KGs(§ 2.1). Then according
to various query types, we introduce our structure
linearization and structural prompts for textual en-
coding(§ 2.2). The geometric operation modeling
and query answer prediction modules are described
in (§ 2.3) and (§ 2.4). Finally, we provide the de-

4707

Logical Query:

q = vy. v :Win (TuringAward, v)
A Citizen (Canada, v)
A Graduate (v, v,)

Query Answer prediction Module

<
Query representatio/ R _Query representation

[Intersection Attention Layer] [

Union Maxout Layer

rojected repl"e}e;ntation

- A

1
! Projected representation

Turing
Award \%()Graduate ¥
?
P
Canada =~ C®

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
I Query Structure: .
1 1
1 1
1 1
| 1 P
1 1
1 1
1 1
1 1
1 1
1 1
1 1

Pre-trained Encoder M

Five steps: [proj], then [proj], and
[proj], then [proj], [inter]

) [SEP]I[inter]I[proj]I[anchor]I ZLZZ:Z I[rela]I Win I[proj]@[proj]l[anchor]l Canada@

Structural Prompt

Linearized Query Structure

Figure 2: The overall architecture of our method for inductive KG logical reasoning with structure knowledge
modeling. [inter] and [proj] are respectively abbreviations of [intersection] and [projection].

tails about training and inference (§ 2.5).

2.1 Query Structure Types

Following (Ren et al., 2020), we consider 9 types
of complex query structures which are composed
of different sets of geometric operations (including
projection, intersection and union) over entities and
relations. These include six single-operation query
structures and three mixed-operation ones. Specif-
ically, three query types only focus on projection,
including one-relation projection (1p), two-relation
projection (2p), and three-relation projection (3p).
Two query types focus on the intersection of two
triplets (2i) and three triplets (3i), and another one
focuses on the union of two triplets (2u). The three
mixed-operation query structures are respectively
the combinations of intersection&projection (ip),
projection&intersection (pi), and union&projection
(up). The different query structures are illustrated
as the following formula:

[1p] ¢ = v7 : ri(eq, v7)
[2p] ¢ = v7.3v : ri(eq,v) Are(v,v7)
[3p] ¢ = v7.3vy,va : r1(eq,v1) A Te(vy,v2)
A 13(v2, v7)
2 1 1r1(e1, v7) A raeg, v7)
7 :1r1(e1,v7) Ara(ea, v7) Ars(es,v)
= v7.3v : ri(e1,v) Ara(v,v9) Ars(eg, ve)

Jg=v
Jg=v
Jg=v
[ip] ¢ = v7.3v : ri(e1,v) Ara(eg,v) Arg(v,v7)
| ¢ =v7:ri(er,v?) Vra(ea, v7)

Jg=v

=wv7.3v : (ri(e1,v) Vra(ez,v)) Ars(v,ve)

)

where e; and v; are the anchor entities and exis-
tentially quantified bound variables entities, and v
are the target answer entities to the query. As these
complex queries contain rich logical structural in-
formation, we need to model the structure knowl-
edge during textual encoding for better inductive
generalization within the same logical structure.

2.2 Query Structure Encoding

In order to use PLMs for better generalization to un-
seen entities/relations, we first need to linearize the
query structures into text sequences. We also de-
sign instructions for each query type as a structural
prompt to implicitly indicate the order of geometric
operations execution to PLMs. We concatenate the
linearized query and structural prompt as the input,
and encode them to obtain the query representation
for matching with the answer entities.

Query Structure Linearization Given a
query structure g, we customize its linearization
method according to the query type. For each
triplet 7;(e;,v) in the query, we formulate it
as “[anchor] t(e;) [relation] ¢(r;)” and
ignores the intermediate variable entities, where
t(e;) and t(r;) are the textual names of anchor
entity e; and relation r;. Then we add the
names of logical operations before the involved
subqueries. For example, the query structure
of type [2p] can be linearized into sequence
“[projection] [anchor] t(e;) [relation]
t(r1) [projection] [relation] t¢(ry)” and the
query structure of type [2i] can be mapped into
“[Lintersection] [projection] [anchor]

4708

t(ey) [relation] t(r;) [projection]
[anchor] t(e2) [relation] t(rg)”.

For query types [ip] and [up] that are composed
of intersection/union and projection, the last re-
lation projection is conducted over the intersec-
tion/union of previous triplets. Directly flattening
the query is unable to keep such structural infor-
mation. Therefore, we propose to split the inter-
section/union and repeatedly connect each triplet
with the last relation projection which moves the
intersection/union operation to the final step. This
transformation is equivalent to the original query
structure. For example, the following two query
structures are equivalent and are both of type [up].

(ri(e1,v) Vra(ez,v)) Arg(v,v7)
(ri(e1,v) Ars(v,v7)) V (r2(e2,v) Arg(v,v7))
(2)

Based on this transformation, we linearize
the query structure of type [up] into the text
sequence as “[union] [projection] [anchor]

t(e1) [relation] t(r;) [projection]
[relation] t(rs) [projection] [anchor]
t(e2) [relation] t(re) [projection]
[relation] ¢(r3)”. The details of structure

linearization templates for each query type are
listed in Appendix A.

Structural Prompt Besides feeding the lin-
earized query structure into PLMs, we also intro-
duce stepwise instructions that indicate the order of
geometric operations execution to prompt the pre-
trained encoder with implicit structural information
of the query. Specifically, each prompt consists of
two parts: the number of total execution steps and
the operation order in the query, which is formu-
lated as “total steps: operation order”. For
query types [ip] and [up], we define the total steps
and operation order according to the transformed
query structure in Eq 2. The detailed structural
prompts of each query type are presented in Ta-
ble 1.

Then the input ¢ can be obtained by concate-
nating the structural prompt s and the linearized
query structure ¢(q), which is formulated as “[CLS]
Latype]l s [SEP] t(q)”. We feed it to the pre-
trained encoder and obtain the output hidden states
H = (hl, hg, ceny h\t|)

2.3 Geometric Operation Modeling

To further enhance the structure modeling dur-
ing textual encoding, we propose to separately

Query Type Structural Prompt
[1p] One step: [proj]
[2p] Two steps: [proj], then [proj]
[3p] Three steps: [proj], then [proj], then [proj]
[2i] Three steps: [proj], and [proj], [inter]
[3i] Four steps: [proj], and [proj], and [proj], [inter]
[pi] Four steps: [proj], then [proj], and [proj], [inter]
. Five steps: [proj], then [proj], and [proj], then
[ip] S
[proj], [inter]
[2u] Three steps: [proj], and [proj], [union]
Five steps: [proj], then [proj], and [proj], then
[up] [proj .
projl, [union]
Table 1: Structural prompts of sifferent query types.

“[proj]” and “[inter]” are the abbreviations of “[projec-
tion]” and “[intersection]”.

model different geometric operations in logical
queries to explore their spatial characteristics. As
Transformer-based encoders are widely used to im-
plicitly learn the translation function for simple link
prediction and question answering (Yao et al., 2019;
Wang et al., 2021a), we directly utilize it for mod-
eling multi-hop relation projection. For each path
of relation projection 1 (e1,v1) A ... A 1j(vj,v2),
we extract the hidden states corresponding to se-
quence “[anchor] t(e;) [relation] t(ry)
[projection] [relation] t(r;)” from H =
(h1,ha, ..., hyy). We then take the average as the
representation of target entity v7, which also can be
viewed as the representation h, of the query that
only involves relation projection operation.

For the intersection and union of multiple sub-
queries, we adopt an attention layer (Bahdanau
et al., 2014) and a maxout layer (Goodfellow et al.,
2013) on top of the pre-trained encoder to respec-
tively model these two operations in the geometric
representation space. Specifically, we feed the rep-
resentations of target entities in all subqueries to
these two additional layers to achieve the intersec-
tion and union operations. The output can be taken
as the query representation h,, that contains inter-
section or union.

As presented in (Ren and Leskovec, 2020), the
complete set of first-order logic operations encom-
passes existential quantification (3), conjunction
(N), disjunction (V) and negation(—). Our approach
covers the first three operations by modeling rela-
tion projection, intersection, and union respectively.
The negation operation is not individually modeled
as pre-trained encoders are capable of capturing se-

4709

mantic exclusion for negation. We can add negative
terms such as “not” before the corresponding rela-
tions within the input and feed it into pre-trained
encoders to naturally address this task.

2.4 Query Answer Prediction

To answer the complex query ¢, we adopt the
Siamese dual encoder (Gillick et al., 2018) to re-
spectively encode the query ¢ and the candidate
entity ¢; to match the answer. We formulate the en-
tity input as the sequence “[CLS] [target] ¢(¢;)”
and feed it into the pre-trained encoder to obtain
the candidate entity representation h., by taking
the average of the hidden states. Then we compute
the similarity d; between the query representation
h4 and entity representation h.,;, and encourage the
query representation to be similar to the positive
answer entities while dissimilar to negative enti-
ties. The entities whose representations are similar
enough to the query will be predicted as the an-
swers. We can pre-compute the representations of
all candidate entities and utilize them to predict
answers for different queries more efficiently.

The above matching scheme can handle the
inductive setting when the candidate entity set
is not closed and new entities may arise. To
improve the answer prediction accuracy in the
transductive setting where the candidate entity set
is closed, we also employ a classification layer
on top of the query representation h,. Given
the fixed candidate entity set (c1, co, ..., cn), the
classification layer with a softmax function will
output an /V-dimensional plausibility distribution
(Scys Seys -5 Scy) for each candidate entity ¢; to be
the answer.

2.5 Training & Inference

We simultaneously optimize a matching objective
and a classification objective to train our inductive
model for answering complex logical queries. For
the former, we adopt contrastive learning (Chen
et al., 2020) which needs to separate the positive
and negative answers for the query. We take the
given ground-truth answer c. as positive and imple-
ment in-batch negative sampling to collect the nega-
tives. We measure the similarity between the query
and entities using dot product, and follow (He et al.,
2020) to utilize InfoNCE as the contrastive loss.
The loss function is formulated as Eq. 3 where 7 is

exp(hg - he, /T)
vazl(eXp(hq “he,/T)

Ly = —log 3)

the temperature hyper-parameter and N is the total
number of candidate entities including positives
and negatives. For the classification objective, we
take all entities in each KG as candidate entities
and calculate the cross-entropy loss as Eq. 4.
N# 4)
Zi:l exp(SCi)

These two losses are combined in a weighted man-
ner as L = Ly + AL and A is the weighted
hyper-parameter.

During inference, we perform differently for in-
ductive and transductive logical query answering.
For the inductive reasoning, we utilize the match-
ing scheme and rank the representation similarities
between the query and all candidate entities for
query answer prediction. For the transductive in-
ference, we only adopt the classification scheme
and find the most plausible answer according to
classification scores.

Lo = —log

3 Experiments

3.1 Experiment Setup

We conduct experiments on complex logical rea-
soning over KGs in both inductive and transductive
setting. For the inductive setting, we adopt two
datasets, FB15k-237-V2 and NELL-V3, that have
disjoint sets of entities for training and evaluation,
as introduced by (Teru et al., 2020). To further chal-
lenge our model, we also illustrate the cross-KG in-
ductive generalization performance by respectively
taking FB15k and NELL995 for training/inference
and inference/training that contain completely dif-
ferent entities and relations. In the transductive
setting, we evaluate our model on the generated
queries from three datasets: FB15k (Bordes et al.,
2013), FB15k-237 (Toutanova and Chen, 2015),
and NELL995 (Xiong et al., 2017), as proposed
by (Ren et al., 2020). All these datasets cover nine
types of query structures. We follow the setting
of (Ren et al., 2020) to illustrate the generalization
within the same structure to unseen entities and
relations, and also the generalization to more com-
plicated unseen structures composed of different
structures. Specifically, we train our model on the
first five types of query structures (1p, 2p, 3p, 2i,
3i) and evaluate it on all nine query types (1p, 2p,
3p, 2i, 31, pi, ip, 2u, up), including both seen and
unseen query structures during training. The data
split statistics of logical queries in these datasets
are provided in Appendix B.

4710

Model ‘ Avg ‘ Ip 2p 3p

2i 3i ip pi 2u up

FB15k-237-V2

Q2B 0.043 | 0.005 0.055 0.017 | 0.007 0.007 | 0.078 0.129 0.027 0.061
TEMP(GQE) | 0.163 | 0.146 0.221 0.141 | 0.139 0.144 | 0.157 0.220 0.097 0.201
BiQE 0.158 | 0.286 0.151 0.107 | 0.187 0.240 | 0.125 0.155 0.085 0.091
SILR 0.178 | 0.309 0.121 0.106 | 0.237 0.274 | 0.148 0.181 0.110 0.116
NELL-V3
Q2B 0.017 | 0.002 0.022 0.005 | 0.003 0.002 | 0.026 0.048 0.018 0.028
TEMP(GQE) | 0.062 | 0.096 0.057 0.060 | 0.072 0.081 | 0.047 0.062 0.040 0.040
BiQE 0.089 | 0.178 0.081 0.081 | 0.082 0.092 | 0.067 0.081 0.066 0.069
SILR 0.101 | 0.197 0.079 0.074 | 0.103 0.122 | 0.094 0.090 0.080 0.068

Table 2: Inductive H@ 10 results of different structured queries on FB15k-237-V2 and NELL-V3 datasets. The
results of 2B and TEMP(Q2B) are taken from (Hu et al., 2022). Avg is the average performance of all query types.

Model | Avg | 1p 2p 3p | 2 3| ip pi 2u up
FB15k — NELL995

BiQE | 0.042 | 0.077 0.076 0.054 | 0.025 0.023 | 0.036 0.035 0.016 0.039

SILR | 0.069 | 0.166 0.101 0.096 | 0.033 0.040 | 0.020 0.027 0.063 0.073
NELL995 — FB15k

BiQE | 0.082 | 0.175 0.103 0.078 | 0.082 0.094 | 0.041 0.057 0.033 0.072

SILR | 0.098 | 0.218 0.128 0.100 | 0.081 0.089 | 0.029 0.059 0.115 0.065

Table 3: Inductive H@10 results on cross-KG generalization. FB15k — NELL995 and NELL995 — FB15k
respectively mean that the model is trained on FB15k and tested on NELL995, and vice versa.

3.2 Implementation Details

We take bert-large-cased and bert-base-cased (De-
vlin et al., 2018) as the pre-trained encoder
for encoding the query structure in (FB15k-237-
V2, NELL-V3) and (FB15k, FB15k-237, and
NELL995), respectively. All models are imple-
mented using Huggingface (Wolf et al., 2019), and
trained for 30 epochs on 4 NVIDIA Tesla V100
GPUs with 16 GB of memory. The Adam is taken
as the optimizer and the learning rate is 1.5e-4.
We use a linear learning rate scheduler with 10%
warmup proportion. The weight hyper-parameter
to balance losses is set to A = 0.3 or A = 0.4. For
automatic evaluation, we use Hits@ K (K = 3,10)
as the metrics, which calculate the proportion of
correct answer entities ranked among the top-K.

3.3 Inductive Setting

Unseen Entities Generalization To illustrate
the inductive performance of complex logical
reasoning over KGs, we first make a compar-

ison on FB15k-237-V2 and NELL-V3 datasets
for generalizing to unseen entities. We compare
our structure-modeled inductive logical reasoning
method (SILR), with the baseline embedding-based
method Q2B (Ren et al., 2020) and the best ver-
sion of the inductive model TEMP(GQE) (Hu et al.,
2022). TEMP(GQE) enriches embedding method
GQE (Hamilton et al., 2018) with type informa-
tion which has achieved the state-of-the-art perfor-
mance. BiQF (Kotnis et al., 2021) is also a tex-
tual encoding method with positional embedding
for logical query but only in the transductive set-
ting. We reimplement it by replacing the original
classification-based prediction with the matching
scheme for an inductive comparison.

The experimental results are shown in Table 2.
We can see that our SILR outperforms all other mod-
els on both FB15k-237-V2 and NELL-V3 datasets
by a considerable margin. This highlights the ef-
fectiveness of our method for inductive logical rea-
soning over unseen entities. Additionally, the im-

4711

Model ‘ Avg ‘ 1p 2p 3p

2i 3i ‘ ip pi 2u up

FB15k-237
GQE 0.228 | 0.402 0.213 0.155 | 0.292 0.406 | 0.083 0.17 0.169 0.163
Q2B 0.268 | 0.467 0.240 0.186 | 0.324 0.453 | 0.108 0.205 0.239 0.193
TEMP(Q2B) | 0.294 | 0.457 0.278 0.234 | 0.369 0.496 | 0.229 0.117 0.276 0.189
BiQE 0.262 | 0472 0.293 0.245 | 0.345 0.473 | 0.096 0.211 0.075 0.145
SILR 0.296 | 0.471 0.302 0.249 | 0.358 0.484 | 0.113 0.222 0.283 0.181
FB15k
GQE 0.386 | 0.636 0.345 0.248 | 0.515 0.624 | 0.151 0.310 0.376 0.273
Q2B 0.484 | 0.786 0.413 0.303 | 0.593 0.712 | 0.211 0.397 0.608 0.330
TEMP(Q2B) | 0.554 | 0.840 0.498 0422 | 0.674 0.779 | 0.483 0.261 0.727 0.300
BiQF 0.482 | 0.810 0.526 0461 | 0.677 0.781 | 0.209 0.456 0.185 0.232
SILR 0.596 | 0.867 0.575 0.489 | 0.736 0.824 | 0.287 0.500 0.767 0.321
NELL995
GQE 0.247 | 0.418 0.228 0.205 | 0.316 0.447 | 0.081 0.186 0.199 0.139
Q2B 0.306 | 0.555 0.266 0.233 | 0.343 0.480 | 0.132 0.212 0.369 0.163
TEMP(Q2B) | 0.373 | 0.625 0.343 0.342 | 0410 0.552 | 0.209 0.141 0477 0.262
BiQE 0.309 | 0.632 0.310 0.332 | 0.370 0.525 | 0.091 0.164 0.173 0.184
SILR 0.342 | 0.641 0.329 0.337 | 0.376 0.532 | 0.055 0.177 0.450 0.182

Table 4: Transductive H@3 results on FB15k-237, FB15k and NELL995 datasets. The results of GOE and Q2B are

taken from (Ren et al., 2020).

provement over the other positional textual encod-
ing model, BiQF, demonstrates that our structure
knowledge modeling during textual encoding is ca-
pable of enhancing the inductive complex query
answering capability.

Cross-KG Generalization We further explore
a more challenging cross-KG inductive setting,
where the model is trained and tested on different
datasets and requires generalizing to completely
different KGs. Specifically, we take FB15k and
NELL995 as the source/target and target/source
datasets, respectively. In this scenario, we adopt the
few-shot setting, where 500 random samples of the
target domain are provided for continual learning
to achieve better transferring. As embedding-based
methods, even when aware of type information,
are unable to embed most entities and relations in
new KGs with unseen types, we only compare our
SILR with the reimplemented BiQF. The results in
Table 3 show that our SILR performs better than
BiQE, and it can not only generalize to unseen en-
tities but also perform logical reasoning over new
KGs with only a few portions observed. This mani-
fests the effectiveness of our method on inductive
logical reasoning over KGs even in the real-world
challenging cross-KG setting.

3.4 Transductive Setting

Although textual encoding methods have the in-
ductive potential, their performance often lags be-
hind embedding-based models due to learning in-
efficiency and the inability to structure knowledge
modeling (Wang et al., 2022). We also compare our
SILR with transductive logical reasoning methods
to illustrate the logical reasoning performance over
KGs with structure modeling. The compared mod-
els including GQE, Q2B, TEMP(Q2B) and BiQFE
where the first three are embedding-based models
while the last one is a positional textual encoding
model. Since BiQF does not evaluate query types
2u and up, and does not provide results for FB15k,
we reimplement it for a fair comparison.

The results are shown in Table 4. Our SILR
outperforms BiQF, particularly in query types in-
volving intersection and union, indicating that our
structure knowledge modeling can effectively im-
prove the logical reasoning performance of textual
encoding and help generalize to unseen query struc-
tures. Although textual encoding methods have the
potential for inductive KG reasoning, they still lag
behind embedding-based methods for the trans-
ductive setting, due to explicit structure model-
ing and better learning efficiency of embedding-

4712

based methods (Wang et al., 2022). In this work,
we mainly focus on improving textual encoding
methods for inductive complex reasoning, but our
method still achieves comparable transductive per-
formance. This demonstrates the effectiveness of
our inductive method with query structure model-
ing on transductive logical reasoning over KGs.

3.5 Further Analysis

Ablation Study To dive into the impact of dif-
ferent components in our model on both inductive
and transductive logical reasoning over KGs, we
conduct an ablation study on the FB15k-237-V2
and FB15k-237 datasets. We respectively take bert-
large-cased and bert-base-cased as baseline models
for FB15k-237-V2 and FB15k-237. They remove
Structural Prompt (SP) and Geometric Operation
Modeling (GOM) from the final model SILR, which
directly encodes linearized query structures for an-
swer prediction.

As shown in Table 5, incorporating structural
prompting and geometric operation modeling can
both improve the baseline model, but still perform
worse than our final SILR. This indicates that these
two measures for modeling structure knowledge
during query text encoding can enhance the in-
ductive and transductive performance of logical
reasoning over KGs.

| FB15k-237-V2 FB15k-237

Model
| He3 H@10 | He3 Hel10
Baseline | 0.072 0.151 | 0258 0.397
w/SP | 0.073 0.162 | 0.288 0.429
w/GOM | 0.071 0.167 | 0.281 0.420
SILR 0.079 0.178 | 0296 0.437

Table 5: Ablation study results on FB15k-237-V2 and
FB15k-237. SP and GOM respectively denote Structural
Prompt and Geometric Operation Modeling.

Query Structure Generalization Embedding-
based methods are known to generalize well to
unseen query structures due to their explicit spatial
structure learning. To analyze the generalizability
of our implicit structure-modeled textual encoding
method to different logical query structures, we
further construct four types of complicated query
structures with more relations and geometric op-
erations, including 4p, 5p, 3ip and i2p, based on
the query structures in test sets. The detailed il-
lustrations and explanations of these query struc-

tures are given in Appendix C. We directly evaluate
our method on these more complicated queries in
both inductive and transductive datasets FB15k-
237-V2 and FB15k-237. The results are listed in
Table 6. We can see that compared to seen and un-
seen query structures in the original datasets in Ta-
ble 2 and 4, our method can also generalize to these
complicated structures with more logical opera-
tions and achieves impressive performance. This
demonstrates that the design of structural prompt
and implicit geometric operation modeling can ef-
fectively learn structure knowledge and improve
query structure generalizability.

Model | 4p 5p 3ip i2p
| 0186 0.089 0.256 0.092

Transductive ‘ 0.192 0.188 0.367 0.199

Inductive

Table 6: Analysis of generalization to more complicated
query structures. For inductive, we report the H@10
scores on FB15k-237-V2 and for transductive we report
the H@3 results on FB15k-237.

4 Related Work

Answering first-order logic queries over incomplete
KGs is a challenging task (Guu et al., 2015). Pre-
vious research (Lin et al., 2015; Hamilton et al.,
2018) mainly studies transductive logical reason-
ing, where the training and testing are performed
on the same KG. Embedding-based methods are
widely used to embed both logical queries and enti-
ties into a joint low-dimensional vector space and
push answer entities and queries to be close enough,
enabling answer prediction through embedding
similarity, even when the involved relation is ab-
sent. Following this paradigm, some further pro-
pose extending the embedding of the query/entity
from a single point to a region (Ren et al., 2020;
Zhang et al., 2021; Choudhary et al., 2021b) or
probabilistic distribution (Ren and Leskovec, 2020;
Choudhary et al., 2021a) over vector space to map
arbitrary first-order logic queries into sets of an-
swer entities. However, these methods are unable
to tackle the inductive problem, which requires
generalizing to unseen entities and relations. Al-
though (Hu et al., 2022) proposes enriching the
entity and relation embedding with type informa-
tion for inductive logical reasoning, it can only
generalize to elements of observed types.

Another line of research focuses on inductive

4713

logical reasoning over KGs using textual encod-
ing methods. With the advance of large-scale
pre-trained language models (Devlin et al., 2018;
Liu et al., 2019), these methods propose trans-
forming the graph structures into linearized text
and utilize PLMs for encoding (Yao et al., 2019;
Zha et al., 2022). With the strong generaliz-
ability of PLMs, they can easily generalize to
unseen entities/relations, but struggle to model
structure knowledge during text encoding. Some
works (Wang et al., 2021b; Daza et al., 2021; Wang
et al., 2021a) propose to follow TransE (Bordes
et al., 2013) to apply the translation function be-
tween entity and relation representations for geo-
metric structure learning. Nevertheless, these meth-
ods usually require descriptions of entities and re-
lations for encoding and assume these descriptions
are readily available. Besides, they only focus on
simple link prediction tasks without exploring com-
plex structure modeling in logical reasoning, which
is essential for generalizing within the same query
structure/type. We thus propose to simultaneously
encode the linearized query and preserve the logi-
cal structure knowledge by structural prompt and
separate geometric operation modeling for induc-
tive logical reasoning over KGs.

5 Conclusion

In this paper, we present the first flexible induc-
tive method for answering complex logical queries
over incomplete KGs which can generalize to any
unseen entities and relations. To accomplish this
goal, we propose a structure-model textual encod-
ing model that utilizes PLMs to encode linearized
query structures to find the answer entities. For
structure modeling of complex queries, we design
structural prompts to implicitly indicate PLMs the
order of geometric operations execution in each
query, and separately model three geometric oper-
ations on representation space using a pre-trained
encoder, an attention layer, and a maxout layer. Ex-
perimental results demonstrate the effectiveness of
our model on logical reasoning over KGs in both
inductive and transductive settings.

Limitations

This study has potential limitations. First, it only
focuses on answering existential positive first-order
logic queries but does not support the negation op-
eration. We will later address this limitation by
modeling the negation operation. Second, we uti-

lize BERT as the backbone model for inductive
generalization due to computing resource limits.
We plan to investigate the use of more powerful
pre-trained language models with stronger gener-
alizability in future research to improve inductive
logical reasoning over KGs.

Acknowledgments

This work is supported by National Natural Sci-
ence Foundation of China (No. 6217020551) and
Science and Technology Commission of Shanghai
Municipality Grant (No.21QA1400600).

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: a collabo-
ratively created graph database for structuring human
knowledge. In Proceedings of the 2008 ACM SIG-
MOD international conference on Management of
data, pages 1247-1250.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. Advances in neural information pro-
cessing systems, 26.

Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr
Settles, Estevam R Hruschka, and Tom M Mitchell.
2010. Toward an architecture for never-ending lan-
guage learning. In Twenty-Fourth AAAI conference
on artificial intelligence.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey Hinton. 2020. A simple framework for
contrastive learning of visual representations. In In-
ternational conference on machine learning, pages
1597-1607. PMLR.

Nurendra Choudhary, Nikhil Rao, Sumeet Katariya,
Karthik Subbian, and Chandan Reddy. 2021a. Proba-
bilistic entity representation model for reasoning over
knowledge graphs. Advances in Neural Information
Processing Systems, 34:23440-23451.

Nurendra Choudhary, Nikhil Rao, Sumeet Katariya,
Karthik Subbian, and Chandan K Reddy. 2021b. Self-
supervised hyperboloid representations from logical
queries over knowledge graphs. In Proceedings of
the Web Conference 2021, pages 1373—1384.

Daniel Daza, Michael Cochez, and Paul Groth. 2021.
Inductive entity representations from text via link
prediction. In Proceedings of the Web Conference
2021, pages 798-808.

4714

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Daniel Gillick, Alessandro Presta, and Gaurav Singh
Tomar. 2018. End-to-end retrieval in continuous
space. arXiv preprint arXiv:1811.08008.

Ian Goodfellow, David Warde-Farley, Mehdi Mirza,
Aaron Courville, and Yoshua Bengio. 2013. Maxout
networks. In International conference on machine
learning, pages 1319-1327. PMLR.

Kelvin Guu, John Miller, and Percy Liang. 2015.
Traversing knowledge graphs in vector space. arXiv
preprint arXiv:1506.01094.

Will Hamilton, Payal Bajaj, Marinka Zitnik, Dan Juraf-
sky, and Jure Leskovec. 2018. Embedding logical
queries on knowledge graphs. Advances in neural
information processing systems, 31.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and
Ross Girshick. 2020. Momentum contrast for unsu-
pervised visual representation learning. In Proceed-
ings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 9729-9738.

Zhiwei Hu, Victor Gutiérrez-Basulto, Zhiliang Xiang,
Xiaoli Li, Ru Li, and Jeff Z Pan. 2022. Type-aware
embeddings for multi-hop reasoning over knowledge
graphs. arXiv preprint arXiv:2205.00782.

Bhushan Kotnis, Carolin Lawrence, and Mathias
Niepert. 2021. Answering complex queries in knowl-
edge graphs with bidirectional sequence encoders.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 4968—4977.

Yankai Lin, Zhiyuan Liu, Huanbo Luan, Maosong Sun,
Siwei Rao, and Song Liu. 2015. Modeling relation
paths for representation learning of knowledge bases.
arXiv preprint arXiv:1506.00379.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Dangi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Hongyu Ren, Weihua Hu, and Jure Leskovec. 2020.
Query2box: Reasoning over knowledge graphs in
vector space using box embeddings. arXiv preprint
arXiv:2002.05969.

Hongyu Ren and Jure Leskovec. 2020. Beta embed-
dings for multi-hop logical reasoning in knowledge
graphs. Advances in Neural Information Processing

Systems, 33:19716-19726.

Fabian M Suchanek, Gjergji Kasneci, and Gerhard
Weikum. 2007. Yago: a core of semantic knowledge.
In Proceedings of the 16th international conference

on World Wide Web, pages 697-706.

Komal Teru, Etienne Denis, and Will Hamilton. 2020.
Inductive relation prediction by subgraph reasoning.
In International Conference on Machine Learning,
pages 9448-9457. PMLR.

Kristina Toutanova and Danqi Chen. 2015. Observed
versus latent features for knowledge base and text
inference. In Proceedings of the 3rd workshop on
continuous vector space models and their composi-
tionality, pages 57-66.

Denny Vrandeci¢ and Markus Krétzsch. 2014. Wiki-
data: a free collaborative knowledgebase. Communi-
cations of the ACM, 57(10):78-85.

Bo Wang, Tao Shen, Guodong Long, Tianyi Zhou, Ying
Wang, and Yi Chang. 2021a. Structure-augmented
text representation learning for efficient knowledge
graph completion. In Proceedings of the Web Confer-
ence 2021, pages 1737-1748.

Liang Wang, Wei Zhao, Zhuoyu Wei, and Jingming Liu.
2022. Simkgc: Simple contrastive knowledge graph
completion with pre-trained language models. arXiv
preprint arXiv:2203.02167.

Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhengyan
Zhang, Zhiyuan Liu, Juanzi Li, and Jian Tang. 2021b.
Kepler: A unified model for knowledge embedding
and pre-trained language representation. Transac-
tions of the Association for Computational Linguis-
tics, 9:176-194.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint
arXiv:1910.03771.

Wenhan Xiong, Thien Hoang, and William Yang Wang.
2017. Deeppath: A reinforcement learning method
for knowledge graph reasoning. arXiv preprint
arXiv:1707.06690.

Liang Yao, Chengsheng Mao, and Yuan Luo. 2019. Kg-
bert: Bert for knowledge graph completion. arXiv
preprint arXiv:1909.03193.

Hanwen Zha, Zhiyu Chen, and Xifeng Yan. 2022. In-
ductive relation prediction by bert. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 36, pages 5923-5931.

Zhanqiu Zhang, Jie Wang, Jiajun Chen, Shuiwang Ji,
and Feng Wu. 2021. Cone: Cone embeddings for
multi-hop reasoning over knowledge graphs. Ad-
vances in Neural Information Processing Systems,
34:19172-19183.

A Structure Linearization Templates

In this part, we list the detailed linearization tem-
plates of different structural query types in Table 7.

4715

Query Type Linearization Template

[1p] [projection] [anchor] ¢(eq) [relation] £(rq)

[2p] [projection] [anchor] ¢(eq) [relation] ¢(r1) [projection] [relation] ¢(r2)

[3p] [projection] [anchor] ¢(eq) [relation] ¢(r1) [projection] [relation] ¢(r2) [projection] [relation] #(r3)

[2i] [intersection] [projection] [anchor] ¢(ey) [relation] ¢(r1) [projection] [anchor] ¢(eg) [relation] £(r2)

(3] [intersection] [projection] [anchor] ¢(eq) [relation] £(r1) [projection] [anchor] t(e3) [relation] £(r2)
[projection] [anchor] ¢(e3) [relation] ¢(73)

[pi] [intersection] [projection] [anchor] (e) [relation] ¢(r;) [projection] [relation] ¢(r2) [projection]

P [anchor] t(e2) [relation] (r3)

lip] [intersection] [projection] [anchor] (e) [relation] ¢(r;) [projection] [relation] ¢(r3) [projection]

P [anchor] t(eg) [relation] ¢(r2) [projection] [relation] (r3)

[2u] [union] [projection] [anchor] ¢(e) [relation] ¢(r1) [projection] [anchor] ¢(e2) [relation] ¢(r2)

[up] [union] [projection] [anchor] (e) [relation] ¢(r1) [projection] [relation] ¢(r3) [projection] [anchor]

t(e2) [relation] ¢(r2) [projection] [relation] ¢(r3)

Table 7: The linearization templates of each query structure.

| Training Validation Test
Dataset

‘ 1p others 1p others 1p others
FB15k 273,710 273,710 | 59,097 8,000 | 67,016 8,000
FB15k-237 149,689 149,689 | 20,101 5,000 | 22,812 5,000
NELL995 107,982 107,982 | 16,927 4,000 | 17,034 4,000
FB15k-237-V2 9,964 9,964 1,738 2,000 791 1,000
NELL-V3 12,010 12,010 2,197 2,000 1,167 1,500

Table 8: Statistics of logical queries in different types in each data split. “others” means other eight query types
including 2p, 3p, 2i, 3i, pi, ip, 2u and up.

B Data Statistics

In Table 8, we summarize the statistics of logical
queries in our experimented datasets for both in-
ductive and transductive settings.

C Constructed Query Types

We here introduce our generated more complicated
query types involving more relations and logical
operations, which are used to illustrate the compli-
cated query structure generalizability.
[4p] ¢ = v7.3v1,va,v3 1 T1(e1,v1) A r2(v1, v2)
A r3(ve,v3) A Te(v3,07)
[5p] ¢ = ve.3v1, v, v3,v4 : T1(e1,v1) A T2(V1,02)
A r3(v2,v3) A Ta(v3,v4) A 75(v4,07)
[3ip] ¢ = v7.3v : ri(e1,v) Ara(eg,v) Ars(es,v)
Arg(v,v7)
[i2p] ¢ = v7.Fv1,va : T1(e1, v1) A T2(ez, v1)
A r3(v1,v2) Ara(ve,v7)

(6))

4716

ACL 2023 Responsible NLP Checklist

A For every submission:

¥ Al. Did you describe the limitations of your work?
Section Limitations

[0 A2. Did you discuss any potential risks of your work?
Not applicable. Left blank.

¥ A3. Do the abstract and introduction summarize the paper’s main claims?
Section 1

vf A4. Have you used Al writing assistants when working on this paper?
Use Grammarly and ChatGPT for spelling checking and polishing.

B ¥ Did you use or create scientific artifacts?
Section 3.1 & 3.2

¥/ B1. Did you cite the creators of artifacts you used?
Section 3.1 & 3.2

0J B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Not applicable. Left blank.

vf B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Section 3.1 & 3.2

0J B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Not applicable. Left blank.

¥/ B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Section 3.1

¥f B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Section B

C ¥ Dpid you run computational experiments?
Section 3
¥ C1. Did you report the number of parameters in the models used, the total computational budget

(e.g., GPU hours), and computing infrastructure used?
Section 3.2

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on Al writing
assistance.

4717

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

v C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Section 3.2

v C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?

Section 3

v C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?

Section 3.2

D Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

O DI1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

(] D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?

No response.

[0 D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?

No response.

0 D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

0] DS. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

4718

