
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 4629–4643

July 9-14, 2023 ©2023 Association for Computational Linguistics

Exploring the Capacity of Pretrained Language Models for Reasoning
about Actions and Change

Weinan He1, Canming Huang1, Zhanhao Xiao2∗, Yongmei Liu1∗
1Dept. of Computer Science, Sun Yat-sen University, Guangzhou 510006, China

2School of Computer Science, Guangdong Polytechnic Normal University,
Guangzhou 510665, China

{heweinan, huangcm}@mail2.sysu.edu.cn, xiaozhanhao@gpnu.edu.cn,
ymliu@mail.sysu.edu.cn

Abstract

Reasoning about actions and change (RAC) is
essential to understand and interact with the
ever-changing environment. Previous AI re-
search has shown the importance of fundamen-
tal and indispensable knowledge of actions, i.e.,
preconditions and effects. However, traditional
methods rely on logical formalization which
hinders practical applications. With recent
transformer-based language models (LMs), rea-
soning over text is desirable and seemingly fea-
sible, leading to the question of whether LMs
can effectively and efficiently learn to solve
RAC problems. We propose four essential
RAC tasks as a comprehensive textual bench-
mark and generate problems in a way that min-
imizes the influence of other linguistic require-
ments (e.g., grounding) to focus on RAC. The
resulting benchmark, TRAC, encompassing
problems of various complexities, facilitates
a more granular evaluation of LMs, precisely
targeting the structural generalization ability
much needed for RAC. Experiments with three
high-performing transformers indicate that ad-
ditional efforts are needed to tackle challenges
raised by TRAC.

1 Introduction

Reasoning about actions and change (RAC) has
been a central issue since the early days in AI (Mc-
Carthy, 1963) and received much attention from
the NLP community (Li et al., 2021; Zellers et al.,
2021; Dalvi et al., 2018). Classical AI has long
recognized the importance of actions and charac-
terized the fundamental knowledge about actions:
preconditions and effects (Reiter, 2001). Precondi-
tions are the conditions that must be satisfied when
actions are executed, while effects define the result.
Consider the example where an agent is moving
containers in a dock: Suppose a red container is
on top of a green one, and the agent is given an
instruction to “move the green container to another

∗Corresponding author

platform”. To achieve such a goal, it needs to know
the preconditions of moving a container (there is
not any other container on top of it) and the effect
of such actions.

While traditional approaches provide sound and
effective reasoning by capturing preconditions and
effects, they rely on expensive and difficult for-
malization. Consequently, inducing knowledge
from text and reasoning directly is becoming more
preferable. As transformers have shown their
promising potential in many linguistic tasks (Liu
et al., 2019; Raffel et al., 2020), we set out to probe
whether pretrained language models can master the
ability of reasoning about actions and changes.

Previous approaches involving actions in NLP
are more application-centric and usually contain
specific tasks (e.g. instruction following, predic-
tion) (Li et al., 2021; Zellers et al., 2021) with-
out considering both preconditions and effects. In
general these tasks are not verified logically. On
the other hand, there exist some template-based
datasets, such as the one in (Clark et al., 2020),
which are logically sound and generated from sev-
eral simple rules. Unfortunately, they pay more at-
tention to general deduction in a static perspective,
while RAC problems require repeated changes.

We propose Textual Reasoning about Actions
and Change (TRAC), a comprehensive suite of
four fundamental and granular RAC reasoning
tasks, inspired by traditional reasoning problems
(Brachman and Levesque, 2004). Recognizing the
utmost importance of preconditions and effects, we
include the two fundamental tasks, Projection and
Executability, which directly target the essential
knowledge of RAC. We also provide two composite
tasks, Plan-Verification and Goal-Recognition for
more comprehensive problem settings. Together,
the four aspects of TRAC enable a more granu-
lar evaluation. We position TRAC as a diagnostic
benchmark that is a more direct and precise embod-
iment of RAC abilities:

4629



• Projection: anticipate the effects of actions;
• Executability: decide if actions are applicable;
• Plan-Verification: decide if actions form a valid

plan;
• Goal-Recognition: recognize the goal from ob-

servations of actions.

We employ two principles in dataset construc-
tion. Firstly, we minimize the impact of other im-
portant abilities (e.g. grounding and language vari-
ance) for a “clean-room” evaluation that solely fo-
cuses on RAC. Secondly, we desire reasoning prob-
lems with controlled complexities for testing struc-
tural generalization. We design a framework that
takes the action domain knowledge and the textual
template as input, generates symbolic problems,
and synthesizes the textual problems. In this paper,
we select the blocks world (Cook and Liu, 2002), a
typical action domain for a proof-of-concept. How-
ever, the framework is domain-agnostic and is thus
extensible to other action domains.

We design generalization tests based on the ob-
servation that once the classical AI systems are
endowed with knowledge of actions, they can ef-
fectively solve structurally more complex problems.
Therefore, we lay out four aspects of generaliza-
tion experiments: 1) with more objects; 2) with
longer action sequences; 3) with unseen names of
objects; 4) with unseen conjunctive conditions. We
train neural language models (LMs) of three high-
performing transformer architectures, testing their
efficiency and effectiveness on the TRAC datasets.
The result shows that while transformers are able to
induce and utilize knowledge from a large number
of training examples, it remains a great challenge to
efficiently generalize to structurally more complex
problems on TRAC.

2 Related Work

Recent NLP tasks are embracing reasoning. While
machine reading tasks such as SQuAD (Rajpurkar
et al., 2018) require inference to some extent, our
work is the first one as we know to systemati-
cally study Textual RAC. Reasoning about dy-
namic worlds is also needed in commonsense tasks
such as the Winograd Schema Challenge (Levesque
et al., 2012; Wang et al., 2019). But environments
in such tasks did not model well-defined actions
and change. Compared to these tasks, our concern
is formal reasoning that supports sound conclu-
sions.

Our work is distinct from previous attempts of
formal reasoning in natural language. Natural
Logic studies valid inference over natural language
(Lakoff, 1970), but its recent developments focus
on reasoning about semantic relations between lex-
ical terms (Angeli et al., 2016). Meanwhile, trans-
formers have achieved promising results on textual
deduction tasks (Clark et al., 2020; Saha et al.,
2020). While they target general deduction such as
“round people are nice; Bob is round; Thus Bob is
nice”, we dedicate our work to RAC and requires
systems to learn the knowledge from examples.

Previous work has been exploring NLP tasks in-
volving actions, especially with instruction follow-
ing, action outcome prediction and procedural text
generation tasks. TRAC is unique in its focus on
fundamentals, broad coverage of reasoning tasks,
and the granularity. Linguistic requirements (e.g.
the ability of grounding and handling languge vari-
ance), though important, are foreign to RAC and
are thus avoided. Compared to application-centric
tasks, our work provides a more abstract view of
tasks that embody the fundamental requirements of
RAC. Moreover, this paper proposes a suite of gen-
eralization tests that target structural complexities
in RAC, which enables more fine-grained tests.
Instruction Following (IF): Agents are given tex-
tual directives to execute actions in an environment.
In (Zhou et al., 2021; Dan et al., 2021), agents
receive visual features or spatial coordinates as in-
put. More importantly, IF does not target directly
preconditions and effects as we do.
Prediction: Projection and prediction both con-
cern the effect of actions. In (Zellers et al., 2021),
symbolic attributes represent the world instead of
language. Questions in bAbI (Weston et al., 2016)
and ProPara (Dalvi et al., 2018) ask about change
of objects. However, they neglect the equally im-
portant preconditions.
Procedure Generation: Predicting the next in-
struction (Li et al., 2021) or next step (Bosselut
et al., 2018) might relate to the executability of ac-
tions, but they only cover partial RAC illustrated in
this paper. While understanding the preconditions
is needed, it could also implicate other extraneous
factors such as the preferences of the instructor.
Generalization has always been a desirable trait.
In (Dan et al., 2021), the authors attacked IF sys-
tems with adversarial examples (e.g. with slight
perturbations). Long-horizon problems are shown
to be non-trivial for neural planners (Zhou et al.,

4630



2021; Xu et al., 2019). Our evaluation with trans-
formers further corroborate the observation. Addi-
tionally, TRAC imposes more structural generaliza-
tion requirements in a more granular way.

3 TRAC

In this section, we first introduce the theoretical
background before we lay out the four tasks and
discuss dataset generation. The dataset is available
at https://github.com/sysulic/trac.

3.1 Theoretical Preparation

In RAC, the essential issues include understanding
1) the state of the environment, 2) which actions
are applicable, and 3) how actions affect the en-
vironment. For precise definitions of states and
actions, we use the semantics of STRIPS (Fikes
and Nilsson, 1971), a typical formal language that
enables sound reasoning. In STRIPS, an action
domain specifies the types of objects, predicates
for describing the states, and how actions change
the environment. In our exploration, we limit the
action domains to be deterministic and noise-free.
We also assume the unique name axioms, where
different objects have different names. TRAC is
built upon the following concepts:

• A state is a set of atomic expressions (e.g.,
{clear(A), on(A,B), . . .}) that represents a
snapshot of the environment at a specific time
point. Atoms not in the state are considered false.

• An action consists of four parts: name, precon-
dition, add list and delete list, the last three of
which are sets of atoms. An action is applicable
to a state iff the atoms of the precondition are
all contained in the state. When it is applied to
a state s, expressions in the delete list will be
removed from s and those in the add list will be
added into s, resulting in a new state s′.

• An action sequence is an ordered sequence of
actions. It is applicable to a state if and only if
every action can be applied consecutively.

• A goal is a ground formula that describes the
objective state. We limit goals to be either a
literal (an atom or its negation) or a conjunction
of two. We only consider achievable goals.

• A plan (wrt a goal and a state) is an applica-
ble action sequence. It is goal-achieving if the
execution of the plan achieves the goal. A goal-
achieving plan is optimal if there is no shorter
plan.

We use a variant of the blocks world (BW) as
an example where 1) a table has infinite space to
hold blocks, 2) blocks have identical sizes and can
be stacked as towers (a block is either on another
one or immediately on the table), and 3) a block
can be moved only if certain conditions are met.
Example 1 and 2 show the predicates and actions
in BW. Given an action domain and an initial state,
the action and expression space can be determined,
based on which the TRAC problems are generated.

Example 1. Predicates in BW:
1. on(x, y) states that x is on y;
2. onTable(x) says x is on the table;
3. clear(x) declares that there is no block on x.

Actions in BW. We provide the definitions of the
actions.

Example 2. Actions in BW:

move(x, y, z): Move block x that is on block y
onto block z.
• Precondition: clear(x), clear(z), on(x, y).
• Add list: clear(y), on(x, z).
• Delete list: clear(z), on(x, y).

moveToTable(x, y): Move block x that is on
block y onto the table.
• Precondition: clear(x), on(x, y).
• Add list: onTable(x), clear(y).
• Delete list: on(x, y).

moveFromTable(x, y): Move block x that is
on the table onto block y.
• Precondition: onTable(x), clear(x), clear(y).
• Add list: on(x, y).
• Delete list: onTable(x), clear(y).

3.2 Reasoning Tasks in TRAC
For a comprehensive and granular evaluation, we
propose four different reasoning tasks, each focus-
ing on an aspect of RAC. All four tasks in TRAC
are formulated as text classification problems, sim-
ilar to the deduction task (Clark et al., 2020) and
Natural Language Inference task. Given the input
of two texts, a context and a query, the system is
asked to classify if the query is true accordingly.
Concrete examples can be seen in Table 1.

Projection. The projection task directly asks
about the effects of actions: Given an initial state
s and an applicable sequence a⃗ of N actions, de-
cide whether the projection query q, a proposition,
would hold after the execution of a⃗. The context is
s and a⃗, and the query is q.

4631

https://github.com/sysulic/trac


Task Context Query Answer

PR
s: The green block is on the table. The red block is clear.
The blue block is clear. The green block is clear. The red
block is on the table. The blue block is on the table.
a⃗: Jane moves the green block from the table to the red
block.

q: The blue block is on
top of the red block.

False

EX s: The olive block is on the table. The yellow block is
on top of the olive block. The indigo block is clear. The
indigo block is on top of the yellow block.

a⃗: Jane moves the in-
digo block from the
yellow block onto the
table.

True

PV
s: The blue block is clear. The blue block is on top of the
magenta block. The magenta block is on top of the white
block. The white block is on the table.
g: the blue block is not on top of the magenta block

a⃗: Jane moves the
blue block from the
magenta block onto the
table.

True

GR
s: The blue block is clear. The blue block is on top of the
magenta block. The magenta block is on top of the white
block. The white block is on the table.
a⃗: Jane moves the blue block from the magenta block onto
the table.

g: the blue block is
on top of the magenta
block.

False

Table 1: Examples of TRAC tasks. Each problem in TRAC consists of a context, a query, and an answer. The
markers s, a⃗, g are only shown here for reference. (PR=Projection, EX=Executability, PV=Plan-Verification,
GR=Goal-Recognition)

Executability. This task directly targets the pre-
conditions of actions: Given an initial state s and a
sequence a⃗ of N actions, decide whether a⃗ can be
executed consecutively in s. The context is s and
the query is a⃗.

Plan-Verification (PV). Planning is the task of
formulating actions to fulfill a certain goal. In
TRAC, we use the verification version that asks
systems to recognize if the provided actions can
achieve the goal: Given an initial state s and a goal
g, a proposition, and a sequence a⃗ of N actions,
decide if a can achieve g. The context is s and g,
and the query is a⃗.

Goal-Recognition (GR). GR is the task to recog-
nize the goal from the partial observation of actions.
We use a simplified version, where systems observe
a partial action sequence and need to figure out if
the given goal is the true objective: Given an initial
state s, a potential goal g, and a sequence a⃗ of N
actions as the observation, decide if g is the true
objective. That is, decide if a⃗ is a prefix of any
optimal plans to achieve g. The context is s and a⃗,
and the query is g.

3.3 Dataset Generation
We provide a framework to generate TRAC prob-
lems. It takes both the action domain and the

language template as input to construct symbolic
forms and translation, respectively. For each task in
TRAC, we generate three basic datasets, each hav-
ing action sequences of different lengths (denoted
as L1, L2, and L3 for lengths 1, 2, and 3 respec-
tively). All examples in the datasets have M = 5
objects. For the generalization tests discussed in de-
tail in the next section, we also construct additional
datasets with different parameters. Each problem
is first generated in the symbolic form before being
translated into textual form in English.

Symbolic Instance Generation. Commonly ex-
isting in all examples are the initial state and the
action sequence, which serve as the foundation for
all four tasks. While the initial state is always part
of the context, the action sequence is either part of
the context or is the query, depending on the task.
Firstly we generate the state space with M objects
according to the action domain. In the blocks world
where blocks have different colors, their names
(e.g. “the red block”) are randomly chosen from
a pre-specified range. Secondly, the action space
is computed, which includes all grounded possible
actions with respect to each possible state. With
these spaces, we construct the context and query
for each TRAC problem.

4632



Projection. The context includes an initial state
and an action sequence. From the action space, we
randomly sample N actions to form a sequence
that is executable in the initial state. For the query,
we randomly generate a formula of the following
form:

l1 or l1 ∧ l2, (1)

where l1 and l2 are literals (atoms or their nega-
tions), e.g., onTable(Blue), ¬on(Green,Blue).
The query is true if and only if it holds after execut-
ing the action sequence.

Executability. The context is an initial state. For
the query, we sample N actions from the action
space as a sequence. The query is true if and only
if it is executable consecutively in the initial state.

Plan-Verification. The context consists of an ini-
tial state and a goal that is achievable with N ac-
tions or less. The query is an action sequence of
length N . Both the goal and the action sequence are
generated at random. Goals share the same form as
projection queries, shown in Formula 1. We only
include achievable goals in this task. The query is
true if and only if it is a valid goal-achieving plan.

Goal-Recognition. The context comprises an ini-
tial state and a sequence of N actions as the partial
observation. The GR query is a plausible goal
of the same form as in the plan-verification task.
Both the action sequence and the goal are randomly
generated. The query is true if and only if the obser-
vation is a prefix of any optimal plans that achieve
the query.

Textual Form Synthesis. We use templates to
generate the actual problems, following the guide-
line of “clean-room” evaluation, which strives to
focus on RAC instead of other linguistic require-
ments such as grounding and language variance.
To maintain readability, our framework utilizes
handcrafted templates for the specific action do-
main. These templates specify the translation of
each predicate, action, goal, and projection query.
A symbolic state will be converted into several sen-
tences, each of which is a direct translation of the
atomic expression. Similarly, an action sequence
is translated into a concatenation of the action sen-
tences. Projection queries are synthesized in the
same fashion, but goals are processed differently
to accommodate conjunctions with “and” if nec-
essary. For example, the textual form of the goal
onTable(Blue)∧¬on(Green,Blue) is “the blue

block is on the table and the green block is not on
the blue block”.

As a result, we generate four datasets (four
tasks, each containing various lengths of action
sequences). Each dataset contains 15,000 label-
balanced examples. We split the 15k examples into
12k training examples (where 2k are used as a dev
set) and 3k testing examples.

4 Experiments

Task RoBERTa GPT-2 T5

PR 87.36
(0.0396)

85.13
(0.0336)

82.99
(0.0227)

EX 99.73
(0.0013)

99.37
(0.0037)

98.83
(0.0024)

PV 87.63
(0.0158)

90.09
(0.0157)

87.73
(0.0110)

GR 96.82
(0.0044)

97.44
(0.0021)

94.04
(0.0082)

Table 2: Accuracies (percent signs omitted) and stan-
dard deviations (in parentheses) of the baselines on
TRAC. Each cell corresponds to the model trained
and tested on the specific dataset (column header) for
the task. (PR=Projection, EX=Executability, PV=Plan-
Verification, GR=Goal-Recognition)

We conduct experiments to address the following
questions:

1. Can transformers induce knowledge to effec-
tively solve TRAC problems?

2. Can they generalize to problems that are struc-
turally more complex?

3. How data-efficient are they?

The datasets, code, and hyper-parameters are avail-
able in the supplementary materials.

4.1 Baseline Models

We use three different LMs as our baseline models,
each with different architectures: RoBERTa (Liu
et al., 2019), GPT-2 (Radford et al., 2019), and T5
(Raffel et al., 2020). These architectures compose
transformer layers in various typical fashions:

1. RoBERTa features transformer-encoder layers;
2. GPT-2 contains transformer-decoder layers;
3. T5 combines both encoder and decoder layers.

Driving by the classification nature of TRAC,
the first two baseline models are built by adding a
linear layer upon the transformer layers for both

4633



Task SD GE1
GE2

GE3
GE4

L4 L5 Literals Conj.

PR
87.36

(0.0396)
58.19

(0.0185)
71.91

(0.0428)
69.82

(0.0301)
85.09

(0.0308)
93.15

(0.0537)
72.89

(0.0248)

EX
99.73

(0.0013)
87.91

(0.0469)
82.54

(0.0200)
79.76

(0.0159)
99.01

(0.0014)
N/A N/A

PV
87.63

(0.0158)
80.40

(0.0461)
61.67

(0.0169)
56.27

(0.0086)
91.81

(0.0181)
98.11

(0.0014)
68.63

(0.0441)

GR
96.82

(0.0044)
79.66

(0.0475)
N/A N/A 94.69

(0.0040)
99.99

(0.0001)
73.91

(0.0028)

Table 3: Accuracies and standard deviations of the RoBERTa-base models on generalization experiments. Results
from Table 2 are shown in the second column (SD=Standard) as a comparison for GE1, GE2, and GE3. The last
two columns report results for GE4: the baselines are trained using examples with only literals. (PR=Projection,
EX=Executability, PV=Plan-Verification, GR=Goal-Recognition)

RoBERTa and GPT-2. As for T5, we use its text-
to-text pre-training objective to generate the la-
bels. The input for RoBERTa is organized as <s>
context </s> query </s> where <s> and </s>
are separator symbols, following previous work
(Clark et al., 2020). We tarin these LMs to pre-
dict the truth of the query using the cross-entropy
loss function. Accuracy is used as the metric for
evaluation, and we report the mean values and stan-
dard deviations of the repeated experiments. Ap-
pendix A.4 gives details of the LMs.

4.2 Effectiveness of Transformers

We first evaluate the effectiveness of the baseline
models on TRAC problems of the same structural
complexity. Both the training set and the test set
contain problems with M = 5 objects and N ac-
tions (N ∈ {1, 2, 3}, where the ratio of L1:L2:L3
is 1:1:1). For each architecture, we train a baseline
model separately for each reasoning task, resulting
in twelve such models, shown in Table 2. In this
setting, transformers are given enough training data
and are required to induce knowledge about actions
and change from examples.

In Table 2, transformers have shown capable per-
formances, with all accuracies above 80%. While
they excel at Executability and Goal-Recognition,
there is considerable room for improvement on
Projection and Plan-Verification. Although these
different transformer architectures have their own
wins on different tasks, they do have rather similar
performances, demonstrating that the challenge of
TRAC is universal for transformers.

800 1000 2000 3000 6000 9000 10000

0.6

0.7

0.8

0.9

1

Training Samples

A
cc

u
ra

cy

Data Efficiency: RoBERTa-base on Standard Datasets

Projection
Executability

Planning
Goal-Recognition

Figure 1: Accuracies of RoBERTa baselines vs sizes of
training samples on the standard datasets of TRAC.

800 1000 2000 3000 6000 9000 10000

0.5

0.6

0.7

0.8

0.9

Training Samples

A
cc

u
ra

cy

Data Efficiency: RoBERTa-base on GE1

Projection
Executability

Planning
Goal-Recognition

Figure 2: Accuracies of RoBERTa baselines vs sizes of
training samples on the GE1 of TRAC.

4634



800 1000 2000 3000 6000 9000 10000

0.5

0.6

0.7

0.8

0.9

Training Samples

A
cc

u
ra

cy
Data Efficiency: RoBERTa-base on GE2-L5

Projection
Executability

Planning

Figure 3: Accuracies of RoBERTa baselines vs sizes of
training samples on the GE2 of TRAC.

4.3 Structural Generalization Experiments

Targeting structural generalization ability, we de-
sign four out-of-distribution tests. Novel test ex-
amples that are more structurally complex are
generated to this end. For the first three gener-
alization experiments (GEs), we re-use models
trained on previous datasets (with complexities
M = 5, N ∈ {1, 2, 3}). Since the last GE requires
additional training, both training and test sets are
necessary. In total, we created twenty additional
datasets beyond the normal ones. Table 3 shows the
results for the RoBERTa-base models. The other
two tranformer architecture are also evaluated.

GE1: More Objects. In this test, we examine
whether the baselines can handle TRAC problems
containing more objects (blocks in the BW do-
main). We generate a new dataset for each reason-
ing task, all of which involve ten objects. We eval-
uate the baselines trained on the standard datasets.
The results show that baselines have significantly
worse performances on GE1 datasets for all tasks,
most notably in Projection. This is expected, as the
GE1 problems have longer state descriptions and
more complicated states. Compared to the training
examples, the state descriptions in GE1 datasets
contain 6.1 more sentences with 52.1 more words
on average. Nonetheless, the results show that the
baselines do not generalize well to more objects.

GE2: More Actions. Naturally, we are interested
in the generalization to longer action sequences,
as the length often plays a vital role in both for-
mal reasoning tasks and natural language tasks
(Zhou et al., 2021; Xu et al., 2019). For Projec-
tion, Executability, and Plan-Verification tasks, we
generated the L4 and the L5 datasets that have ac-

tion sequences of length four and five, respectively.
Goal-Recognition is left out as there are not enough
test examples in this setting. The results from Table
3 confirm that the length of the action sequence is
a vital factor, as the accuracies degrade for longer
sequences. It is more apparent for Plan-Verification
problems, with an appalling 40% accuracy loss on
L5. This observation further verifies the universal-
ity of the long-horizon problem (Xu et al., 2019),
even for transformer-based LMs.

GE3: Unseen Names. Changing the names of
the objects is supposed to have negligible impact.
The ability of generalization to unseen symbols is
desirable in reasoning over both formal and natural
languages. Seeing this, we substitute the names of
objects for previously unseen ones, resulting in four
more datasets. They differ from the standard ones
only in the object names. The results from Table 3
show minor differences between the performances
as expected, demonstrating the capability of the
LMs to generalize beyond unseen names.

GE4: Compositionality in Goals and Projec-
tion Queries. Reasoning requires the capability
of compositionality: to understand or manipulate
higher-level structures composed of known com-
ponents. One such ability is to combine two con-
ditions as a conjunction. If systems understand
conditions A and B separately, they are expected
to realize that the conjunction A∧B is true iff both
are true. In TRAC tasks, the ideal testbeds are Pro-
jection, Plan-Verification, and Goal-recognition,
where the projection queries and goals could be
partitioned into literals and conjunctions.

In Projection, conjunctions take the form of two
separate sentences. For example, a projection query
could be “The red block is on top of the green block.
The green block is on the table.” Whereas in Plan-
Verification and Goal-Recognition, conjunctions
have the specific “and” surface form. For example,
a goal could be “the red block is clear and the red
block is on top of the green block”.

In this experiment, we train baselines using ex-
amples with only literals in conditions and see if
they can handle the examples with conjunctions.
Therefore, new training datasets are needed. For
each of the three tasks, we generate GE4-literals, a
dataset of 15k instances with only literals in target
conditions (10k for training, 2k as dev set, and the
other 3k for testing), along with GE4-conjunctions,
a dataset of 3k problems with only conjunctions.

4635



After training the baselines on GE4-literals, we
compare their performances on test sets of literals
and conjunctions.

The results from Table 3 show that the base-
lines do not generalize well to conjunctions, losing
more than 20% accuracies on all tasks. Such a
phenomenon suggests that compositionality is not
trivial in TRAC for the transformers. It is also
noteworthy that conjunctive conditions have vari-
ous forms: While conjunctions are represented by
two sentences in Projection, they are of the form
“condition1 and condition2” in Plan-Verification
and Goal-Recognition. This leads us to believe that
the performance loss is not about the introduction
of the surface form “and”, but about the concep-
tual understanding of conjunctive compositionality,
without which the models cannot generalize well.

4.4 Data Efficiency

In reality, humans need only a few examples to
adapt to novel environments. To explore how many
training samples are needed for the transformers,
we plot the accuracies of the RoBERTa baselines
with increasing numbers of training samples. In
Figure 1, we notice that the baselines require at
least 3000 samples to have acceptable accuracies
(above 80%) on standard datasets. The inefficiency
is even more obvious when it comes to GE1 and
GE2 examples in Figure 2 and Figure 3, respec-
tively. Moreover, the Plan-Verification task seems
to be the most challenging one when training data
is limited.

Other Transformers. We also evaluate GPT-2,
T5, and a larger RoBERTa model on the GEs and
the full results are provided in Appendix A.1.

• GPT-2 and T5 have rather similar performances
on GEs, suggesting that structural generalization
is a universal challenge for transformers;

• Although the larger RoBERTa model outper-
forms smaller models, it also suffers when facing
structurally more complex problems.

5 Discussion

Although we are optimistic about the future of
transformers, their performances in the general-
ization tests indicate that transformers alone are
not enough for RAC: Firstly, the reasoning prob-
lems in this proof-of-concept evaluation involve
few actions objects that would be quite effortless
for humans. Secondly, the scale of generalization

is rather minor (from three actions to four or five
actions; from five objects to ten objects). Yet we
could observe the struggle of transformers with
such minute structurally complex problems. As
illustrated in (Li et al., 2021), transformers capture
meaning in texts to some extent, which indicates
that they have potential in modeling actions and
change. Such potentials can also be seen in our ex-
periments when transformers are given more than
abundant training examples. Meanwhile, (Zellers
et al., 2021) showed that dedicated neural com-
ponents other than transformers could help model
state changes and predictions. These lead us to the
conjecture that additional mechanisms that model
the preconditions and effects could be the next
objectives towards solving TRAC problems.

6 Limitations

More Complex Domains. We choose the BW
for its intuitive and simplistic nature (with one kind
of object, three types of actions, and three predi-
cates). Although the generalization experiments
suffice currently to challenge transformers, real-
world situations are more complicated. With the
improvement of the algorithms, the need for a bet-
ter arrangement of actions domains is emerging.
In time, it could be beneficial to include several
domains with various levels of complexities.

Balance Between Rigor and Natural. For now,
the synthesized English sentences are generated us-
ing a fixed template. Whilst being accurate without
ambiguity, the resulting text is still quite formal. It
would be valuable to add variety in the expressions
without losing precision.

Better Solvers. As our demonstrations suggest,
current LMs still fall short on the generalization
tests. We hope that our work will pique interests
in the community towards reasoning about actions
and change, and challenge approaches to undertake
the fundamental reasoning tasks.

7 Conclusion

In a time where language models excel at many
natural language tasks, including deductive ones,
we revisit the key reasoning abilities for dynamic
worlds with actions and change. While preserv-
ing the essence of traditional formal reasoning, we
set out to investigate how well transformers can
reason rigorously over textual input, which avoids

4636



the need for a complete formalization of each spe-
cific problem. Using the semantics of STRIPS, we
characterize four essential reasoning tasks about
actions and change to form the TRAC benchmark.
We devise a framework to generate symbolic prob-
lems and transform them into text, resulting in a
suite of datasets of various complexities. We also
design four further experiments that target differ-
ent aspects of structural generalization. Built upon
the high-performing transformers, the baselines are
put to the test under different settings. Although
they show promising results on in-distribution prob-
lems provided with more-than-abundant training
examples, it is the out-of-distribution generaliza-
tion tests that cause troubles. We argue that TRAC
tasks could be used to 1) expand our understanding
of the limitations of transformers and, 2) serve as a
challenge for generalization in RAC over text. In
the future, we expect to see more interesting work
based on TRAC, such as better solvers with mech-
anisms to learn both preconditions and effects, and
novel generalization tests that call for more specific
reasoning abilities.

Acknowledgement

We acknowledge support from the Natural Science
Foundation of China under Grant No. 62076261
and 61906216.

References
Gabor Angeli, Neha Nayak, and Christopher D. Man-

ning. 2016. Combining natural logic and shallow
reasoning for question answering. In Proceedings
of the 54th Annual Meeting of the Association for
Computational Linguistics, ACL 2016, August 7-12,
2016, Berlin, Germany, Volume 1: Long Papers. The
Association for Computer Linguistics.

Antoine Bosselut, Corin Ennis, Omer Levy, Ari Holtz-
man, Dieter Fox, and Yejin Choi. 2018. Simulating
action dynamics with neural process networks. In In-
ternational Conference on Learning Representations.

Ronald J. Brachman and Hector J. Levesque. 2004.
Knowledge Representation and Reasoning. Elsevier.

Peter Clark, Oyvind Tafjord, and Kyle Richardson. 2020.
Transformers as soft reasoners over language. In Pro-
ceedings of the Twenty-Ninth International Joint Con-
ference on Artificial Intelligence, IJCAI-20, pages
3882–3890. International Joint Conferences on Arti-
ficial Intelligence Organization. Main track.

Stephen A. Cook and Yongmei Liu. 2002. A complete
axiomatization for blocks world. In International

Symposium on Artificial Intelligence and Mathemat-
ics, AI&M 2002, Fort Lauderdale, Florida, USA, Jan-
uary 2-4, 2002.

Bhavana Dalvi, Lifu Huang, Niket Tandon, Wen-tau
Yih, and Peter Clark. 2018. Tracking state changes in
procedural text: a challenge dataset and models for
process paragraph comprehension. In Proceedings
of the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT 2018,
New Orleans, Louisiana, USA, June 1-6, 2018, Vol-
ume 1 (Long Papers), pages 1595–1604. Association
for Computational Linguistics.

Soham Dan, Michael Zhou, and Dan Roth. 2021. Gen-
eralization in instruction following systems. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL-
HLT 2021, Online, June 6-11, 2021, pages 976–981.
Association for Computational Linguistics.

Richard Fikes and Nils J. Nilsson. 1971. STRIPS: A
new approach to the application of theorem proving
to problem solving. Artif. Intell., 2(3/4):189–208.

George Lakoff. 1970. Linguistics and natural logic.
Synthese, 22(1):151–271.

Hector J. Levesque, Ernest Davis, and Leora Morgen-
stern. 2012. The winograd schema challenge. In
Principles of Knowledge Representation and Rea-
soning: Proceedings of the Thirteenth International
Conference, KR 2012, Rome, Italy, June 10-14, 2012.
AAAI Press.

Belinda Z. Li, Maxwell I. Nye, and Jacob Andreas.
2021. Implicit representations of meaning in neural
language models. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing, ACL/IJCNLP
2021, (Volume 1: Long Papers), Virtual Event, Au-
gust 1-6, 2021, pages 1813–1827. Association for
Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

John McCarthy. 1963. Situations, actions, and causal
laws. Reprinted in Minsky69Book, pages 410–418.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei,
I. Sutskever, et al. 2019. Language models are unsu-
pervised multitask learners. OpenAI blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1–140:67.

4637

https://doi.org/10.18653/v1/p16-1042
https://doi.org/10.18653/v1/p16-1042
https://openreview.net/forum?id=rJYFzMZC-
https://openreview.net/forum?id=rJYFzMZC-
https://doi.org/10.1016/B978-1-55860-932-7.X5083-3
https://doi.org/10.24963/ijcai.2020/537
http://rutcor.rutgers.edu/%7Eamai/aimath02/PAPERS/7.ps
http://rutcor.rutgers.edu/%7Eamai/aimath02/PAPERS/7.ps
https://doi.org/10.18653/v1/n18-1144
https://doi.org/10.18653/v1/n18-1144
https://doi.org/10.18653/v1/n18-1144
https://doi.org/10.18653/v1/2021.naacl-main.76
https://doi.org/10.18653/v1/2021.naacl-main.76
https://doi.org/10.1016/0004-3702(71)90010-5
https://doi.org/10.1016/0004-3702(71)90010-5
https://doi.org/10.1016/0004-3702(71)90010-5
http://www.aaai.org/ocs/index.php/KR/KR12/paper/view/4492
https://doi.org/10.18653/v1/2021.acl-long.143
https://doi.org/10.18653/v1/2021.acl-long.143
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html


Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable questions
for squad. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2018, Melbourne, Australia, July 15-20, 2018,
Volume 2: Short Papers, pages 784–789. Association
for Computational Linguistics.

Raymond Reiter. 2001. Knowledge in Action: Log-
ical Foundations for Specifying and Implementing
Dynamical Systems. The MIT Press.

Swarnadeep Saha, Sayan Ghosh, Shashank Srivastava,
and Mohit Bansal. 2020. Prover: Proof generation
for interpretable reasoning over rules. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2020, Online,
November 16-20, 2020, pages 122–136. Association
for Computational Linguistics.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel R. Bowman. 2019. Superglue: A stickier
benchmark for general-purpose language understand-
ing systems. In Advances in Neural Information
Processing Systems 32: Annual Conference on Neu-
ral Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada,
pages 3261–3275.

Jason Weston, Antoine Bordes, Sumit Chopra, and
Tomás Mikolov. 2016. Towards ai-complete question
answering: A set of prerequisite toy tasks. In 4th In-
ternational Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,
Conference Track Proceedings.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Danfei Xu, Roberto Martín-Martín, De-An Huang, Yuke
Zhu, Silvio Savarese, and Li Fei-Fei. 2019. Regres-
sion planning networks. In Advances in Neural In-
formation Processing Systems 32: Annual Confer-
ence on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pages 1317–1327.

Rowan Zellers, Ari Holtzman, Matthew E. Peters,
Roozbeh Mottaghi, Aniruddha Kembhavi, Ali
Farhadi, and Yejin Choi. 2021. Piglet: Language
grounding through neuro-symbolic interaction in a
3d world. In Proceedings of the 59th Annual Meeting
of the Association for Computational Linguistics and
the 11th International Joint Conference on Natural

Language Processing, ACL/IJCNLP 2021, (Volume 1:
Long Papers), Virtual Event, August 1-6, 2021, pages
2040–2050. Association for Computational Linguis-
tics.

Shuyan Zhou, Pengcheng Yin, and Graham Neubig.
2021. Hierarchical control of situated agents through
natural language. CoRR, abs/2109.08214.

4638

https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.7551/mitpress/4074.001.0001
https://doi.org/10.7551/mitpress/4074.001.0001
https://doi.org/10.7551/mitpress/4074.001.0001
https://doi.org/10.18653/v1/2020.emnlp-main.9
https://doi.org/10.18653/v1/2020.emnlp-main.9
https://proceedings.neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
http://arxiv.org/abs/1502.05698
http://arxiv.org/abs/1502.05698
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://proceedings.neurips.cc/paper/2019/hash/3a835d3215755c435ef4fe9965a3f2a0-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/3a835d3215755c435ef4fe9965a3f2a0-Abstract.html
https://doi.org/10.18653/v1/2021.acl-long.159
https://doi.org/10.18653/v1/2021.acl-long.159
https://doi.org/10.18653/v1/2021.acl-long.159
http://arxiv.org/abs/2109.08214
http://arxiv.org/abs/2109.08214


A Experiment Details

A.1 GEs for RoBERTa-large, GPT-2, and T5

The results for GEs for RoBERTa-large, GPT-2,
and T5 can be seen from Table 4, Table 5, and
Table 6 respectively, which suggests:

• Number of parameters matters. Compare the re-
sults of RoBERTa-base and RoBERTa-large, we
can clearly see that the larger models outperform
the smaller ones consistently. However, training
larger LMs is notoriously more time-consuming
and expensive. Additionally, larger models hin-
der practical applications in the real world where
inference time is typically short.

• The overall generalization performances are sim-
ilar for different transformer architectures. As
the parameters of models (RoBERTa-base, GPT-
2 and T5) are at the same level, their struggle
facing the generalization tests are alike.
The data efficiency test for GE2 shows that trans-

formers plateau once given more-than-abundant
training examples.

A.2 Computing Infrastructure

We use a workstation with Intel i9-10980XE CPU,
128GiB of RAM, and RTX 3090 GPU. The experi-
ments took about 100 hours.

A.3 License of TRAC

The datasets and the code are released under the
CRAPL license (the Community Research and Aca-
demic Programming License). The full text of the
license is included in the supplmentary material.

A.4 Transformers

We use the HuggingFace transformers (Wolf
et al., 2020) implementation. The following shows
the LMs with the number of parameters:

• RoBERTa-base: 125M;
• GPT-2-small: 117M;
• T5-base: 220M;
• RoBERTa-large: 770M.

The following hyper-parameters are used:

• The learning rate is 1e-5 for RoBERTa-base and
1e-4 for the others;

• The maximum sequence length is 256;
• The batch size is 16;
• The weight decay is 0.01;
• The warmup ratio is 0.06.

We repeated every experiment five times to calcu-
late the mean values and standard deviations using
five different seeds.
We list the input-output examples in Listing 3.

B The Blocks World

B.1 Symbolic Forms
We list the symbolic forms of both the BW domain
and the TRAC examples in the paper.
• Symbolic forms of the problems in Table 1 are

shown in Listing 1.
• The action domain BW is defined in a PDDL file.

Its content is shown in Listing 2.

Listing 1 TRAC Symbolic Examples
1 Projection Example
2 Initial state = {
3 onTable(Green),
4 clear(Red),
5 clear(Blue),
6 clear(Green),
7 onTable(Red),
8 onTable(Blue)
9 }

10 Action sequence = [
11 moveFromTable(Green , Red)
12 ]
13 Query = on(Blue , Red)
14
15 Executability Example
16 Initial state = {
17 onTable(Olive),
18 on(Yellow , Olive),
19 clear(Indigo),
20 on(Indigo , Yellow)
21 }
22 Query = [
23 moveToTable(Indigo , Yellow)
24 ]
25
26 Plan -Verification Example
27 Initial state = {
28 clear(Blue),
29 on(Blue , Magenta),
30 on(Magenta , White),
31 onTable(White)
32 }
33 Goal = !on(Blue , Magenta)
34 Query = [
35 moveToTable(Blue , Magenta)
36 ]
37
38 Goal -Recognition Example
39 Initial state = {
40 clear(Blue),
41 on(Blue , Magenta),
42 on(Magenta , White),
43 onTable(White)
44 }
45 Action Sequence = [
46 moveToTable(Blue , Magenta)
47 ]
48 Query = on(Blue , Magenta)

4639



Task SD GE1
GE2

GE3
GE4

L4 L5 Literals Conj.

PR
98.79

(0.0172)
57.81

(0.0238)
94.25

(0.0583)
88.16

(0.0830)
97.60

(0.0228)
100.00

(0.0000)
74.41

(0.0363)

EX
99.85

(0.0007)
96.19

(0.0128)
89.97

(0.0132)
86.33

(0.0187)
99.48

(0.0011)
N/A N/A

PV
93.94

(0.0099)
84.69

(0.0846)
63.35

(0.0270)
56.69

(0.0215)
96.61

(0.0051)
98.65

(0.0037)
72.84

(0.0839)

GR
98.70

(0.0014)
88.65

(0.0170)
N/A N/A 97.65

(0.0044)
100.00

(0.0000)
74.07

(0.0050)

Table 4: Accuracies and standard deviations of the RoBERTa-large models on generalization experiments.
(SD=Standard Dataset, PR=Projection, EX=Executability, PV=Plan-Verification, GR=Goal-Recognition)

Task SD GE1
GE2

GE3
GE4

L4 L5 Literals Conj.

PR
85.13

(0.0336)
68.73

(0.0397)
70.75

(0.0443)
69.73

(0.0447)
83.79

(0.0257)
89.08

(0.0524)
66.49

(0.0280)

EX
99.37

(0.0037)
90.95

(0.0350)
89.84

(0.0331)
88.11

(0.0303)
97.40

(0.0103)
N/A N/A

PV
90.09

(0.0157)
79.45

(0.0359)
61.93

(0.0229)
57.13

(0.0172)
91.97

(0.0171)
96.75

(0.0238)
62.83

(0.0194)

GR
97.44

(0.0021)
91.12

(0.0121)
N/A N/A 94.84

(0.0074)
100.00

(0.0000)
73.47

(0.0099)

Table 5: Accuracies and standard deviations of the GPT-2 models on generalization experiments. (SD=Standard
Dataset, PR=Projection, EX=Executability, PV=Plan-Verification, GR=Goal-Recognition)

Task SD GE1
GE2

GE3
GE4

L4 L5 Literals Conj.

PR
82.99

(0.0227)
68.35

(0.0132)
67.69

(0.0188)
66.80

(0.0163)
81.34

(0.0230)
83.27

(0.0237)
71.35

(0.0082)

EX
98.83

(0.0024)
89.36

(0.0308)
81.77

(0.0222)
80.15

(0.0155)
98.12

(0.0014)
N/A N/A

PV
87.73

(0.0110)
81.03

(0.0588)
68.25

(0.0127)
61.92

(0.0142)
89.49

(0.0137)
97.72

(0.0038)
65.68

(0.0286)

GR
94.04

(0.0082)
82.74

(0.0366)
N/A N/A 90.61

(0.0134)
99.95

(0.0005)
81.32

(0.0075)

Table 6: Accuracies and standard deviations of the T5 models on generalization experiments. (SD=Standard Dataset,
PR=Projection, EX=Executability, PV=Plan-Verification, GR=Goal-Recognition)

4640



Listing 2 The action domain BW in PDDL
1 (define
2 (domain blocksworld)
3 (: requirements :strips :typing)
4 (: types block - object)
5 (: predicates (clear ?x - block)
6 (on ?x - block ?y - block)
7 (ontable ?x - block))
8 (: action move
9 :parameters (?x - block ?y -

block ?z - block)
10 :precondition (and (clear ?x)
11 (clear ?z)
12 (on ?x ?y))
13 :effect (and (not (clear ?z))
14 (not (on ?x ?y))
15 (on ?x ?z)
16 (clear ?y)))
17
18 (: action movetotable
19 :parameters (?x - block ?y -

block)
20 :precondition (and (clear ?x)
21 (on ?x ?y))
22 :effect (and (not (on ?x ?y))
23 (clear ?y)
24 (ontable ?x)))
25
26 (: action movefromtable
27 :parameters (?x - block ?y -

block)
28 :precondition (and (ontable ?x)
29 (clear ?x)
30 (clear ?y))
31 :effect (and (not (ontable ?x))
32 (not (clear ?y))
33 (on ?x ?y)))
34 )

Listing 3 Input And Output for Transformers
1 RoBERTa
2 Input: "<s> The yellow block is on

the table. The magenta block is
on top of the pink block. The
gray block is clear. The gray
block is on the table. The
magenta block is clear. The pink
block is on top of the green
block. The green block is on the
table. The yellow block is clear.
Jane moves the yellow block from
the table to the gray block. </s

> The green block is clear. The
gray block is not on top of the
yellow block. </s>"

3 Output: 0
4
5 GPT -2
6 Input: "The yellow block is on the

table. The magenta block is on
top of the pink block. The gray
block is clear. The gray block is
on the table. The magenta block

is clear. The pink block is on
top of the green block. The green
block is on the table. The

yellow block is clear. Jane moves
the yellow block from the table

to the gray block. The green
block is clear. The gray block is
not on top of the yellow block."

7 Output: 0
8
9 T5

10 Input: (Same as GPT -2)
11 Output: "No"

4641



ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

6

� A2. Did you discuss any potential risks of your work?
Not applicable. Left blank.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
1

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
Left blank.

� B1. Did you cite the creators of artifacts you used?
Not applicable. Left blank.

�3 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Left blank.

� B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Not applicable. Left blank.

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Not applicable. Left blank.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Not applicable. Left blank.

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
3

C �3 Did you run computational experiments?
4

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
A

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

4642

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/


�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
A

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
4

� C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Not applicable. Left blank.

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

4643


