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Abstract

Demographic biases and social stereotypes
are common in pretrained language models
(PLMs), and a burgeoning body of literature
focuses on removing the unwanted stereotypi-
cal associations from PLMs. However, when
fine-tuning these bias-mitigated PLMs in down-
stream natural language processing (NLP) ap-
plications, such as sentiment classification, the
unwanted stereotypical associations resurface
or even get amplified. Since pretrain&fine-tune
is a major paradigm in NLP applications, sepa-
rating the debiasing procedure of PLMs from
fine-tuning would eventually harm the actual
downstream utility. In this paper, we propose a
unified debiasing framework Causal-Debias to
remove unwanted stereotypical associations in
PLMs during fine-tuning. Specifically, Causal-
Debias mitigates bias from a causal invariant
perspective by leveraging the specific down-

unwanted stereotypical associations in PLMs. For
example, some works (Zmigrod et al., 2019) pre-
train a language model using original and counter-
factual corpus in order to cancel-out biased asso-
ciations, some works (Liang et al., 2020) focus on
debiasing post-hoc sentence representations, and
others (Guo et al., 2022; Cheng et al., 2021) de-
sign bias-equalizing objectives to fine-tune PLM’s
parameters.
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(a) Original BERT. (b) BERT after Auto-Debias.

stream task to identify bias-relevant and label-
relevant factors. We propose that bias-relevant
factors are non-causal as they should have lit-
tle impact on downstream tasks, while label-
relevant factors are causal. We perform inter-
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ventions on non-causal factors in different de-
mographic groups and design an invariant risk
minimization loss to mitigate bias while main-
taining task performance. Experimental results
on three downstream tasks show that our pro-
posed method can remarkably reduce unwanted
stereotypical associations after PLMs are fine-
tuned, while simultaneously minimizing the
impact on PLMs and downstream applications.

1 Introduction

Pretrained language models (PLMs) have achieved
remarkable success in many natural language pro-
cessing (NLP) tasks. However, PLMs often en-
coded undesired social stereotypes and biases, and
thus mitigating such biases has become an emerg-
ing and important task (Meade et al., 2022). Prior
bias mitigation methods often focus on removing
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(c) Auto-Debias on SST-2. (d) Ours on SST-2.

Figure 1: Motivation of Causal-Debias. ¢-SNE plots of
average sentence representations of each word across its
sentence templates on SST-2 task (Socher et al., 2013).

However, a problem with existing debiasing
strategies is that they are separate from downstream
NLP tasks. If people take a debiased PLM which
is supposed to have certain stereotypical associa-
tions removed, and then fine-tune it on downstream
task, the unwanted associations will re-enter or
even get amplified in the fine-tuned language model
(Goldfarb-Tarrant et al., 2021). Consider gender
debiasing using Auto-Debias (Guo et al., 2022)
as an example. Fig. 1a and 1b shows the BERT-
based sentence embeddings using t-SNE (Van der
Maaten and Hinton, 2008) before and after Auto-
Debias, respectively. The gender bias is clearly less
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prominent than the original BERT, i.e., non-gender-
specific concepts (in black) are more equidistant to
both genders after Auto-Debias (Fig. 1b). However,
when applying BERT model that is debiased by
Auto-Debias to downstream tasks (Fig. 1¢), the fine-
tuning procedure almost, if not all, “neutralizes"
the effect of PLM debiasing. The phenomenon that
biases encode in a fine-tuned PLM is as worrisome
as in a vanilla PLM, because the fine-tuned PLM is
more likely to be deployed in real-world scenarios
serving thousands to millions of end users.

Addressing the aforementioned bias resurgence
issues is non-trivial. On the one hand, existing
literature on bias mitigation mostly treats PLM de-
biasing as a standalone problem which is separate
from downstream tasks. Incorporating debiasing
objectives into the fine-tuning procedure can be
a viable solution but it is still less explored. On
the other hand, one may expect to use existing de-
biasing methods to re-debias the fine-tuned PLM.
However, due to catastrophic forgetting concern
(Kirkpatrick et al., 2017), a sequential combination
of fine-tuning and debiasing may worsen the down-
stream task performance (Goodfellow et al., 2013).
Therefore, there is a research gap in unifying debi-
asing in PLMs and fine-tuning for building fair and
accountable NLP services.

In this work, we propose Causal-Debias, a
Causal Invariant Debiasing Model to unify the de-
biasing with downstream fine-tuning. In principle,
we analyze the cause and propagation of biases and
introduce the Structure Causal Model (SCM) (Pearl
et al., 2000, 2016) to address the bias mitigation
problem by exploiting the inherent causal mech-
anism in the downstream datasets. Specifically,
Causal-Debias first exploits a causal intervention
module to distinguish causal and non-causal factors.
It then generates counterfactual sentences which
have different non-causal factors but the same se-
mantic meanings. The generated counterfactual
sentences, along with the original sentences, are
fed into an invariant optimization function to en-
sure a trade-off between the performance of down-
stream tasks and the effectiveness of debiasing. As
illustrated in Fig. 1(d), Causal-Debias can preserve
the PLM debiasing effect even after fine-tuning on
the downstream dataset.

We evaluate performance of Causal-Debias in
mitigating the gender and racial biases in several
popular PLMs, e.g., BERT (Devlin et al., 2019),
ALBERT (Lan et al., 2020), and RoBERTa (Liu

et al., 2019), on three GLUE (Wang et al., 2018)
tasks (SST-2, CoLA, and QNLI). The results
demonstrate Causal-Debias can significantly mit-
igate PLM biases after downstream fine-tuning
while also maintaining the downstream task per-
formance. We hope this work provides empiri-
cal evidence that stereotypical associations can re-
enter language models during the fine-tuning step.
Moreover, we hope that debiasing with a causal
perspective offers a more generalizable and reli-
able way for building fair and accountable NLP
applications. We release the anonymous implemen-
tation of Causal-Debias at https://github.com/
myZeratul/Causal-Debias.

2 Related Works

PLM Debiasing aims to remove biases, quanti-
fied as unwanted stereotypical associations, from
pretrained language models. Existing works on
PLM debiasing can be categorized into two lines
based on whether downstream tasks are involved
in the debiasing pipeline. (1) Non-Task-Specific:
Counterfactual Data Augmentation (CDA) (Zmi-
grod et al., 2019) and Dropout (Webster et al.,
2020) are two methods where debiasing hap-
pens in the pre-training stage (Meade et al.,
2022). Auto-Debias (Guo et al., 2022), Context-
Debias (Kaneko and Bollegala, 2021) and MA-
BEL (He et al., 2022) remove biases in PLM by
designing different bias-equalizing objectives. In
this line of work, the parameters in the PLM are
changed to meet the fairness criteria such as SEAT
(May et al., 2019), and the ultimate goal is to re-
move bias associations from PLM, so that down-
stream tasks can benefit from the debiased models.
However, we show that it is not this case. When
the debiased models are fine-tuned on downstream
tasks, the bias associations resurge, perhaps be-
cause the biases are not completely removed or
maybe just covered up, or because downstream
datasets are encoded with stereotypical associa-
tions. (2) Task-Specific: Existing works on this
line, including Sent-Debias (Liang et al., 2020)
and FairFil (Cheng et al., 2021), keep the parame-
ters of PLMs untouched. Instead, they target on the
sentence representations, and aim to remove bias
associations from representations. Even though the
sentence representations, which are the input for
downstream tasks, are refined, downstream fine-
tuning can still introduce new biases, as we show
in experiments. In summary, our work differs from
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existing PLM debiasing in that we aim to unify
fine-tuning procedure with debiasing so that the
fine-tuned models are free from bias associations.
In addition, prior literature also challenges the
effectiveness of bias mitigation. Gonen and Gold-
berg (2019) showed that debiasing methods only
cover-up biases in word embeddings but do not
remove them. Meade et al. (2022) found that exist-
ing debiasing methods for PLMs hurt the language
modeling capability of PLMs and thus the prac-
tical utility of debiasing warrants attention. Our
work follows the spirit of this line of works in that
we empirically demonstrate the bias resurgence
problem in fine-tuning and suggest to development
debiasing techniques with downstream utility.
Causal Mechanism is crystallized in the invari-
ant learning, suggesting that only associations in-
variant in the training set should be learned (Pe-
ters et al., 2016; Muandet et al., 2013). Invariant
Risk Minimization (IRM) (Arjovsky et al., 2019)
is a practical implementation of invariant learn-
ing, which is an optimization objective modifying
the loss with a regularization term to enforce the
invariant representations. Recent works have ex-
plored Structural Causal Model (SCM) (Scholkopf
et al., 2012) to model auxiliary variables and show
promising performance, ranging from domain gen-
eralization (Lv et al., 2022) in computer vision and
intrinsic interpretability (Wu et al., 2022) in graph
neural networks to factual knowledge (Li et al.,
2022) and text classification (Qian et al., 2021) in
NLP. In this work, we introduce SCM to PLM de-
biasing to discover the inherent causal relations
between data and labels while achieving better de-
biasing performance. To our knowledge, this is the
first work exploiting causality for debiasing PLMs.

3 Methodology

Our goal is to unify debiasing with downstream
fine-tuning so that the fine-tuned language model
can maintain solid performance with alleviated
stereotypical associations. In other words, we want
to prevent biases re-entering the language model
during the fine-tuning. Unlike prior work that con-
siders PLM debiasing as a standalone procedure,
we mitigate language model biases during fine-
tuning process. To this end, we propose Causal-
Debias, a debiasing framework from a causal view.
We first provide the basic formalism and proceed
with the details of Causal-Debias.

Problem Definition: We denote a supervised NLP

task with dataset (X,Y"), we fine tune a pretrained
language model to learn a mapping: M(X) +—
Y. Our goal is to mitigate unwanted stereotypical
associations in the fine-tuned model M.

3.1 Biases from a Causal View

,,®<i/®

Figure 2: SCM of Causal-Debias. Each raw sentence
of X is generated by a mix of causal factor C' and non-
causal factor V. Note that only the causal factor affects
the ground truth label Y, while the hammer indicates
the intervention on non-causal factor.

We use a Structure Causal Model (SCM) to char-
acterize biases in the fine-tuning procedure. As
shown in Fig. 2, there are four variables: input
raw sentence X, downstream ground-truth label Y,
causal factor C' and non-causal factor N. Among
those, causal and non-causal factor C' and NV are
latent variables. Whether a factor is causal or
non-causal depends on the specific downstream
tasks. For example, in sentiment classification task,
causal factors could be adjective sentiment words
such as good or bad, and non-causal factors could
be nouns or pronouns. In contrast, in coreference
resolution task, pronouns could be causal factors
while adjective words could be non-causal. Here
we explain the diagram in detail:

e U - X « N. The input raw sentence X is
a mix of two factors that are theoretically non-
intersecting: causal factor C' and non-causal fac-
tor V.

* C — Y. From a causal view, the ground-truth
label Y is only determined by causal factor C'.

e C ¢--» N. The dashed arrow delegates addi-
tional probabilistic dependencies (Pearl et al.,
2016, 2000) between causal factor C' and non-
causal factor N — ¢f. Appendix A for examples.
However, N ¢«--» C — Y can create a spuri-

ous association between non-causal factor N and

ground-truth label Y (denoted as Y & N), so that

C becomes a confounder between /N and Y which

opens a backdoor path N « C — Y. Hence,

the unwanted stereotypical associations, which we
assume are non-causal factors, may re-enter the
fine-tuned PLM because of the unwanted associa-

tions between label Y and non-causal factors V.
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To mitigate the bias propagation and avoid such
spurious association that N affects Y through C,
we make the feature induction assumption spurred
by the Independent Causal Mechanisms (ICM)
principle (Peters et al., 2017; Scholkopf et al.,
2012), i.e., the intervention on non-causal factor
N should be independent of the ground truth Y.
According to causal inference (Pearl et al., 2016,
2000), there is a directed link from each of its par-
ent variables P(X ) to X, if and only if the causal
mechanism X = fy(P(X)) exists for each vari-
able X. That is, there exists a function from causal
factor C to label Y without N’s influence, mak-
ing the causal association C' = Y invariant across
different N. More formal assumptions in terms
of N «--» (' are presented in Appendix A. In
other words, ICM principle can assure the language
model to not pick up the non-causal factors, i.e., un-
wanted associations, in the fine-tuning procedure.

Generally, only X and Y are observed during
the fine-tuning, while neither the causal factor C
nor the mapping from C to Y is available. We
factorize the language model as a combination of
two modules inspired by (Wu et al., 2022), i.e.,
M = my o mg, where mg ¢+ X — C discov-
ers the causal factor from the observed X, and
my : C' — Y outputs the prediction Y. Empirical
risk minimization (ERM) is often used as the opti-
mization strategy to train m¢ and my (Seo et al.,
2022; Zhou et al., 2022):

min R(my o mg(X),Y), (D

mc,my

where R (-, -) can be any loss function (e.g., cross-
entropy loss). However, ERM heavily relies on
the statistical dependency between the input sen-
tences and labels, ignoring the critical condition
Y 1L N | C to guarantee the invariant causal asso-
ciation C' — Y across different IV, leading to the
resurgence of undesired spurious associations.
Recent causal learning literature has proposed to
use invariant risk minimization (IRM) objective to
replace ERM (Arjovsky et al., 2019; Chang et al.,
2020). The causal invariant learning encourages
causal factor C to seek the patterns that are stable
across different “enviornments”, while abandoning
the unstable non-causal patterns. We follow this
line of literature, and propose to use causal invari-
ant learning objective to mitigate fine-tuning biases:

min R(my omg(X),Y),s.t. Y L N | C,

mgc,my
2)

where N = X \ C is the non-causal factor. How-
ever, IRM often leverages multiple “enviornments”
to facilitate causal learning. For example, Peyrard
et al. (2021) use prior knowledge to partition the
training set to form different environments. In NLP
tasks such as sentiment classification, how to con-
struct multiple “enviornments” in the context of
language model fine-tuning is less studied. Next,
we propose a causal intervention method to con-
struct “enviornments” for causal learning.

3.2 Causal-Debias

Causal Intervention. The high-level idea for
causal intervention is to create interventional dis-
tributions with respect to different demographic
groups. Our interventional distribution is obtained
by augmenting and expanding the original data dis-
tribution. First, let YW, and W, denote attribute
words and target words, respectively. In the case
of gender bias, for instance, target words consist
of gender-neutral words (e.g., nurse, engineer, pro-
fessor), and attribute words are composed of the
feminine (e.g., she, woman, mother) and masculine
words (e.g. he, man, father) (Liang et al., 2020).
Then we can obtain an augmented datasets X ;:

Xg=X,UX,, 3)

where X, denotes the original sentences from the
downstream dataset containing any WV, or W, and
X, represents the counterfactual sentences via per-
forming attribute word counterfactual augmenta-
tion on X,. For counterfactual augmentation, we
create counterfactual sentences by replacing the
attribute word to its corresponding pair (e.g., he-
>she). However, the augmented dataset X still
has limitations as it is not sufficient to cover the
diversity of demographic groups, which may cause
debiasing performance degradation problems (cf.
Section 4.3 for empirical study). To create suf-
ficiently complex interventional distributions and
obtain the most different demographic groups, we
conduct the interventions by doing semantic match-
ing between X with external corpora F, expand-
ing X, and X, to X; and X; (see Table 1 for an
example), respectively, as

XCZ = X5 U XE = Topk(Sim(Xda E)) U Xda (4)

where sim(-) denotes the cosine similarity for se-
mantic matching, and Top,(-) selects the top-k
semantic similar sentences. After obtaining the
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Figure 3: Overview of Causal-Debias. Causal Intervention: selecting top & semantic similar bias-related sentences
from external corpora to cover the most different demographic groups. Causal Invariant Learning: fine-tuning the

PLM with an invariant loss among different environments.

intervened sentences, we reconstruct the interven-
tional distribution by combining X j and the rest
bias-unrelated downstream dataset, both of which
are applied for causal invariant learning. Table 1
shows an example of original sentence, and its cor-
responding counterfactual and expansion sentences.

Sentence Type \ Sentence Example

Original ‘ proves once again he hasn’t lost his touch
Counterfactual | proves once again she hasn’t lost her touch
Expansion ‘ sachs is a guy with impressive intelligence and passion

Table 1: An example sentence in SST-2 dataset, and the
corresponding counterfactual and expansion. The label is
positive for all three sentences.

Causal Invariant Learning. Once we obtain the
intervened dataset containing original and interven-
tional data distributions, we proceed with causal in-
variant learning. Specifically, we do n-intervention
do(N = n), which removes all links from their
parents P(N) to the variable N while fixing N to
the number of demographic n (e.g. n = 2 in the
case of gender), to identify C' whose relationship
with Y is stable across different distributions:

min Einvariant = En(R) + Varn(R), 5)

where R = R(M(X),Y | do(N =n)) com-
putes the risk under the n-interventional distri-
bution; [E, () denotes the risks of different n-
interventional distributions; Var(-) denotes the vari-
ance of risks over n-interventional distributions.
To calculate Linyariant, the PLM is required to
predict the same results on the sentences X5 and
Xz, which have equivalent semantics but different
attribute words according to the IRM theory (Ar-
jovsky et al., 2019). Thus in optimization, we have
the interventional risk derived from Equation (5):

R(M(Xri)vy | dO(N = ﬁ)) = EC:mc(z),N:ﬁl(gay)v(6)

where © € X is a sentence instance with its pre-
diction 7 under the intervention do(N = 7n), and
y € Y is ground-truth label, and [(-) denotes inter-
ventional loss function on a single sentence. Here
we choose Wasserstein distance (Ramdas et al.,
2017) as a loss function due to its ability to measure
the agreement between the prediction of original
and post-intervention sentences. The Wasserstein
distance between 4 and y is formalized as below:

DWasser(gay) = ~inf g(;g,y)~'y||g - y||7 @)
el ]

(3
PLM Fine-tuning. The above procedure lever-
ages augmented datasets for causal invariant learn-
ing, and we can incorporate the invariant loss with
specific downstream tasks to fine-tune a language
model. This way, we can balance the trade-off
between debiasing performance and downstream
task performance (Meade et al., 2022). The overall
objective of Causal-Debias is:

IIED ['prediction + 7-»C'invariant’ 8)

where 7 is the trade-off coefficiency, and Lprediction
is the loss function of a specific downstream task,
such as cross-entropy loss for classification and
mean squared error loss for regression.

4 Experiments

4.1 Experimental Settings

Debiasing Benchmarks. We compare Causal-
Debias with the following benchmarks. Non-Task-
Specific methods including: CDA, Dropout (Web-
ster et al., 2020), Context-Debias (Kaneko and
Bollegala, 2021), Auto-Debias (Guo et al., 2022),
and MABEL (He et al., 2022), and two Task-
Specific methods including Sent-Debias (Liang
et al., 2020) and FairFil (Cheng et al., 2021). In the
Non-Task-Specific benchmarks, the debiasing stage
is independent of fine-tuning downstream tasks.
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Causal-Debias belongs to Task-Specific methods as
downstream fine-tuning tasks are involved.

Pretrained Language Models. We use three rep-
resentative PLMs as the backbone: BERT (De-
vlin et al., 2019), ALBERT (Lan et al., 2020), and
RoBERTa (Liu et al., 2019). Following (Guo et al.,
2022), we implement them using the Huggingface
Transformers library (Wolf et al., 2020).

Bias Word Lists. Following previous studies, we
use human-being-created stereotype/attribute word
lists to investigate and mitigate biases in PLMs.
They are based on the research of the social sci-
ence literature and other disciplines, which can
reflect cultural or offensive biases. In particular,
we consider the gender and race word lists used in
(Kaneko and Bollegala, 2021) and (Manzini et al.,
2019), respectively — ¢f- Appendix B for details.

External Corpora. For fair comparison, we ex-
ploit the same external corpora used in baselines,
which are composed of 183,060 sentences from fol-
lowing sources: WikiText-2 (Merity et al., 2017),
Standford Sentimente Treebank (Socher et al.,
2013), Reddit, MELD (Poria et al., 2019) and POM
(Park et al., 2014) — ¢f. Appendix C for details.

Evaluating Metrics: We evaluate biases in PLM
embeddings with SEAT (May et al., 2019) and
CrowS-Pair (Nangia et al., 2020). An ideally unbi-
ased model should exhibit no difference in relative
similarity. Following Guo et al. (2022); Liang et al.
(2020); Kaneko and Bollegala (2021), we apply
SEAT 6, 6b, 7, 7b, 8, and 8b tests to measure the
gender bias, and use SEAT 3, 3b, 4, 5, 5b tests for
racial bias evaluation. We report the effect size in
the SEAT evaluation — the closer to 0, the lower
bias a model has. More details about SEAT tests
are presented in Appendix D. We also use Crowd-
sourced Stereotype Pairs (CrowS-Pair) (Nangia
et al., 2020) as another metric to evaluate gender
bias. CrowS-Pair is a dataset containing 1,508 ex-
amples covering different types of biases, where
each example is a stereotype/anti-stereotype sen-
tence pair with minimal semantics. The CrowS-
Pair score closer to 50% is less stereotypical, indi-
cating that the model assigns an equal probability
to male and female sentences.

Other Details. As the related studies (Cheng et al.,
2021; Liang et al., 2020), we conduct experiments
on three downstream tasks, including a sentiment
classification task SST-2, a grammatical acceptabil-
ity judgment task CoLLA, and a question-answering
task QNLI. We follow the same PLMs as bench-

marks: 1) BERT-base-uncased, ALBERT-large-v2,
and RoBERTa-base in gender case; and 2) BERT-
base-uncased and ALBERT-base-v2 in racial case.
We trained Causal-Debias in 5 epochs with learning
rate 2 X ¢ °. The reported results are the average
of 5 runs for all downstream tasks.

4.2 Results on Mitigating Gender Bias

SEAT Tests and Downstream Tasks Evaluation.
Table 2 summarizes the debiasing results of models
before and after fine-tuning on three downstream
tasks , as well as the accuracy (Acc.) evaluations
on downstream applications, from which we have
the following Observations.

(01): Causal-Debias is more effective in miti-
gating gender bias than previous benchmarks, as it
achieves the lowest average SEAT scores in all
three downstream tasks. For example, Causal-
Debias surpasses Task-Specific SOTA (FairFil) by
0.07, 0.01, and 0.07, and Non-Task-Specific SOTA
(Auto-Debias) by 0.27, 0.21, and 0.09 on BERT,
respectively. The excellent debiasing results can
attribute to the following two characteristics of
Causal-Debias: 1) combining debiasing PLMs
and fine-tuning to avoid new biases, and 2) the
causal intervention-based invariant learning that
alleviates the impact of non-causal factors.

(02): From the SEAT results after fine-tuning
downstream tasks, the PLMs become more biased
for almost all non-task-specific debiasing models.
In particular, the latest debiasing methods Auto-
Debias is greatly limited to the bias resurgence
issue in all three tasks, although it achieved good
performance on debiasing PLMs. These results
verified not only the existence of bias resurgence
but also the motivation of this study to attenuate the
intrinsic bias of PLMs and fine-tuning bias jointly.
Interestingly, the original PLMs do not suffer from
this problem, as the bias can be mitigated after fine-
tuning the downstream tasks in most cases. This
result suggests that fine-tuning itself is an effective
way of debiasing PLMs; combining with debiased
models, however, will introduce extra bias. To
deal with this dilemma, debiasing models should
consider downstream tasks as a unity.

Two task-specific models, i.e., Sent-Debias and
FairFil, cannot effectively alleviate the application
bias even using downstream datasets for debiasing
PLMs, because their focus is still intrinsic bias — by
contrast, Causal-Debias unifies the two debiasing
procedure and provides an systematic solution to
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\ SST-2 \ CoLA \ QNLI

Methods Before | After Acc. | After Mce. | After Acc.
BERT 0.35 0.29 10.06 92.7 | 0.18 10.17 57.6 | 0.37 10.02 91.3
+CDA 0.25 0.47 10.22 813 | 0.29 10.04 53.2 | 0.38 10.13  89.1
+DROPOUT 0.42 0.48 10.06 819 | 0.27 10.15 522 | 0.44 10.02 90.1
+CONTEXT-DEBIAS 0.53 0.43 10.10 91.9 | 0.57 10.04 554 | 0.56 10.03 899
+AUTO-DEBIAS 0.14 0.38 10.24 92.1 | 0.3210.18 529 | 0.24 10.10 91.1
+MABEL 0.50 0.5510.05 922 | 0.5210.02 57.8 | 0.5410.04 91.6
+SENT-DEBIAS 0.26 0.21 10.05 89.1 | 0.22 10.04 554 | 0.32 10.06 90.6
+FAIRFIL 0.15 0.18 10.03 91.6 | 0.12 :0.03 56.5 | 0.22 10.07 90.8
+CAUSAL-DEBIAS (ours) - 0.11 92.9 0.11 58.1 0.15 91.6
ALBERT 0.28 0.22 10.06 92.6 | 0.24 :.0.04 58.5 | 0.21 10.07 91.3
+CDA 0.30 0.38 10.18 924 | 0.16 :0.14 53.1 | 0.31 10.01 909
+DROPOUT 0.24 0.28 10.04 904 | 0.25 10.01 474 | 0.20 :0.04 91.7
+CONTEXT-DEBIAS 0.33 0.11 1022 77.3 | 0.17 10.16 554 | 0.20 10.13 91.6
+CAUSAL-DEBIAS (ours) - 0.06 92.9 0.16 57.1 0.09 91.6
RoBERTa 0.67 0.41 1026 948 | 0.41 026 57.6 | 0.48 10.19 92.8
+CONTEXT-DEBIAS 1.09 0.26 10.83 80.3 | 0.30:0.79 554 | 0.37.0.72 91.8
+CAUSAL-DEBIAS (ours) - 0.09 93.9 0.17 54.1 0.06 92.9

Table 2: Gender debiasing results of average SEAT and application performance. | and T denote the improvement

and reduction in debiasing performance in terms of SEAT, respectively.

independent PLM debiasing process.

attenuates both biases simultaneously.

(03): Previous benchmarks may significantly
degrade the performance on downstream tasks af-
ter debiasing the PLMs. This is a natural result of
existing debiasing models as they need to change
the representations to mitigate bias and therefore
inevitably decrease accuracy after debiasing (Liang
et al., 2020). In addition to its superior debiasing
effect, Causal-Debias achieves better performance
on downstream tasks, e.g., exceeding all bench-
marks on BERT in terms of performance. This
result demonstrates the ability of Causal-Debias to
minimize the disagreements among different demo-
graphic groups with identical semantic information,
which is attained by intervening in downstream
datasets to mitigate the bias recurrence.

Overall Score

Methods Before (Dev.)  After (Dev.)
BERT 57.25(7.25)  53.18 (3.18)
+CDA 56.11 (6.11)  58.42(8.42)
+DROPOUT 55.34 (5.34)  44.56 (5.44)
+CONTEXT-DEBIAS 58.01 (8.01) 58.89 (8.89)
+AUTO-DEBIAS 54.92 (4.92) 44.96 (5.04)
+MABEL 50.76 (0.76)  46.75 (3.25)
+SENT-DEBIAS 52.29 (2.29)  55.04 (5.04)
+CAUSAL-DEBIAS (ours) - 48.94 (1.06)

Table 3: CrowS-Pairs scores on SST-2. ‘Dev.’ denotes
the value deviates from 50.

CrowS-Pairs. Table 3 reports CrowS-Pairs scores

w oo

means that our model does not have an

before and after fine-tuning on SST-2. Note that the
deviation from 50 is usually used to measure the de-
biasing effect. Obviously, Causal-Debias achieves
the lowest deviation among the fine-tuned debias-
ing models, which proves its best debiasing perfor-
mance. In addition, the deviation values of previous
methods increase after fine-tuning, which further
confirms the existence of application bias ignored
by existing methods. Again, BERT itself can alle-
viate the bias after fine-tuning, which is consistent
with our observation Q2 from Table 2.

4.3 Ablation Study

To quantify the effect of the devised causal inter-
vention and invariant risk learning, we build three
variants of Causal-Debias:

* (V1) w/o E removes the intervention from exter-

nal corpora in Eq. (4).
¢ (V2) w/o E&Lipvariant TeMoves both interven-

tions of external corpora in Eq. (4) and the invari-

ant loss in Eq. (8) but maintains counterfactual
augmentation of data in downstream tasks.
* (V3) w/0 Ligariant Only remains the prediction

loss Eprediction in Eq‘ (8)

Fig. 4 compares the variants with full Causal-
Debias on SST-2 task. The variant V1 performs
worst on debiasing, indicating that external corpora
contribute the most to model debiasing. However,
external corpora also deteriorate the task perfor-
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| SST-2 | CoLA | QNLI

Methods Before | After Acc. | After Mce. | After Acc.
BERT 0.23 0.30 10.07 92.7 | 0.16 :0.07 57.6 | 0.15:0.08 91.3
+AUTO-DEBIAS 0.18 0.31 10.13  92.1 | 0.20 10.02 59.6 | 0.24 10.06 91.1
+CAUSAL-DEBIAS (ours) - 0.11 92.9 0.06 57.1 0.11 91.6
ALBERT 0.46 0.29 10.06 92.6 | 0.19 10.27 58.5 | 0.10 10.36 92.2
+AUTO-DEBIAS 0.17 0.39 10.22 86.8 | 0.18 10.01 56.9 | 0.36 10.09 91.1
+CAUSAL-DEBIAS (ours) - 0.13 91.9 0.16 59.6 0.01 92.5

Table 4: Race debiasing results of average SEAT and application performance, and the original scores are from

Meade et al. (2022).
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Figure 4: Ablation results. The lower SEAT score (red)
and higher SST-2 accuracy (blue) are better.

mance when comparing the accuracy of V2 and V3,
because the augmented sentences introduce extra
semantics and obfuscate the PLMs. The adverse
impact can be minimized by learning the invari-
ant representations by the proposed causal inter-
ventions on downstream tasks via L;yyariant, Which
can be justified by the great discrepancy between
Causal-Debias and V3 in terms of SST-2 accuracy.

4.4 Results on Mitigating Racial Bias

Racial debiasing refers to examining the
association difference between European-
American/African American names/terms and
the stereotype words (pleasant vs. unpleasant)
(Caliskan et al., 2017). Unlike gender debiasing,
few prior studies investigated the racial debiasing
problem, due to the difficulty of mitigating racial
bias (Meade et al., 2022). A critical challenge is
the potential word ambiguity (e.g., white, black)
in various contexts (Guo et al., 2022). Table 4
reports the performance of Causal-Debias and
Auto-Debias — the state-of-the-art racial debiasing
model. Causal-Debias substantially decreases the
racial biases on PLMs after fine-tuning, while
obtaining comparable downstream performance.
Auto-Debias, in contrast, still suffers from bias
recurrence issue. Compared to Auto-Debias,
Causal-Debias is more effective as it exploits

downstream datasets for debiasing, which allows
us to alleviate the influence of ambiguous words.
Besides, the causal invariant learning in Causal-
Debias encourages the model to learn consistent
representations and clear meanings of ambiguous
words so as to avoid bias-related associations.

5 Conclusion

In this paper, we propose a debiasing framework
Causal-Debias to unify PLM bias mitigation with
fine-tuning. Different from prior literature that
treats PLM bias mitigation as a standalone task,
Causal-Debias incorporates bias mitigation objec-
tive with downstream fine-tuning using causal in-
variant learning. Causal-Debias essentially “kills
two birds with one stone”, because it prevents the
unwanted stereotypical associations re-entering the
fine-tuned model and also maintains favorable per-
formance in downstream tasks. The experiment
shows that fine-tuning existing debiased models
will encode or even amplify unwanted bias asso-
ciations (in gender and race). We also show that
Causal-Debias can effectively reduce bias associ-
ations in fine-tuned language model without sac-
rificing downstream task performance. Our paper
contributes to the NLP fairness fields by proposing
a novel debiasing method from a causal invariant
view. More importantly, we highlight the fact that
biases can happen at any stage in PLM training
pipeline, including the final fine-tuning steps. Even
if unwanted stereotypical associations are removed,
or covered up (Kirkpatrick et al., 2017), in the pre-
training stage, the associations will re-surge in the
downstream models. Hence, prior literature that
focuses on pretrained model debiasing may be inef-
fective if used in a pretrain/fine-tune pipeline. We
hope this study can shed light on mitigating biases
for building fair and accountable NLP systems.
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Limitations

We now discuss limitations of Causal-Debias. In
consideration of the fairness, we follow the prior
bias mitigation work (Guo et al., 2022; Cheng et al.,
2021; He et al., 2022) and use human-collected lists
of gender and racial pairs for counterfactual data
augmentation and intervened distribution genera-
tion. It is obvious that the bias word lists are inad-
equate to cover all the bias-related demographic
groups, while we believe the general list is ex-
haustive. We consider there is a possible model
improvement that leverages the perturbation aug-
mentation on bias-related sentences along multiple
demographic axes (Qian et al., 2022). Another pos-
sible improvement would be to generate bias words
by using prompts to probe the biases that may lead
to a bad effect.

Moreover, we also considered the use of exter-
nal corpora. The external corpora have been sig-
nificantly investigated in prior works (Liang et al.,
2020; Cheng et al., 2021) and are utilized as an
intervention corpora. Recently, He et al. (2022)
used two natural language inference data (SNLI
and MNLI with gender terms) to produce general-
purpose debiased representations. There are sev-
eral other corpora including News-commentary-v1
(Kaneko and Bollegala, 2021), Wikipedia (Zmi-
grod et al.,, 2019; Webster et al., 2020), and
Wikitext-2 (Guo et al., 2022). A possible future
direction of debiasing is how to mitigate the biases
without heavily relying on any corpora and just
using internal knowledge.

Moreover, in the paper we primarily focus on
studying gender and racial bias mitigation. It is
also worth exploring intersectional biases mitiga-
tion (Lalor et al., 2022) and domain-specific bias
mitigation (Chuang and Yang, 2022; Abbasi et al.,
2021).

We would also like to note that although Causal-
Debias shows a satisfactory performance on SEAT
tests and Crows-Pairs, these results should not be
interpreted as a complete bias mitigation. Interest-
ingly, He et al. (2022) expressed the same opinion.
The main metrics (like CrowS-Pairs) are mainly

against North American social biases and only re-
flect positive predictive power. They detect the
presence of the biases but not their absence (Meade
et al., 2022). He et al. (2022) did not use the SEAT
tests and evaluated their model on various metrics.
From the perspective of different usage scenarios,
we need a more general and reliable debias metric
for comparison between different models. The lack
of universality and agreement in existing evalua-
tion frameworks is a fundamental challenge in this
field.

Ethics Statement

Regarding ethical concerns, we would like to note
that our contributions are mainly about methodolo-
gies. The datasets and evaluation metrics in our
work are also widely used in prior works. One ethi-
cal concern is the binarization of the genders and
races, which is an over-simplification and is not
proper to practical situations. Binarization is the
common problem among most debiasing methods
and we totally agree and support the development
of more inclusive methodological tools, datasets,
and evaluation methods.

Under our framework, we consider gender or
race isolatedly and neglect the particular intersec-
tional biases. It is apparent that the pretrained lan-
guage model cannot be applied or operated in an
ideal environment, and should be able to handle
complex combinations of biases simultaneously.

Another ethical consideration is that Causal-
Debias is entirely based on a English system. Such
an assumption may not be a problem now but
sooner or later it will be. The debias studies have
to be situated on the high-resource languages while
considering not only high-resource language sys-
tems but how to debias on the low-resource lan-
guages.

For instance, some languages such as Span-
ish, German, Chinese, or Japanese contain vari-
ous words to describe masculine or feminine forms.
The detection and removal of biases are greatly
complicated by the need to consider both linguistic
and social gender.

For the reasons above, practitioners should be
very cautious when applying our framework to
real-world use cases. In its current state, Causal-
Debias should be seen not as a panacea for ad-
dressing biases in NLP, but rather as another initial
effort to illuminate and undercut a critical, elusive,
multifaceted problem.
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A Instantiated Causal Graphs

We instantiate causal graphs as shown in Fig. 2.
Specifically, we use the example sentences, whose
labels are determined by how words compose the
meaning of the sentences. We use C' = 0,1,2 to
denote three different sentiment-related phrases,
and use N = 0,1, 2 to denote three different non-
causal factors for simplicity.

e C' 1 N: The raw input sentences and bias-
related parts are independently sampled and
spliced.

e (' — N: The type of each causal part respects
a given (static) probability distribution. The
value of C, and the probability distribution of
its causal part is given by:

09 ifX=C,
P(N) :{ &)

0.1 otherwise.

e N — (' Similar to the example for C' — N.

e N « V — (' There is a latent variable V'
takes continuous value from O to 1, and the
probability distribution of NV and C s.t.

N ~B(3,V), C~B(3,1-V), (10)

where B stands for binomial distribution, i.e.,
for the variable C, if C' ~ B(n, p) we have

P(C =k |pn)=()p"(1-p)"™"

B Bias Words List

We used the gender attribute words and target
words lists proposed in (Kaneko and Bollegala,
2021), which is widely used in debiasing studies
(Guo et al., 2022; Liang et al., 2020). In addition,
we used the race attribute words and attribute words
provided in (Manzini et al., 2019).

C External Corpora

Table 5 summarizes the five external datasets along
with examples of the numerous templates occur-
ring across various individuals, settings and in both
written and spoken text. The external corpora £
used to expand the downstream dataset is created
from (Liang et al., 2020), including: 1) WikiText-2
(Merity et al., 2017) — a dataset of formally writ-
ten Wikipedia articles, where only the first 10%
of WikiText-2 is used and verified sufficiently to

capture formally written text); 2) Stanford Sen-
timent Treebank (Socher et al., 2013) is a col-
lection of 10000 polarized written movie reviews;
3) Reddit data collected from discussion forums
relating to politics, electronics, and relationships;
4) MELD (Poria et al., 2019) — a large-scale mul-
timodal multi-party emotional dialog dataset col-
lected from the TV-series Friends; and 5) POM
(Park et al., 2014) — a dataset of spoken review
videos collected across 1,000 individuals spanning
multiple topics. These datasets have also been used
in recent research in language understanding (Mer-
ity et al., 2017; Liu et al., 2019) and multimodal
human language (Liang et al., 2019).

D SEAT Details

The WEAT metric measures the bias by compar-
ing two sets of attribute words W, (i.e., M and
F) and two sets of target words W; (i.e., A and
B). In the case of gender, M denotes masculine
words like “he”, and F’ denotes feminine words like
“she”. Meanwhile, A and B are gender-neutral
words (e.g., career or adjectives) whose embed-
dings should be equivalent between M and F'. For-
mally, the bias degree of each word w is defined as:
s(w, A, B) = 1 Z cos(w, a) — L Z cos(w, b),
IAl a€A |B| beB

an

where cos(+, -) denotes the cosine similarity. Based
on Equation (11), the WEAT effect size is:

M({S(m7AvB)}m€]VI) - /’L({S(va7B)}f€F)

J({S(thaB)}tEAUB)) 7
12)

where p and o denote the mean and standard devi-
ation, respectively. The SEAT metric generalizes
the WEAT via replacing the word embeddings with
a few simple sentence templates (e.g., “This is the
<word>"). We can conclude from Equation (12)
that the absolute SEAT effect size closer to 0 means
lower biases. We list more details about the SEAT
tests that are used in our experiments in Table 6,
which are adapted from (Caliskan et al., 2017).

dWEAT =
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Dataset Type Topics Formality Length Examples

“Ireland has made a large contribution to world literature in all its branches,
Wikitext-2 | written everything formal 24.0  particularly in the English language. Poetry in Irish is among the oldest vernacular poetry
in Europe/Africa, with the earliest examples dating from the 6th century.”

“his/her fans walked out muttering words like horrible and terrible,

SST written movie reviews informal 192 but had so much fun dissing the film that they didn’t mind the ticket cost.”
politics, “roommate cut my hair without my consent,
Reddit written electronics, informal 13.6 ended up cutting himself/herself and is threatening
relationships to call the police on me”
MELD ‘ spoken comedy TV-series  informal 8.1 “that’s the kind of strength that I want in the man/woman 1 love!”
POM ‘ spoken  opinion videos informal 16.0 “and his/her family is, like, incredibly confused”

Table 5: The five external corpora E used to expand the downstream dataset (Liang et al., 2020). Length represents
the average length measured by the number of words in a sentence. Words in italics indicate the words used to
intervene by casual invariant learning, e.g., (man, woman), (Europe, Africa). This table summarizes our expanded
dataset in terms of topics, formality, and spoken/written text.

Bias Type Test Demographic-specific words Stereotype words

SEAT-3  European-American/African American names  Pleasant vs. Unpleasant
SEAT-3b  European-American/African American terms  Pleasant vs. Unpleasant
Racial SEAT-4  European-American/African American names  Pleasant vs. Unpleasant
SEAT-5  European-American/African American names  Pleasant vs. Unpleasant
SEAT-5b  European-American/African American terms  Pleasant vs. Unpleasant

SEAT-6 Male vs. Female names Career vs. Family
SEAT-6b Male vs. Female terms Career vs. Family
Gender SEAT-7 Male vs. Female terms Math vs. Arts
SEAT-7b Male vs. Female names Math vs. Arts
SEAT-8 Male vs. Female names Science vs. Arts
SEAT-9b Male vs. Female terms Science vs. Arts

Table 6: The SEAT test details extended from (Caliskan et al., 2017).
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be significant, while on small test sets they may not be.
4

C ¥ Dpid you run computational experiments?
4

¥ C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
4

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on Al writing
assistance.
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v C2. Did you discuss the experimental setup, including hyperparameter search and best-found

hyperparameter values?
4

v C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?

4

v C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?

4

D Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

O DI1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

(] D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?

No response.

[0 D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?

No response.

0 D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

0] DS. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.
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