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Abstract
Human evaluation is the foundation upon
which the evaluation of both summarization
systems and automatic metrics rests. How-
ever, existing human evaluation studies for sum-
marization either exhibit a low inter-annotator
agreement or have insufficient scale, and an
in-depth analysis of human evaluation is lack-
ing. Therefore, we address the shortcomings
of existing summarization evaluation along the
following axes: (1) We propose a modified sum-
marization salience protocol, Atomic Content
Units (ACUs), which is based on fine-grained
semantic units and allows for a high inter-
annotator agreement. (2) We curate the Ro-
bust Summarization Evaluation (RoSE) bench-
mark, a large human evaluation dataset consist-
ing of 22,000 summary-level annotations over
28 top-performing systems on three datasets.
(3) We conduct a comparative study of four
human evaluation protocols, underscoring po-
tential confounding factors in evaluation setups.
(4) We evaluate 50 automatic metrics and their
variants using the collected human annotations
across evaluation protocols and demonstrate
how our benchmark leads to more statistically
stable and significant results. The metrics we
benchmarked include recent methods based on
large language models (LLMs), GPTScore and
G-Eval. Furthermore, our findings have impor-
tant implications for evaluating LLMs, as we
show that LLMs adjusted by human feedback
(e.g., GPT-3.5) may overfit unconstrained hu-
man evaluation, which is affected by the anno-
tators’ prior, input-agnostic preferences, calling
for more robust, targeted evaluation methods.

1 Introduction

Human evaluation plays an essential role in both
assessing the rapid development of summarization
systems in recent years (Lewis et al., 2020a; Zhang
et al., 2020a; Brown et al., 2020; Sanh et al., 2022;
He et al., 2022) and in assessing the ability of auto-
matic metrics to evaluate such systems as a proxy

∗ Equal contribution

for manual evaluation (Bhandari et al., 2020; Fabbri
et al., 2022a; Gao and Wan, 2022). However, while
human evaluation is regarded as the gold standard
for evaluating both summarization systems and au-
tomatic metrics, as suggested by Clark et al. (2021)
an evaluation study does not become “gold” auto-
matically without proper practices. For example,
achieving a high inter-annotator agreement among
annotators can be difficult (Goyal et al., 2022), and
there can be a near-zero correlation between the
annotations of crowd-workers and expert annota-
tors (Fabbri et al., 2022a). Also, a human evalua-
tion study without a large enough sample size can
fail to find statistically significant results due to
insufficient statistical power (Card et al., 2020).

Therefore, we believe it is important to ensure
that human evaluation can indeed serve as a
solid foundation for evaluating summarization
systems and automatic metrics. For this, we pro-
pose using a robust human evaluation protocol for
evaluating the salience of summaries that is more
objective by dissecting the summaries into fine-
grained content units and defining the annotation
task based on those units. Specifically, we intro-
duce the Atomic Content Unit (ACU) protocol for
summary salience evaluation (§3), which is modi-
fied from the Pyramid (Nenkova and Passonneau,
2004) and LitePyramid (Shapira et al., 2019) proto-
cols. We demonstrate that with the ACU protocol,
a high inter-annotator agreement can be established
among crowd-workers, which leads to more stable
system evaluation results and better reproducibility.

We then collect, through both in-house anno-
tation and crowdsourcing, RoSE, a large human
evaluation benchmark of human-annotated sum-
maries with the ACU evaluation protocol on re-
cent state-of-the-art summarization systems, which
yields higher statistical power (§4). To support
evaluation across datasets and domains, our bench-
mark consists of test sets over three summariza-
tion datasets, CNN/DailyMail (CNNDM) (Nalla-
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Statistical Power − High statistical power is difficult to reach for human evaluation of similar-performing systems.
§4.1 − Increasing the sample size of human evaluation effectively raises statistical power.

Summary Length − Summaries from different summarization systems show a large difference in average length.
§4.2 − Difference in summary length is not well-reflected by automatic evaluation metrics.

− Reference-free and reference-based human evaluation results have a near-zero correlation.
Evaluation − Reference-free human evaluation strongly correlates with input-agnostic, annotator preference.

Protocol Comparison − Annotator’s input-agnostic preference has a strong positive correlation with summary lengths.
§5.2 − Annotator’s input-agnostic preference does not favor reference summaries.

− Compared to smaller, fine-tuned models, zero-shot large language models (e.g. GPT-3) perform
better under reference-free evaluation, but worse under reference-based evaluation.

Evaluating
− A higher-powered human evaluation dataset can lead to a more robust automatic metric evaluation,
as shown by a tighter confidence interval and higher statistical power of metric evaluation.

Automatic Metrics − Automatic metric performance differs greatly under different human evaluation protocols.
§6.1 & §6.2 − Automatic metrics show relatively strong system-level correlation and moderate summary-level

correlation with our robust human evaluation protocol.

Table 1: Summary of the key findings in our work.

pati et al., 2016), XSum (Narayan et al., 2018),
and SamSum (Gliwa et al., 2019), and annotations
on the validation set of CNNDM to facilitate auto-
matic metric training. To gain further insights into
the characteristics of different evaluation protocols,
we conduct human evaluation with three other
protocols (§5). Specifically, we analyze protocol
differences in the context of both fine-tuned models
and large language models (LLMs) in a zero-shot
setting such as GPT-3 (Brown et al., 2020). We
find that different protocols can lead to drastically
different results, which can be affected by annota-
tors’ prior preferences, highlighting the importance
of aligning the protocol with the summary quality
intended to be evaluated. We note that our bench-
mark enables a more trustworthy evaluation of au-
tomatic metrics (§6), as shown by statistical char-
acteristics such as tighter confidence intervals and
more statistically significant comparisons (§6.2).
Our evaluation includes recent methods based on
LLMs (Fu et al., 2023; Liu et al., 2023), and we
found that they cannot outperform traditional met-
rics despite their successes on related benchmarks
such as SummEval (Fabbri et al., 2022a).

We summarize our key findings in Tab. 1. Our
contributions are the following: (1) We propose the
ACU protocol for high-agreement human evalua-
tion of summary salience. (2) We curate the RoSE
benchmark, consisting of 22000 summary-level an-
notations and requiring over 150 hours of in-house
annotation, across three summarization datasets,
which can lay a solid foundation for training and
evaluating automatic metrics.1 (3) We compare
four human evaluation protocols for summarization

1We release our benchmark and evaluation scripts at
https://github.com/Yale-LILY/ROSE.

and show how they can lead to drastically differ-
ent model preferences. (4) We evaluate automatic
metrics across different human evaluation proto-
cols and call for human evaluation to be conducted
with a clear evaluation target aligned with the eval-
uated systems or metrics, such that task-specific
qualities can be evaluated without the impact of
general, input-agnostic preferences of annotators.
We note that the implications of our findings can be-
come even more critical with the progress of LLMs
trained with human preference feedback (Ouyang
et al., 2022) and call for a more rigorous human
evaluation of LLM performance.

2 Related Work

Human Evaluation Benchmarks Human anno-
tations are essential to the analysis of summariza-
tion research progress. Thus, recent efforts have
focused on aggregating model outputs and anno-
tating them according to specific quality dimen-
sions (Huang et al., 2020; Bhandari et al., 2020;
Stiennon et al., 2020; Zhang and Bansal, 2021; Fab-
bri et al., 2022a; Gao and Wan, 2022). The most
relevant work to ours is Bhandari et al. (2020),
which annotates summaries according to semantic
content units, motivated by the Pyramid (Nenkova
and Passonneau, 2004) and LitePyramid (Shapira
et al., 2019) protocols. However, this benchmark
only covers a single dataset (CNNDM) without
a focus on similarly-performing state-of-the-art
systems, which may skew metric analysis (Tang
et al., 2022a) and not fully reflect realistic scenarios
(Deutsch et al., 2022). In contrast, our benchmark
consists only of outputs from recently-introduced
models over three datasets.
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Summarization Meta-Evaluation With a human
evaluation dataset, there exist many directions of
meta-evaluation, or re-evaluation of the current
state of evaluation, such as metric performance
analyses, understanding model strengths, and hu-
man evaluation protocol comparisons.

Within metric meta-analysis, several studies
have focused on the analysis of ROUGE (Lin,
2004b), and its variations (Rankel et al., 2013;
Graham, 2015), across domains such as news
(Lin, 2004a), meeting summarization (Liu and Liu,
2008), and scientific articles (Cohan and Goharian,
2016). Other studies analyze a broader set of met-
rics (Peyrard, 2019; Bhandari et al., 2020; Deutsch
and Roth, 2020; Fabbri et al., 2022a; Gabriel et al.,
2021; Kasai et al., 2022b), including those spe-
cific to factual consistency evaluation (Kryscinski
et al., 2020; Durmus et al., 2020; Wang et al., 2020;
Maynez et al., 2020; Laban et al., 20d; Fabbri et al.,
2022b; Honovich et al., 2022; Tam et al., 2022).

Regarding re-evaluating model performance, a
recent line of work has focused on evaluating zero-
shot large language models (Goyal et al., 2022;
Liang et al., 2022; Tam et al., 2022), noting their
high performance compared to smaller models.

As for the further understanding of human eval-
uation, prior work has compared approaches to
human evaluation (Hardy et al., 2019), studied an-
notation protocols for quality dimensions such as
linguistic quality (Steen and Markert, 2021) and
factual consistency (Tang et al., 2022b), and noted
the effects of human annotation inconsistencies on
system rankings (Owczarzak et al., 2012). The un-
reliability and cost of human evaluation in certain
settings have been emphasized (Chaganty et al.,
2018; Clark et al., 2021), with some work noting
that thousands of costly data points may need to be
collected in order to draw statistically significant
conclusions (Wei and Jia, 2021). Our meta-analysis
focuses on this latter aspect, and we further analyze
potential confounding factors in evaluation such as
length and protocol design, with respect to both
small and large zero-shot language models.

3 Atomic Content Units for
Summarization Evaluation

We now describe our Atomic Content Unit (ACU)
annotation protocol for reference-based summary
salience evaluation, including the procedure of
writing ACUs based on reference summaries and
matching the written ACUs with system outputs.

3.1 Preliminaries

In this work, we focus on a specific summariza-
tion meta-evaluation study on summary salience.
Salience is a desired summary quality that requires
the summary to include all and only important infor-
mation of the input article. The human evaluation
of summary salience can be conducted in either
reference-free or reference-based manners. The
former asks the annotators to assess the summary
directly based on the input article (Fabbri et al.,
2022a), while the latter requires the annotators to
assess the information overlap between the sys-
tem output and reference summary (Bhandari et al.,
2020), under the assumption that the reference sum-
mary is the gold standard of summary salience.2

Given that reference-based protocols are more con-
strained, we focus on reference-based evaluation
for our human judgment dataset collection, and we
conduct a comparison of protocols in §5.

3.2 ACU Annotation Protocol

Inspired by the Pyramid (Nenkova and Passonneau,
2004) and LitePyramid (Shapira et al., 2019) pro-
tocols and subsequent annotation collection efforts
(Bhandari et al., 2020; Zhang and Bansal, 2021),
the ACU protocol is designed to reduce the subjec-
tivity of reference-based human evaluation by sim-
plifying the basic annotation unit – the annotators
only need to decide on the presence of a single fact,
extracted from one text sequence, in another text
sequence, to which a binary label can be assigned
with more objectivity. Specifically, the evaluation
process is decomposed into two steps: (1) ACU
Writing – extracting facts from one text sequence,
and (2) ACU Matching – checking for the pres-
ence of the extracted facts in another sequence. We
formulate the ACU protocol as a recall-based pro-
tocol, such that the first step only needs to be per-
formed once for the reference summary, allowing
for reproducibility and reuse of these units when
performing matching on new system outputs.
ACU Writing While the LitePyramid approach de-
fines its basic content unit as a sentence containing
a brief fact, we follow Bhandari et al. (2020) to
emphasize a shorter, more fine-grained information
unit. Specifically, we define the ACU protocol with
the concept of atomic facts – elementary informa-
tion units in the reference summaries, which no

2We note salience can be an inherently subjective qual-
ity, and the reference summary of common datasets may not
always be the actual “gold standard,” discussed more in §7.
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Reference Summary

Oscar collided with Arsenal goalkeeper 
David Ospina in the 16th minute of the 
London derby. The Brazilian was 
substituted at half-time and Jose 
Mourinho said he suffered `possible 
concussion'. Oscar was knocked back 
by the goalkeeper but Michael Oliver 
didn't award Chelsea a penalty. 

System Summary

Chelsea weren’t awarded a penalty. 

David Ospina clashed with Oscar.

David Ospina clattered Oscar.

David Ospina plays for Arsenal.

David Ospina is a goalkeeper.

The clash occurred inside the box.

Oscar is Brazilian.

Oscar was taken off at half time.

Didier Drogba replaced Oscar.

System Summary
Oscar collided with Arsenal goalkeeper David Ospina in the 16th 
minute of the London derby. The Brazilian was substituted at 
half-time and Jose Mourinho said he suffered ‘possible 
concussion’. Oscar was knocked back by the goalkeeper but 
Michael Oliver didn't award Chelsea a penalty. 

Chelsea weren't awarded a penalty for David Ospina's clash with Oscar. Arsenal goalkeeper clattered 
Oscar inside the box. Brazilian was taken off at half-time, with Didier Drogba replacing him.

Reference 
Summary

Oscar collided with Arsenal goalkeeper David Ospina in the 16th minute of the London derby. The 
Brazilian was substituted at half-time and Jose Mourinho said he suffered `possible concussion'. Oscar 
was knocked back by the goalkeeper but Michael Oliver didn't award Chelsea a penalty. 

System Summary

Atomic Content Units (ACUs)

❌

Chelsea weren’t awarded a penalty for David Ospina’s clash 
with Oscar. Arsenal goalkeeper clattered Oscar inside the box. 
Brazilian was taken off at half-time, with Didier Drogba 
replacing him.

Chelsea weren’t awarded a penalty.

David Ospina clashed with Oscar.

David Ospina clattered Oscar.

David Ospina plays for Arsenal.

David Ospina is a goalkeeper.

The clash occurred inside the box.

Oscar is Brazilian.

Oscar was taken off at half time.

Didier Drogba replaced Oscar.

Automic Content Units (ACUs)

✔ 
✔ 
✔ 
✔
✔

❌

❌
✔
✔

ACU Writing

ACU Matching

Reference Summary

Chelsea weren’t awarded a penalty.

David Ospina clashed with Oscar.

David Ospina clattered Oscar.

David Ospina plays for Arsenal.

David Ospina is a goalkeeper.

The clash occurred inside the box.

Oscar is Brazilian.

Oscar was taken off at half time.

Didier Drogba replaced Oscar.
Oscar collided with Arsenal goalkeeper David Ospina in the 16th 
minute of the London derby. The Brazilian was substituted at 
half-time and Jose Mourinho said he suffered ‘possible 
concussion’. Oscar was knocked back by the goalkeeper but 
Michael Oliver didn't award Chelsea a penalty. 

System Summary

Automic Content Units (ACUs)
Chelsea weren’t awarded a penalty for David Ospina’s clash 
with Oscar. Arsenal goalkeeper clattered Oscar inside the box. 
Brazilian was taken off at half-time, with Didier Drogba 
replacing him.

ACU Writing

ACU Matching

Figure 1: Example of a reference summary, a system summary and corresponding ACU annotations on CNNDM.

longer need to be further split for the purpose of
reducing ambiguity in human evaluation.3 Then,
ACUs are constructed based on one atomic fact and
other minimal, necessary information.

Fig. 1 shows an example of the written ACUs.
To ensure annotation quality, we (the authors) write
all the ACUs used in this work. We define guide-
lines to standardize the annotation process; for each
summary sentence the annotator creates an ACU
constituting the main information from the subject
of the main clause (e.g., root), followed by addi-
tional ACUs for other facts while including the
minimal necessary information from the root. We
provide rules for dealing with quotations, extrane-
ous adjectives, noisy summaries, and additional
cases. We note that there can still be inherent sub-
jectivity in the written ACUs among different anno-
tators even with the provided guidelines. However,
such subjectivity should be unbiased in summary
comparison because all the candidate summaries
are evaluated by the same set of written ACUs.
ACU Matching Given ACUs written for a set of
reference summaries, our protocol evaluates sum-
marization system performance by checking the
presence of the ACUs in the system-generated sum-
maries as illustrated in Fig. 1. For this step, we
recruit annotators on Amazon Mechanical Turk4

(MTurk). The annotators must pass a qualifica-
tion test, and additional requirements are specified
in Appendix A. Besides displaying the ACUs and
the system outputs, we also provide the reference
summaries to be used as context for the ACUs.
Scoring Summaries with ACU ACU matching
annotations can be aggregated into summary scores.
We first define an un-normalized ACU score f of a
candidate summary s given a set of ACUs A as:

f(s,A) =
|As|
|A| , (1)

3We note that it can be impossible to provide a practical
definition of atomic facts. Instead, we use it as a general
concept for fine-grained information units.

4https://www.mturk.com/

Dataset Split #Doc. #Sys. #ACU #Summ.

CNNDM Test 500 12 5.6k 6k
CNNDM Valid 1,000 8 11.6k 8k
XSum Test 500 8 2.3k 4k
SamSum Test 500 8 2.3k 4k

Table 2: Statistics of the collected annotations. #Doc.
is the number of input documents, #Sys. is the number
of summarization systems used for collection. #ACU
is the total number of written ACUs. #Summ. is the
total number of summary-level annotations, which are
aggregated over three annotations on the test sets, and a
single annotation on the validation set of CNNDM.

where As is a subset of A that is matched with s.
We note that f by default is a recall based score
with respect to the reference summary r. Therefore,
we also define a normalized ACU score f̃ as:

f̃α(s,A, r) = emin (0,
1− |s|

|r|
α

)f(s,A), (2)

where |s|, |r| are the length (i.e., number of words)
of the candidate summary s and the reference sum-
mary r respectively, and α is a positive number con-
trolling the strength of the normalization. This nor-
malization is in effect a redundancy penalty, which
penalizes the summaries longer than the reference
and resembles the brevity penalty in BLEU (Pap-
ineni et al., 2002). In practice, we set the value
of α by de-correlating f̃ with the summary length
using the collected ACU annotations.

3.3 ACU Annotation Collection

We collect ACU annotations on three summariza-
tion datasets: CNNDM (Nallapati et al., 2016),
XSum (Narayan et al., 2018), and SamSum (Gliwa
et al., 2019). To reflect the latest progress in text
summarization, we collect and annotate the gener-
ated summaries of pre-trained summarization sys-
tems proposed in recent years.5 Detailed informa-

5We release all of the system outputs with a unified, cased,
untokenized format to facilitate future research.
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tion about the summarization systems we used can
be found in Appendix A.2.

Table 2 shows the statistics of the collected anno-
tations. The annotations are collected from the test
set of the above datasets, and additionally from the
validation set of CNNDM to facilitate the training
of automatic evaluation metrics. In total, we collect
around 21.8k ACU-level annotations and around
22k summary-level annotations, aggregated over
around 50k individual summary-level judgments.

To calculate inter-annotator agreement, we use
Krippendorff’s alpha (Krippendorff, 2011). The ag-
gregated summary-level agreement score of ACU
matching is 0.7571, and the ACU-level agreement
score is 0.7528. These agreement scores are higher
than prior collections, such as RealSumm (Bhan-
dari et al., 2020) and SummEval (Fabbri et al.,
2022a), which have an average agreement score
of crowd-workers 0.66 and 0.49, respectively.

4 RoSE Benchmark Analysis

We first analyze the robustness of our collected
annotations and a case study on the system outputs.

4.1 Power Analysis

We analyze the statistical power of our collected
human annotations to study whether it can yield
stable and trustworthy results (Card et al., 2020).
Statistical power is the probability that the null hy-
pothesis of a statistical significance test is rejected
given there is a real effect. For example, for a
human evaluation study that compares the perfor-
mance of two genuinely different systems, a statis-
tical power of 0.80 means there is an 80% chance
that a significant difference will be observed. Fur-
ther details can be found in Appendix B.1.

We conduct the power analysis for pair-wise sys-
tem comparisons with ACU scores (Eq. 1) focusing
on two factors, the number of test examples and
the observed system difference. Specifically, we
run the power analysis with varying sample sizes,
and group the system pairs into buckets according
to their performance difference, as determined by
ROUGE1 recall scores (Fig.2).6 We observe the fol-
lowing: (1) A high statistical power7 is difficult
to reach when the system performance is similar.

6We note that these scores are proxies of the true system
differences, and the power analysis is based on the assumption
that the systems have significantly different performance.

7An experiment is usually considered sufficiently powered
if the statistical power is over 0.80.
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Figure 2: Power analysis of human evaluation for sys-
tem comparison on the annotated CNNDM test exam-
ples. Different lines represent results with different
sample sizes. The system pairs are grouped by perfor-
mance differences in ROUGE1 recall scores.

Notably, while the sample size of the human evalu-
ation performed in recent work is typically around
50-100,8 such sample size can only reach a power
of 0.80 when the ROUGE1 recall score difference
is above 5. (2) Increasing the sample size can ef-
fectively raise the statistical power. For example,
when the system performance difference is within
the range of 1-2 points, the power of a 500-sample
set is around 0.50 while a 100-sample set only has
a power of around 0.20. The results of power anal-
ysis on three datasets with both ROUGE and ACU
score differences are provided in Appendix B.2
with the same patterns, which indicates that our
dataset can provide more stable summarization sys-
tem evaluation thanks to its higher statistical power.

4.2 Summarization System Analysis

As a case study, in Tab. 3 we analyze the summary
characteristics of the recent summarization systems
we collected on the CNNDM test set. XSum and
SamSum results are shown in Appendix A.3. Apart
from the ACU scores, we note that the average
summary length of different systems can greatly
vary, and such differences are not always captured
by the widely-used ROUGE F1. For example, the
length of GSum (Dou et al., 2021) is around 40%
longer than GLOBAL (Ma et al., 2021) while they
have very similar ROUGE1 F1 scores. Besides,
we note all systems in Tab. 3 have longer sum-
maries than the reference summaries, whose av-
erage length is only 54.93. This can be a potential
risk to users who may prefer shorter, more concise

8We provide a brief survey of the practices of human eval-
uation in recent text summarization research in Appendix F.
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System ACU nACU Len R1F

GSum (Dou et al., 2021) 44.47 34.87 77.61 45.47
MatchSum (Zhong et al., 2020) 42.50 33.69 74.99 43.84
BRIO-Ext (Liu et al., 2022) 41.72 33.58 73.67 44.44
BART (Lewis et al., 2020a) 38.83 32.34 71.00 44.04
CTRLSum (He et al., 2020) 44.58 36.13 70.56 45.69
BRIO (Liu et al., 2022) 44.03 37.20 69.58 47.83
CLIFF (Cao and Wang, 2021) 38.51 32.96 67.74 44.19
PEGASUS (Zhang et al., 2020a) 37.56 32.03 65.65 43.80
SimCLS (Liu and Liu, 2021) 40.47 36.01 62.91 46.46
FROST (Narayan et al., 20d) 38.44 33.68 62.65 44.90
GOLD (Pang and He, 2021) 38.10 33.80 60.65 44.86
GLOBAL (Ma et al., 2021) 36.40 34.07 55.50 45.17

Table 3: Summarization system analysis on CNNDM.
ACU is the ACU score (Eq. 1), nACU is the normalized
ACU score (Eq. 2), Len is the average summary length,
and R1F is the ROUGE1 F1 score. ACU and nACU are
calculated on the 500 annotated examples (the value is
multiplied by 100) while Len and R1F are calculated
on the entire test set. The systems are sorted by Len.

summaries. Meanwhile, the systems that generate
longer summaries may be favored by users who
prefer more informative summaries. Therefore, we
join the previous work (Sun et al., 2019; Song et al.,
2021; Gehrmann et al., 2022; Goyal et al., 2022) in
advocating treating summary lengths as a sepa-
rate aspect of summary quality in evaluation, as
in earlier work in summarization research.9

5 Evaluating Annotation Protocols

Apart from ACU annotations, we collect human
annotations with three different protocols to better
understand their characteristics. Specifically, two
reference-free protocols are investigated: Prior pro-
tocol evaluates the annotators’ preferences of sum-
maries without the input document, while Ref-free
protocol evaluates if summaries cover the salient in-
formation of the input document. We also consider
one reference-based protocol, Ref-based, which
evaluates the content similarity between the gen-
erated and reference summaries. Appendix D.1
provides detailed instructions for each protocol.

5.1 Annotation Collection

We collected three annotations per summary on a
100-example subset of the above CNNDM test set
using the same pool of workers from our ACU qual-
ification. Except for ACU, all of the summaries
from different systems are evaluated within a single
task with a score from 1 (worst) to 5 (best), similar

9For example, the DUC evaluation campaigns set a pre-
specified maximum summary length, or summary budget.

Prior Ref-free Ref-based nACU

Prior - 0.926 -0.061 0.048
Ref-free 0.926 - -0.247 -0.093
Ref-based -0.061 -0.247 - 0.762
nACU 0.048 -0.093 0.762 -

Len. 0.833 0.875 -0.550 -0.296

Table 4: System-level Pearson’s correlations between
different protocols on the fine-tuned models. nACU is
the normalized ACU score. Len. is the summary length.

to the EASL protocol (Sakaguchi and Van Durme,
2018). We collect (1) annotations of the 12 above
systems, with an inter-annotator agreement (Krip-
pendorff’s alpha) of 0.3455, 0.2201, 0.2741 on
Prior, Ref-free, Ref-based protocols respectively;
(2) annotations for summaries from GPT-3 (Brown
et al., 2020),10 T0 (Sanh et al., 2022), BRIO, and
BART to better understand annotation protocols
with respect to recently introduced large language
models applied to zero-shot summarization.

5.2 Results Analysis
We investigate both the summary-level and system-
level correlations of evaluation results of different
protocols to study their inherent similarity. Details
of correlation calculation are in Appendix C.
Results on Fine-tuned Models We show the
system-level protocol correlation when evaluating
the fine-tuned models in Tab. 4, and the summary-
level correlation can be found in Appendix D.2. We
use the normalized ACU score (Eq. 2) because the
other evaluation protocols are supposed to resemble
an F1 score, while the ACU score is by definition
recall-based. We have the following observations:
(1) The Ref-free protocol has a strong correlation
with the Prior protocol, suggesting that the lat-
ter may have a large impact on the annotator’s
document-based judgments.
(2) Both the Prior and Ref-free protocols have a
strong correlation with summary length, showing
that annotators may favor longer summaries.
(3) The Ref-free protocol and the Ref-based proto-
col have a negative correlation while ideally they
are supposed to measure similar quality aspects.

We perform power analysis on the results fol-
lowing the procedure in §4.1 and found that ACU
protocol can yield higher statistical power than the
Ref-based protocol, suggesting that the ACU proto-
col leads to more robust evaluation results. We also
found that the reference-free Prior and Ref-free

10We use the “text-davinci-002” version of GPT-3.
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Prior Ref-free Ref-based ACU Len.

BART 3.58 3.52 2.93 0.367 69.5
BRIO 3.51 3.49 3.07 0.429 66.4
T0 3.33 3.24 2.84 0.295 61.6
GPT-3 3.72 3.76 2.74 0.268 69.5

Ref. 2.85 2.94 - - 54.9

Table 5: Model performance under different annotation
protocols. Len. is the summary length. Ref. is the
reference summary. Prior, Ref-free, Ref-based protocols
have a score range from 1 to 5.

protocols have higher power than the reference-
based protocols. However, we note that they are
not directly comparable because they have differ-
ent underlying evaluation targets, as shown by the
near-zero correlation between them. Further details
are provided in Appendix D.2.
Results on Large Language Models The results
are shown in Tab. 5. Apart from the system outputs,
we also annotate reference summaries for reference-
free protocols. We found that under the Ref-free
protocol, GPT-3 receives the highest score while
the reference summary is the least favorite one,
similar to the findings of recent work (Goyal et al.,
2022; Liang et al., 2022). However, we found the
same pattern with the Prior protocol, showing that
the annotators have a prior preference for GPT-3.
We provide an example in Appendix D.2 compar-
ing GPT-3 and BRIO summaries under different
protocols. Given the strong correlation between
the Prior and Ref-free protocols, we note that there
is a risk that the annotators’ decisions are affected
by their prior preferences that are not genuinely
related to the task requirement. As a further inves-
tigation, we conduct an annotator-based case study
including 4 annotators who annotated around 20
examples in this task, in which we compare two
summary-level correlations (Eq. 3) given a specific
annotator: (1) the correlation between their own
Ref-free protocol scores and Prior scores; (2) the
correlation between their Ref-free scores and the
Ref-free scores averaged over the other annotations
on each example. We found that the average value
of the former is 0.404 while the latter is only 0.188,
suggesting that the annotators’ own Prior score
is a better prediction of their Ref-free score than
the Ref-free score of other annotators.

6 Evaluating Automatic Metrics

We analyze several representative automatic met-
rics, with additional results in Appendix E on 50

CNNDM XSum SamSum
Sys. Sum. Sys. Sum. Sys. Sum.

ROUGE1 .788 .468 .714 .293 .929 .439
ROUGE2 .758 .453 .643 .266 1.00 .395
ROUGEL .879 .454 .643 .258 .929 .415
METEOR .758 .407 .571 .268 .857 .373
CHRF .758 .436 .571 .275 .857 .396
BERTScore .515 .448 .571 .277 .857 .417
BARTScore .727 .453 .714 .282 .929 .430
QAEval .849 .358 .429 .198 .929 .384
SummaQA .727 .119 .143 .019 .643 .102
Lite3Pyramid .849 .452 .714 .245 1.00 .467
GPTScore .636 .129 .214 .099 .429 .158
G-Eval-3.5 .412 .164 .429 .136 .857 .248
G-Eval-3.5-S .364 .171 .429 .144 .857 .262
G-Eval-4 .779 .274 .691 .185 .929 .405

Table 6: The Kendall’s correlation between the auto-
matic metric scores and ACU scores of system outputs
on CNNDM, XSum, and SamSum datasets. The cor-
relation is calculated at both the system level and the
summary level. We use the recall score of the automatic
metrics when available to align with the ACU scores.

automatic metric variants. We focus the metric
evaluation on ACU annotations because of two in-
sights from §5: (1) Reference-based metrics should
be evaluated with reference-based human evalua-
tion. (2) ACU protocol provides higher statistical
power than the summary-level Ref-based protocol.

6.1 Metric Evaluation with ACU Annotations

We use the correlations between automatic met-
ric scores and ACU annotation scores of system
outputs to analyze and compare automatic metric
performance. The following metrics are evaluated:

(1) lexical overlap based metrics, ROUGE (Lin,
2004b), METEOR (Lavie and Agarwal, 2007),
CHRF (Popović, 2015); (2) pre-trained lan-
guage model based metrics, BERTScore (Zhang
et al., 2020c), BARTScore (Yuan et al., 2021);
(3) question-answering based metrics, Sum-
maQA (Scialom et al., 2019), QAEval (Deutsch
et al., 2021a); (4) Lite3Pyramid (Zhang and
Bansal, 2021), which automates the LitePyramid
evaluation process; (5) evaluation methods based
on large language models, GPTScore (Fu et al.,
2023) and G-Eval (Liu et al., 2023), with two vari-
ants that are based on GPT-3.511 (G-Eval-3.5) and
GPT-412 (OpenAI, 2023) (G-Eval-4) respectively.
We note that for LLM-based evaluation we require
the metric to calculate the recall score. For G-

11OpenAI’s gpt-3.5-turbo-0301: https://platform.
openai.com/docs/models/gpt-3-5.

12OpenAI’s gpt-4-0314: https://platform.openai.
com/docs/models/gpt-4.
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Bucket 1 2 3 4 5 6

ROUGE1 .091 .636 1.00 1.00 1.00 1.00
ROUGE2 -.091 .818 .818 1.00 1.00 1.00
ROUGEL .455 .818 1.00 1.00 1.00 1.00
METEOR .091 .818 .818 .818 1.00 1.00
CHRF .091 .818 .818 .818 1.00 1.00
BERTScore -.091 .636 .636 .091 .818 1.00
BARTScore -.091 .818 .818 .818 1.00 1.00
QAEval .455 .818 1.00 .818 1.00 1.00
SummaQA .636 .818 .636 .273 1.00 1.00
Lite3Pyramid .273 .818 1.00 1.00 1.00 1.00
GPTScore .273 .091 .455 1.00 1.00 1.00
G-Eval-3.5 -.091 -.273 -.091 .818 1.00 1.00
G-Eval-3.5-S -.091 -.273 -.273 .818 1.00 1.00
G-Eval-4 .091 .818 .636 1.00 1.00 1.00

Table 7: The system-level Kendall’s correlation between
the automatic metric and ACU scores on different sys-
tem pairs grouped by their ACU score differences on the
CNNDM dataset, into six equal-sized buckets. We use
the recall score of the automatic metrics when available.

Eval-3.5 we report two variants that are based on
greedy decoding (G-Eval-3.5) and sampling (G-
Eval-3.5-S) respectively, Details of the LLM-based
evaluation are in Appendix E.2.

Tab. 6 shows the results, with additional results
of more metrics in Appendix E.3. We note:
(1) Several automatic metrics from the different
families of methods (e.g., ROUGE, BARTScore)
are all able to achieve a relatively high correlation
with the ACU scores, especially at the system level.
(2) Metric performance varies across different
datasets. In particular, metrics tend to have stronger
correlations on the SamSum dataset and weaker
correlations on the XSum dataset. We hypothesize
that one reason is that the reference summaries of
the XSum dataset contain more complex structures.
(3) Despite their successes (Fu et al., 2023; Liu
et al., 2023) in other human evaluation benchmarks
such as SummEval, LLM-based automatic evalua-
tion cannot outperform traditional methods such as
ROUGE on RoSE. Moreover, their low summary-
level correlation with ACU scores suggests that
their predicted scores may not be well-calibrated.

Following Deutsch et al. (2022), we further in-
vestigate metric performance when evaluating sys-
tem pairs with varying performance differences.
Specifically, we group the system pairs based on
the difference of their ACU scores into different
buckets and calculate the modified Kendall’s corre-
lation (Deutsch et al., 2022) on each bucket. The
system pairs in each bucket are provided in Ap-
pendix E.4. Tab. 7 shows that the automatic met-
rics generally perform worse when they are used
to evaluate similar-performing systems.
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Figure 3: Power analysis of pair-wise metric compari-
son w.r.t. their system-level Kendall’s correlation coeffi-
cients with ACU scores on CNNDM. The metric pairs
are grouped by the correlation differences with ACU
scores. Different lines represent different sample sizes.

6.2 Analysis of Metric Evaluation
We analyze the metric evaluation with respect to the
statistical characteristics and the impact of different
human evaluation protocols on metric evaluation.
Confidence Interval We select several represen-
tative automatic metrics and calculate the confi-
dence intervals of their system-level correlations
with the ACU scores using bootstrapping. Similar
to Deutsch et al. (2021b), we find that the confi-
dence intervals are large. However, we found that
having a larger sample size can effectively re-
duce the confidence interval, which further shows
the importance of increasing the statistical power
of the human evaluation dataset as discussed in
§4.1. We provide further details in Appendix E.5.
Power Analysis of Metric Comparison We con-
duct a power analysis of pair-wise metric compar-
ison with around 200 pairs, which corresponds to
the chance of a statistical significance result being
found. More details can be found in Appendix E.6.
The results are in Fig.3, showing similar patterns
as in the power analysis of summarization system
comparison (§4.1):
(1) Significant results are difficult to find when the
metric performance is similar;
(2) Increasing the sample size can effectively in-
crease the chance of finding significant results.
Correlations under Different Human Evalua-
tion Protocols We analyze the metric correlations
under different human evaluation protocols (§5).
The results are shown in Tab. 8, with more results
in Appendix E.7. We note: (1) Metric performance
differs greatly under different protocols, likely be-
cause the protocols can have weak correlations
with each other (§5.2). (2) The reference-based
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Protocol Prior Ref-free Ref-based nACU

ROUGE1 -0.061 -0.212 0.840 0.636
ROUGE2 0.000 -0.151 0.595 0.636
ROUGEl -0.061 -0.212 0.779 0.636
METEOR 0.394 0.242 0.382 0.485
CHRF 0.576 0.424 0.199 0.485
BERTScore -0.091 -0.182 0.779 0.485
BARTScore -0.091 -0.182 0.656 0.364
QAEval 0.485 0.515 -0.076 0.151
SummaQA 0.515 0.424 0.260 0.303
Lite3Pyramid 0.576 0.667 -0.168 0.121

Table 8: The system-level Kendall’s correlation between
the automatic metric and different human evaluation
protocols on CNNDM dataset. We use the F1 score of
the automatic metrics when available.

automatic metrics generally perform better under
reference-based evaluation protocols, but can have
negative correlations with reference-free protocols.

7 Conclusion and Implications

We introduce RoSE, a benchmark whose underly-
ing protocol and scale allow for more robust sum-
marization evaluation across three datasets. With
our benchmark, we re-evaluate the current state
of human evaluation and its implications for both
summarization system and automatic metric devel-
opment, and we suggest the following:
(1) Alignment in metric evaluation. To evaluate
automatic metrics, it is important to use an appro-
priate human evaluation protocol that captures the
intended quality dimension to be measured. For ex-
ample, reference-based automatic metrics should
be evaluated by reference-based human evaluation,
which disentangles metric performance from the
impact of reference summaries.
(2) Alignment in system evaluation. We advocate
for targeted evaluation, which clearly defines the
intended evaluation quality. Specifically, text sum-
marization, as a conditional generation task, should
be defined by both the source and target texts along
with pre-specified, desired characteristics. Clearly
specifying characteristics to be measured can lead
to more reliable and objective evaluation results.
This will be even more important for LLMs pre-
trained with human preference feedback for disen-
tangling annotators’ prior preferences for LLMs
with the task-specific summary quality.
(3) Alignment between NLP datasets and tasks.
Human judgments for summary quality can be di-
verse and affected by various factors such as sum-
mary lengths, and reference summaries are not al-

ways favored. Therefore, existing summarization
datasets (e.g. CNNDM) should only be used for the
appropriate tasks. For example, they can be used to
define a summarization task with specific require-
ments (e.g. maximum summary lengths), and be
important for studying reference-based metrics.

8 Limitations

Biases may be present in the data annotator as well
as in the data the models were pretrained on. Fur-
thermore, we only include English-language data
in our benchmark and analysis. Recent work has
noted that language models may be susceptible
to learning such data biases (Lucy and Bamman,
2021), thus we request that the users be aware of
potential issues in downstream use cases.

As described in Appendix D.1, we take measures
to ensure a high quality benchmark. There will
inevitably be noise in the dataset collection process,
either in the ACU writing or matching step, and
high agreement of annotations does not necessarily
coincide with correctness. However, we believe
that the steps taken to spot check ACU writing
and filter workers for ACU matching allow us to
curate a high-quality benchmark. Furthermore, we
encourage the community to analyze and improve
RoSE in the spirit of evolving, living benchmarks
(Gehrmann et al., 2021).

For reference-based evaluation, questions about
reference quality arise naturally. We also note that
the original Pyramid protocol was designed for
multi-reference evaluation and weighting of seman-
tic content units, while we do not weight ACUs
during aggregation. As discussed above, we argue
that our benchmark and analysis are still valuable
given the purpose of studying conditional genera-
tion and evaluating automatic metrics for semantic
overlap in targeted evaluation. We view the col-
lection of high-quality reference summaries as a
valuable, orthogonal direction to this work, and we
plan to explore ACU weighting in future work.
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A Benchmark Data Collection

A.1 Detailed Settings

We discuss the detailed settings of ACU collection
in §3.2. To ensure the consistency of written ACUs
among different annotators, we require each anno-
tator to be familiar with the annotation protocol
and proofread each other’s annotations to resolve
any differences in initial annotations. After estab-
lishing a consistent understanding of the task, we
have each reference summary annotated by one
annotator. We note that there are multiple valid
ways of writing the same atomic fact. In prelimi-
nary protocol analysis, we had multiple annotators
write ACUs for the same reference summaries and
did not find large differences in downstream inter-
annotator agreement for ACU matching. The av-
erage time to write ACUs of one summary ranges
from 2 to 5 minutes, and the overall annotation
time for ACU writing is around 150 hours.
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We use the following qualifications, in addition
to a qualification test, to recruit MTurk workers
with good track records: HIT approval rate greater
than or equal to 98%, number of HITs approved
greater than or equal to 10000, and located in either
the United Kingdom or the United States. Workers
were compensated between $0.15 and $0.55 per
summary-level ACU HITs, with HITs bucketed ac-
cording to the number of ACUs to be matched. For
protocol comparison HITs, workers were compen-
sated between $1 and $3. All HITs were carefully
calibrated to equal a $12/hour pay rate.

The datasets we used for the collection are CN-
NDM, XSum and SamSum. The data release li-
censes are the Apache License for CNNDM and
XSum, and CC BY-NC-ND 4.0 for SamSum. Our
collected benchmark will be released under the 3-
Clause BSD license.

A.2 Summarization Models

We list the summarization models for ACUs anno-
tations on CNNDM, XSum, and SamSum in §3.3.

CNNDM Systems:
BART (Lewis et al., 2020b) introduce a denoising
autoencoder for pretraining sequence to sequence
tasks which is applicable to both natural language
understanding and generation tasks.
Pegasus (Zhang et al., 2020b) introduce a model
pretrained with a novel objective function designed
for summarization by which important sentences
are removed from an input document and then gen-
erated from the remaining sentences.
MatchSum (Zhong et al., 2020) propose a
summary-level extractive system using semantic
match between the extracted summary and the
source document.
CTRLSum (He et al., 2020) introduce a method
for controllable summarization based on keyword
or descriptive prompt control tokens.
CLIFF (Cao and Wang, 2021) propose to use con-
trastive learning to improve factual consistency.
We use the CLIFF output that uses an underlying
BART model.
GOLD (Pang and He, 2021) frames text genera-
tion as an offline reinforcement learning problem,
using importance weighting and assigning weights
to examples that receive a higher probability from
the generation model.
GSum (Dou et al., 2021) is a framework for incor-
porating forms of summarization guidance.

SimCLS (Liu and Liu, 2021) is a two-stage sum-
marization model where candidates from BART are
reranking by a RoBERTa (Liu et al., 2019) scoring
model trained using contrastive learning.
FROST (Narayan et al., 20d) propose to do content
planning in both pretraining and finetuning sum-
marization models with plans in the form of entity
chains.
GLOBAL (Ma et al., 2021) propose a variation
of beam search that takes into account the global
attention distribution.
BRIO (Liu et al., 2022) proposes to train a sum-
marization model both as a token-level generator
and an evaluator of sequence candidates through
contrastive reranking.
BRIO-Ext (Liu et al., 2022) uses BRIO’s reranker
on candidate extractive summaries from Match-
Sum.
The following models were included in protocol-
comparison annotations.
T0 (Sanh et al., 2022) introduces a prompt-based
model that is fine-tuned on multiple tasks, includ-
ing summarization.
GPT-3 (Brown et al., 2020) is the davinci-002
model trained on human demonstrations and model
outputs highly rated by humans.13

XSum Systems For XSum we reuse several of
the above models with their XSum-trained check-
points as well as several variations from the above
paper due to the scarcity of widely-available, easily-
reproducible XSum outputs.
BART (Lewis et al., 2020b)
Pegasus (Zhang et al., 2020b)
CLIFF (Cao and Wang, 2021)
CLIFF-Pegasus (Cao and Wang, 2021) is the
CLIFF algorithm applied with Pegasus as the un-
derlying model.
FROST (Narayan et al., 20d)
BRIO (Liu et al., 2022)
BRIO-ranking (Liu et al., 2022) is the paper’s
reranking model.
BART-beam-patience (Kasai et al., 2022a)

SamSum Systems
We use system outputs from Gao and Wan (2022).
BART (Lewis et al., 2020b)
Pegasus (Zhang et al., 2020b)

13https://beta.openai.com/docs/
model-index-for-researchers
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System ACU nACU Len R1F

PATIENCE (Kasai et al., 2022a) 27.11 26.59 25.00 45.07
CLIFFP (Cao and Wang, 2021) 25.13 24.94 21.29 46.20
BRIO-Mul (Liu et al., 2022) 26.34 26.15 21.15 48.73
BART (Lewis et al., 2020a) 23.99 23.78 20.98 45.56
PEGASUS (Zhang et al., 2020a) 24.83 24.67 20.21 46.84
CLIFFB (Cao and Wang, 2021) 22.09 21.93 20.17 44.52
FROST (Narayan et al., 20d) 27.93 27.77 19.86 47.83
BRIO-Ctr (Liu et al., 2022) 26.42 26.29 19.65 48.06

Table 9: Summarization system analysis on the XSum
dataset. ACU is the ACU score (Eq. 1), nACU is the
normalized ACU score (Eq. 2), Len is the average sum-
mary length, and R1F is the ROUGE1 F1 score. ACU
and nACU are calculated on the 500 annotated exam-
ples (the value is multiplied by 100) while Len and R1F
are calculated on the entire test set. The systems are
sorted by Len. CLIFFP is based on PEGASUS, while
CLIFFB is based on BART.

UniLM (Dong et al., 2019) is a model pre-
trained on unidirection, bidirection, and sequence-
to-sequence language modeling tasks.

Ctrl-DiaSumm (Liu and Chen, 2021) propose con-
trolled generation using named entity plans.

PLM-BART (Feng et al., 2021) use DialogGPT
(Zhang et al., 2020d) to annotate input dialogues
before finetuning.

CODS (Wu et al., 2021) propose a two-stage gener-
ation model that first generates a sketch that is then
used as a signal to the second-stage summarizer.

MV-BART (Chen and Yang, 2020) propose a multi-
view encoder and a decoder that attends to these
conversation views.

S-BART (Chen and Yang, 2020) encodes utter-
ances as well as action and discourse graphs and
introduces a decoder that attends to these different
levels of granularity.

A.3 ACU Scores of Summarization Models

We report the ACU scores of the summarization
systems we annotated on the XSum and SamSum
datasets (§4.2) in Tab. 9 and Tab. 10, respectively.
The results on CNNDM can be found in Tab. 3.
For the normalized ACU score (Eq. 2), we set the
normalization strength α to 2, 5, 0.5, on CNNDM,
XSum, SamSum, respectively, by a grid search for
de-correlating the summary length and the normal-
ized score at the summary level.

System ACU nACU Len R1F

MV-BART (Chen and Yang, 2020) 47.65 33.01 23.57 53.80
Ctrl-DiaSumm (Liu and Chen, 2021) 49.05 37.20 22.97 56.33
PLM-BART (Feng et al., 2021) 43.74 32.61 21.43 53.46
S-BART (Chen and Yang, 2020) 34.57 25.95 21.01 50.36
CODS (Wu et al., 2021) 38.40 33.41 20.11 52.48
BART (Lewis et al., 2020b) 42.85 34.05 19.62 52.30
UniLM (Dong et al., 2019) 32.74 26.10 18.84 49.20
PEGASUS (Zhang et al., 2020b) 37.02 31.99 17.32 50.87

Table 10: Summarization system analysis on the Sam-
Sum dataset. ACU is the ACU score (Eq. 1), nACU is
the normalized ACU score (Eq. 2), Len is the average
Summary length, and R1F is the ROUGE1 F1 score.
ACU and nACU are calculated on the 500 annotated
examples (the value is multiplied by 100) while Len and
R1F are calculated on the entire test set. The systems
are sorted by Len.

B Power Analysis

B.1 Detailed Settings

We describe the algorithm for the power analysis
in §4.1 in Alg.1. While prior work (Card et al.,
2020; Wei and Jia, 2021) uses parametric methods
to estimate statistical power, we conduct the power
analysis with the bootstrapping test (Tibshirani and
Efron, 1993) as recent work (Deutsch et al., 2021b)
has shown that the assumptions of the parametric
methods do not always hold for human evaluation
of text summarization. The process involves (1)
iteratively sampling a set of examples with a certain
sample size from an existing dataset, (2) running
the significance test on the sampled set, and (3)
estimating the power by averaging across the trials.

The essence of the test is to have a series of sim-
ulated datasets sampled from the existing dataset
and run the significance test on the sampled sets.
Here the existing dataset X consists of human-
annotated scores of system outputs. We use paired
bootstrapping for the significance test. The power
analysis is conducted over all the system pairs.

B.2 Powers of ACU Annotations

Fig.4, Fig.5, and Fig.6 show the power analysis re-
sults on CNNDM, XSum and SamSum respectively
in §4.1, where the system pairs are grouped by their
performance difference in either ACU or ROUGE1
recall scores. Similar to our findings on CNNDM
in §4.1, we observe that increasing the sample size
can effectively raise the statistical power.
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Figure 4: Power analysis of human evaluation for system comparison on the annotated CNNDM test examples.
Different lines represent results with different sample sizes. The system pairs are grouped by performance differences
in ACU scores in Fig.4a, and by ROUGE1 recall scores in Fig.4b.
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Figure 5: Power analysis of human evaluation for system comparison on the annotated XSum test examples. Different
lines represent results with different sample sizes. The system pairs are grouped by performance differences in ACU
scores in Fig.5a, and by ROUGE1 recall scores in Fig.5b.
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Figure 6: Power analysis of human evaluation for system comparison on the annotated SamSum test examples.
Different lines represent results with different sample sizes. The system pairs are grouped by performance differences
in ACU scores in Fig.6a, and by ROUGE1 recall scores in Fig.6b.

4157



Algorithm 1 Power Analysis

Input: n (Sample Size)
Input: X (Existing Dataset)
Input: m (Trial Number)
Output: p (Statistical Power)
p← 0
for i = 0 to m do

X̂ ← Sampling n examples from X with
replacement

p̃← Running the significance test on X̂
if p̃ < 0.05 then

p← p+ 1
end if

end for
p← p/m return p

C Calculating Correlations

We use correlations to analyze the inherent similar-
ity between different human evaluation protocols,
and the performance of automatic metrics, which
is evaluated based on the correlations between the
metric-calculated summary scores and the human-
annotated summary scores. Specifically, given m
system outputs on each of the n data samples and
two different evaluation methods (e.g., human eval-
uation and an automatic metric) resulting in two
n-row, m-column score matrices X and Y , the
summary-level correlation is an average of sample-
wise correlations:

rsum(X,Y ) =

∑
i C(Xi, Yi)

n
, (3)

where Xi, Yi are the evaluation results on the i-th
data sample and C is a function calculating a cor-
relation coefficient (e.g., the Pearson correlation
coefficient). In contrast, the system-level correla-
tion is calculated on the aggregated system scores:

rsys(X,Y ) = C(X̄, Ȳ ), (4)

where X̄ and Ȳ contain m entries which are the sys-
tem scores from the two evaluation methods aver-
aged across n data samples, e.g., X̄0 =

∑
iXi,0/n.

D Protocol Comparison

D.1 Data Collection Details
The 100 examples chosen for annotation in §5 are
a subset of the CNNDM ACU test set, and as here
we aim to analyze trends among protocols as op-
posed to observing statistically significant differ-
ences among systems, we believe 100 examples
suffice for this collection.

Protocol w/ Doc w/ Ref Fine-grained

Prior ✗ ✗ ✗
Ref-free ✓ ✗ ✗
Ref-based ✗ ✓ ✗
ACU ✗ ✓ ✓

Table 11: Human evaluation protocol comparison. We
categorize the different protocols based on if they (1)
require the input document (w/ Doc), (2) require the
reference summary (w/ Ref), and (3) are fine-grained.

We summarize and compare different protocols
in Tab. 11. We provide the following instructions
to annotators for non-ACU annotations. We will
release the full interface and instructions.
Prior: We ask the annotator to imagine each of the
candidate summaries to be evaluated as a summary
of a longer news article and answer the following
question: how good do you think this summary is?
Ref-free: The rating measures how well the sum-
mary captures the key points of the news article.
Consider whether all and only the important as-
pects are contained in the summary.
Ref-based: The rating measures how similar two
summaries are. The similarity depends on if the
summaries contain similar information, not if they
use the same words.

D.2 Results Analysis

We present the result analysis of §5.2 here.

Summary Level Correlation We show the
summary-level Pearson’s Correlation Coefficients
among different protocols in Tab. 12.

Power Analysis The power analysis results on
the Prior, Ref-free, Ref-based, and ACU protocols
are shown in Fig. 7.

Case Study We show a case study in Tab. 13
comparing the summaries generated by BRIO and
GPT-3. GPT-3 scores higher on Prior and Ref-
free (3.33/3.33 for BRIO and 3.66/4.00 for GPT-3).
However, the BRIO summary scores 0.77 on un-
normalized ACU annotations while GPT-3 scores
0.33. Also, Ref-based annotations favor BRIO over
GPT-3 (3.66 vs. 3.33).

E Metric Analysis

E.1 Metrics

We provide additional metric details as well as re-
sults for other metrics in §6. Note that for ROUGE,
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Figure 7: Power analysis of human evaluation for system comparison under different evaluation protocols on the
annotated CNNDM test examples. Different lines represent results with different sample sizes. The system pairs are
grouped into 10 buckets with similar sizes based on their performance difference under human evaluation. Fig.7a
corresponds to the Prior protocol, Fig.7b the Ref-free protocol, Fig.7c the Ref-based protocol, and Fig.7d the ACU
protocol with normalized ACU scores.

Prior Ref-free Ref-based nACU

Prior - 0.526 0.056 0.082
Ref-free 0.526 - 0.070 0.075
Ref-based 0.056 0.070 - 0.355
nACU 0.082 0.075 0.355 -

Len. 0.431 0.545 -0.107 -0.007

Table 12: Summary-level Pearson correlations between
different protocols on the fine-tuned models. nACU
is the normalized ACU score. Len. is the Summary
length.

we use the Python implementation. 14

BLEU (Papineni et al., 2002) is a corpus-level
precision-focused metric that calculates n-gram
overlap and includes a brevity penalty.
CIDEr (Vedantam et al., 2015) computes {1-4}-
gram co-occurrences, down-weighting common n-
grams and calculating cosine similarity between

14https://pypi.org/project/ROUGE-score/

the n-grams of the candidate and reference texts.
Statistics (Grusky et al., 2018) reports summary
statistics such as the length, novel and repeated
n-grams in the summary, the compression ratio
between the summary and article, and measures of
the level of extraction. Coverage is the percentage
of words that are part of an extractive fragment
and density is the average length of the extractive
fragment each summary word belongs to.
MoverScore (Zhao et al., 2019) measures seman-
tic distance with Word Mover’s Distance (Kusner
et al., 2015) on pooled BERT n-gram embeddings.
SUPERT (Gao et al., 2020) measures the seman-
tic similarity of summaries with pseudo-reference
summaries created by extracting salient sentences
from the source documents.
BLANC (Vasilyev et al., 2020) measures the per-
formance gains of a pre-trained language model on
language understanding tasks on the input docu-
ment when given access to a document summary.
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(a) Reference Summary: Chelsea weren’t awarded a penalty for David Ospina’s clash with Oscar. Arsenal goalkeeper
clattered Oscar inside the box. Brazilian was taken off at half-time, with Didier Drogba replacing him.

(b) System Summary (BRIO, (Liu et al., 2022)): Oscar collided with Arsenal goalkeeper David Ospina in the 16th minute
of the London derby . The Brazilian was substituted at half-time and Jose Mourinho said he suffered ‘possible concussion’ .
Oscar was knocked back by the goalkeeper but Michael Oliver didn’t award Chelsea a penalty .

(c) System Summary (GPT-3, (Brown et al., 2020)): Oscar was forced to leave the match against Arsenal after sustaining a
possible concussion from a collision with the opposing goalkeeper. The referee did not award Chelsea a penalty, despite
the collision appearing to warrant one. Sky Sports pundits agreed that the collision should have been penalized, with some
suggesting it could have even warranted a red card.

(d) ACUs with corresponding evaluations:

• Chelsea weren’t awarded a penalty. ✓ ✓
• David Ospina clashed with Oscar. ✓ ✓
• David Ospina clattered Oscar. ✓ ✓
• David Ospina plays for Arsenal. ✓ ✗
• David Ospina is a goalkeeper. ✓ ✗

• The clash occurred inside the box. ✗ ✗
• Oscar is Brazilian. ✓ ✗
• Oscar was taken off at half time. ✓ ✗
• Didier Drogba replaced Oscar. ✗ ✗

Table 13: Example of a reference summary, system summaries and corresponding ACU annotations on CNNDM.
The presence or absence of the ACUs for BRIO (in blue) and GPT-3 (in green) are marked by (✓) and (✗).

QAEval (Deutsch et al., 2021a) reports both an F1
and exact match (em) score. We do not report the
learned answer overlap metric.
SummaQA (Scialom et al., 2019) reports an F1
score and model confidence. We plan to report
QuestEval (Scialom et al., 2021) in a future version.
Lite3Pyramid includes four variations of the met-
ric depending on the entailment model (two vs
three-class entailment model) and how the output
is used (as a probability vs a 0/1 label).
CTC (Deng et al., 2021) proposes metrics for Com-
pression, transduction, and creation tasks as vari-
ations of textual alignment. Relevance is scored
as the average bi-directional alignment between
generated and reference summaries.
SimCSE (Gao et al., 2021) apply contrastive learn-
ing to learn improved sentence representations,
which can then be used to compare generated and
reference summary similarity.
UniEval (Zhong et al., 2022) frames text evalua-
tion as the answer to yes or no questions, in our
case whether the summary is relevant or not, and
constructs pseudo-data to fine-tune language mod-
els for this setting.

E.2 Metrics based on Large Language Models

In §6.1 we evaluate two different LLM-based auto-
matic evaluation methods.

GPTScore (Fu et al., 2023) formulates the text
evaluation as the text-filling task and takes the to-
ken probability predicted by the LLMs as the qual-
ity score. We use the following prompt for calcu-
lating the recall score of the system outputs:

Answer the question based on the fol-
lowing reference summary and candidate
summary.

Question: Can all of the information in
the reference summary be found in the
candidate summary? (a). Yes. (b). No.

Reference Summary: {{Reference}}

Candidate Summary: {{Candidate}}

Answer: Yes

The LLM-predicted probability of the last to-
ken, “Yes”, is used as the recall score. We use the
OpenAI’s text-davinci-003 as the LLM.

G-Eval (Liu et al., 2023) introduces a similar
task as GPTscore, but has the LLM to predict a
numerical score directly instead of using the LLM-
predicted probability. We use the following prompt
for the task:

You will receive a reference summary
and a candidate summary. Your task is to
compare these two summaries and assess
the extent to which the candidate sum-
mary covers the information presented in
the reference summary.

Please indicate your agreement with the
following statement: “All of the infor-
mation in the reference summary can be
found in the candidate summary.”

Use the following 5-point scale when de-
termining your response:

1. Strongly Disagree
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2. Disagree

3. Neither Agree nor Disagree

4. Agree

5. Strongly Agree

Input:

Reference Summary:

{{Reference}}

Candidate Summary:

{{Candidate}}

Evaluation Form (scores ONLY):

- Agreement (1-5):

We note that we set the sampling temperature
to 0 to ensure more deterministic behavior for G-
Eval-3.5 and G-Eval-4. We also experiment with
a sampling strategy with GPT-3.5 (G-Eval-3.5-S),
where we sample 5 outputs with a temperate 1 and
take the average score as the final prediction.

E.3 Metric Correlation with ACU Scores

We collect in total 50 different automatic metrics
(including different variations of the same metric),
and evaluate their performance using our collected
ACU benchmark on CNNDM, XSum and SamSum
datasets with three different correlation coefficients
(§6.1). Tab. 15 reports the system-level correlation
with the un-normalized ACU score (Eq. 1). Tab. 16
reports the summary-level correlation with the un-
normalized ACU score (Eq. 1). Tab. 17 reports the
system-level correlation with the normalized ACU
score (Eq. 2). Tab. 18 reports the summary-level
correlation with the normalized ACU score (Eq. 2).

E.4 System Pairs for Fine-grained Metric
Evaluation

For metric elevation in §6.1, we provide the system
pairs in the six different buckets grouped by their
performance differences below.
Bucket 1: CLIFF V.S. FROST, CTRLSUM V.S.
GSUM, BART V.S. CLIFF, GOLD V.S. FROST,
BART V.S. FROST, CLIFF V.S. GOLD, BRIO
V.S. GSUM, GOLD V.S. PEGASUS, BRIO V.S.
CTRLSUM, BART V.S. GOLD, BRIO-EXT V.S.
MATCHSUM.
Bucket 2: FROST V.S. PEGASUS, CLIFF V.S.
PEGASUS, PEGASUS V.S. GLOB, BRIO-EXT
V.S. SIMCLS, BART V.S. PEGASUS, BRIO V.S.
MATCHSUM, BART V.S. SIMCLS, GOLD V.S.
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Figure 8: Confidence intervals of the system-level
Kendall’s correlation coefficients between automatic
metrics and ACU scores.

GLOB, CLIFF V.S. SIMCLS, MATCHSUM V.S.
GSUM, SIMCLS V.S. FROST.
Bucket 3: MATCHSUM V.S. SIMCLS, FROST
V.S. GLOB, MATCHSUM V.S. CTRLSUM,
CLIFF V.S. GLOB, BRIO V.S. BRIO-EXT, GOLD
V.S. SIMCLS, BART V.S. GLOB, BRIO-EXT V.S.
GSUM, BRIO-EXT V.S. CTRLSUM, BART V.S.
BRIO-EXT, SIMCLS V.S. PEGASUS.
Bucket 4: CLIFF V.S. BRIO-EXT, BRIO-EXT
V.S. FROST, BRIO V.S. SIMCLS, GOLD V.S.
BRIO-EXT, BART V.S. MATCHSUM, CLIFF V.S.
MATCHSUM, SIMCLS V.S. GSUM, MATCH-
SUM V.S. FROST, SIMCLS V.S. GLOB, SIMCLS
V.S. CTRLSUM, BRIO-EXT V.S. PEGASUS.
Bucket 5: GOLD V.S. MATCHSUM, MATCH-
SUM V.S. PEGASUS, BART V.S. BRIO, BRIO-
EXT V.S. GLOB, BRIO V.S. CLIFF, BRIO V.S.
FROST, BART V.S. GSUM, BART V.S. CTRL-
SUM, BRIO V.S. GOLD, CLIFF V.S. GSUM,
FROST V.S. GSUM.
Bucket 6: CLIFF V.S. CTRLSUM, MATCHSUM
V.S. GLOB, CTRLSUM V.S. FROST, GOLD V.S.
GSUM, BRIO V.S. PEGASUS, GOLD V.S. CTRL-
SUM, PEGASUS V.S. GSUM, CTRLSUM V.S.
PEGASUS, BRIO V.S. GLOB, GLOB V.S. GSUM,
CTRLSUM V.S. GLOB.

E.5 Confidence Interval

We select several automatic metrics and calculate
the confidence intervals of their system-level cor-
relations with the ACU scores (§6.2). The results
are in Fig. 8. Similar to Deutsch et al. (2021b), we
found that the confidence intervals are large. How-
ever, having a larger sample size can effectively
reduce the confidence interval. Specifically, we use
re-sampling to generate a series of synthetic sample
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Figure 9: Confidence intervals of the system-level
Kendall’s correlation coefficients between ROUGE1 re-
call scores and ACU scores under different sample sizes.

sets with several different sizes and calculate the
confidence interval by averaging over the sampled
sets with the same size. As shown in Fig. 9, larger
sample sizes lead to more stable results.

E.6 Power Analysis of Metric Comparison

We use Alg.1 to conduct a power analysis of metric
comparison based on their Kendall’s correlations
with ACU scores (§6.2). We choose 20 metrics
for comparison, resulting in 190 metric pairs in
total, which are (1) BARTScore-r-parabank, (2)
BERTScore-r-deberta, (3) BERTScore-r-roberta,
(4) BLANC, (5) CHRF, (6) CTC, (7) Meteor, (8)
Lite2Pyramid-p2c, (9) QAEval-em, (10) QAEval-
f1, (11) ROUGE1, (12) ROUGE1r, (13) ROUGE2,
(14) ROUGE2r, (15) ROUGEL, (16) ROUGELr,
(17) SimCSE, (18) SummaQA, (19) SummaQA-
prob, (20) SUPERT. We note that we use the per-
mutation test instead of the paired bootstrapping
test to calculate the statistical significance for met-
ric comparison, since Deutsch et al. (2021b) found
that the permutation test works better for detecting
significant results in metric comparison.

E.7 Metric Correlation with Different Human
Evaluation Protocols

We present the correlations between automatic met-
rics and different human evaluation protocols in
Tab. 19 as discussed in §6.2.

F Human Evaluation Practices in Recent
Text Summarization Research

We provide a brief survey for the human evaluation
practices of 55 selected papers on text summariza-
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Figure 10: Sample size of the conducted human evalua-
tion study in recent text summarization research based
on our survey (Appendix F).

tion published at NAACL15, ACL16, and EMNLP17

from 2022. We follow the design of a similar study
in Gehrmann et al. (2022) as described below. The
results are shown in Tab. 14.
Performed Human Evaluation: Report “yes”, if
a human evaluation of any kind is done. We report
that 71% of analyzed papers did human evaluation.
Significance Test: Report “yes”, if a significance
test is done on the human annotation results. Of the
39 papers that conducted human evaluation, a total
of 27 papers reported the result of a significance
test (68%), which is much higher compared to the
25% reported in the previous survey (Gehrmann
et al., 2022).
Power Analysis: Report “yes”, if a power analysis
of any kind is mentioned. Of the 39 papers that
conducted human evaluation, none of the papers
did power analysis, the same as the result provided
in the previous survey of Gehrmann et al. (2022).
Inter-annotator Agreement: Report “yes”, if any
kind of agreement test is conducted to evaluate the
quality of human annotation themselves. Overall,
we report a total of 12 papers (28%) that did agree-
ment tests and documented specific agreement val-
ues. 9 out of the 12 papers recorded the specific
agreement test, with Krippendorff’s alpha as the
most commonly used measurement.
Participants (crowd-worker, expert, etc.) Report
“yes”, if at least the number of human evaluators,
document sample size, annotators per document,
or their demographics is mentioned. We show the
sample size of the conducted human evaluation

15https://aclanthology.org/events/naacl-2022/
16https://aclanthology.org/events/acl-2022/
17https://preview.aclanthology.org/

emnlp-22-ingestion/volumes/2022.emnlp-main/
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Best Practice & Implementation Yes No Percentage (%)

Performed Human Evaluation 39 16 71

Produce Robust Human Evaluation Result (out of 39)
Performed Significance Test 27 12 69
Performed Power Analysis 0 39 0
Reported Inter-annotator Agreement 12 27 28

Document Specific Agreement Test 9 3 75
Document Agreement Value 12 0 100

Documentation of the study setup (questionnaire, sample answers, platform, etc.) 39 0 100
Participants (crowd-worker, expert, etc.) 37 2 97
Document Sample Size 29 10 74
Document Participant Number 35 4 90
Document Participant Demographics 24 15 62

Released Human Evaluation Data 4 35 10

Table 14: Survey of human evaluation practices in recent text summarization research.

study in Fig. 10, and note that around 93% of them
are less or equal to 200.
Released Human Evaluation Data: Report “yes”,
if the authors release the human evaluation data.
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CNNDM XSum SamSum
r ρ τ r ρ τ r ρ τ

BARTScore-f1-cnndm 0.132 0.119 0.000 -0.198 0.095 0.071 0.907 0.952 0.857
BARTScore-f1-parabank 0.219 0.070 0.000 0.428 0.429 0.429 0.881 0.976 0.929
BARTScore-p-cnndm -0.036 -0.189 -0.121 -0.650 -0.571 -0.429 0.777 0.571 0.429
BARTScore-p-parabank -0.187 -0.294 -0.212 -0.387 -0.452 -0.286 0.692 0.524 0.286
BARTScore-r-cnndm 0.909 0.881 0.727 0.868 0.786 0.643 0.945 0.976 0.929
BARTScore-r-parabank 0.891 0.902 0.727 0.920 0.881 0.714 0.932 0.976 0.929
BERTScore-f1-deberta 0.062 0.119 0.000 0.543 0.429 0.429 0.849 0.786 0.643
BERTScore-f1-roberta 0.103 0.028 -0.091 0.592 0.429 0.429 0.852 0.809 0.714
BERTScore-p-deberta -0.439 -0.510 -0.394 0.129 0.405 0.357 0.373 0.405 0.214
BERTScore-p-roberta -0.275 -0.350 -0.273 0.172 0.333 0.286 0.374 0.381 0.214
BERTScore-r-deberta 0.649 0.552 0.424 0.878 0.762 0.571 0.951 0.952 0.857
BERTScore-r-roberta 0.750 0.713 0.515 0.920 0.786 0.571 0.939 0.952 0.857
BLANC 0.588 0.699 0.515 0.065 -0.024 0.071 0.824 0.809 0.714
BLEU -0.184 -0.273 -0.212 0.631 0.595 0.571 0.806 0.833 0.714
CHRF 0.894 0.916 0.758 0.883 0.762 0.571 0.937 0.952 0.857
Compression -0.711 -0.769 -0.606 -0.185 0.071 0.000 -0.699 -0.762 -0.571
Coverage -0.013 -0.168 0.000 -0.568 -0.571 -0.429 0.719 0.809 0.643
CTC 0.516 0.692 0.485 0.399 0.405 0.214 0.964 0.976 0.929
Density 0.201 0.161 0.151 -0.415 -0.381 -0.286 0.815 0.762 0.571
Lite3Pyramid-l2c 0.950 0.958 0.849 0.903 0.809 0.643 0.984 1.000 1.000
Lite3Pyramid-l3c 0.952 0.951 0.849 0.914 0.809 0.643 0.989 1.000 1.000
Lite3Pyramid-p2c 0.953 0.958 0.849 0.914 0.833 0.714 0.986 1.000 1.000
Lite3Pyramid-p3c 0.950 0.965 0.879 0.927 0.809 0.643 0.987 1.000 1.000
Meteor 0.909 0.916 0.758 0.905 0.762 0.571 0.911 0.952 0.857
MoverScore -0.173 -0.161 -0.121 0.674 0.571 0.500 0.820 0.833 0.714
Novel-1gram 0.072 0.224 0.000 0.608 0.452 0.357 -0.740 -0.809 -0.643
Novel-2gram -0.013 0.063 0.000 0.578 0.619 0.429 -0.843 -0.833 -0.643
Repeated-1gram 0.723 0.643 0.333 0.172 0.095 0.143 0.399 0.286 0.214
Repeated-2gram 0.499 0.294 0.151 0.257 0.119 0.143 -0.277 -0.024 0.000
QAEval-em 0.723 0.629 0.515 0.450 0.452 0.357 0.947 0.952 0.857
QAEval-f1 0.925 0.944 0.849 0.551 0.500 0.429 0.962 0.976 0.929
ROUGE1 0.382 0.301 0.151 0.665 0.476 0.357 0.942 1.000 1.000
ROUGE1p -0.490 -0.503 -0.394 0.195 0.405 0.357 0.164 0.191 0.071
ROUGE1r 0.947 0.937 0.788 0.767 0.857 0.714 0.920 0.976 0.929
ROUGE2 0.236 0.063 0.000 0.620 0.500 0.429 0.889 0.905 0.786
ROUGE2p -0.412 -0.455 -0.333 0.323 0.429 0.429 0.535 0.571 0.357
ROUGE2r 0.923 0.909 0.758 0.888 0.786 0.643 0.977 1.000 1.000
ROUGEL 0.206 0.091 -0.030 0.572 0.429 0.429 0.915 0.976 0.929
ROUGELp -0.483 -0.566 -0.424 0.181 0.357 0.286 0.317 0.381 0.214
ROUGELr 0.944 0.958 0.879 0.836 0.809 0.643 0.932 0.976 0.929
SimCSE 0.816 0.853 0.636 0.865 0.809 0.571 0.924 1.000 1.000
SummaQA 0.810 0.853 0.697 -0.199 -0.119 0.000 0.717 0.595 0.429
SummaQA-prob 0.749 0.860 0.727 0.308 0.214 0.143 0.817 0.738 0.643
Summary-length 0.780 0.818 0.667 0.226 -0.071 0.000 0.699 0.762 0.571
SUPERT 0.406 0.552 0.424 0.004 -0.095 -0.071 0.673 0.691 0.429
UniEval-coherence -0.325 0.126 0.000 0.095 0.095 0.071 0.702 0.786 0.643
UniEval-consistency 0.001 -0.168 -0.061 0.056 0.071 0.071 0.344 0.238 0.071
UniEval-fluency 0.249 0.420 0.273 -0.703 -0.643 -0.500 0.405 0.381 0.286
UniEval-overall -0.201 0.028 0.030 -0.062 0.048 0.071 0.739 0.571 0.500
UniEval-relevance -0.148 0.119 0.091 0.017 0.333 0.214 0.742 0.643 0.500

Table 15: The system-level Pearson’s r, Spearman’s ρ, and Kendall’s τ correlation coefficients between the automatic
metric scores and un-normalized ACU scores of system outputs on CNNDM, XSum and SamSum datasets.
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CNNDM XSum SamSum
r ρ τ r ρ τ r ρ τ

BARTScore-f1-cnndm 0.353 0.329 0.264 0.261 0.238 0.202 0.434 0.401 0.340
BARTScore-f1-parabank 0.417 0.386 0.311 0.309 0.279 0.239 0.430 0.396 0.340
BARTScore-p-cnndm 0.178 0.161 0.128 0.188 0.166 0.140 0.282 0.263 0.224
BARTScore-p-parabank 0.237 0.216 0.170 0.235 0.220 0.187 0.269 0.249 0.212
BARTScore-r-cnndm 0.567 0.530 0.435 0.325 0.300 0.260 0.546 0.508 0.438
BARTScore-r-parabank 0.582 0.548 0.453 0.353 0.326 0.282 0.531 0.500 0.430
BERTScore-f1-deberta 0.441 0.413 0.334 0.290 0.280 0.241 0.401 0.377 0.326
BERTScore-f1-roberta 0.432 0.397 0.320 0.305 0.285 0.244 0.415 0.388 0.335
BERTScore-p-deberta 0.255 0.239 0.191 0.209 0.211 0.180 0.208 0.204 0.173
BERTScore-p-roberta 0.218 0.200 0.160 0.223 0.221 0.190 0.212 0.209 0.178
BERTScore-r-deberta 0.544 0.516 0.424 0.327 0.305 0.262 0.507 0.476 0.409
BERTScore-r-roberta 0.571 0.542 0.448 0.348 0.320 0.277 0.516 0.481 0.417
BLANC 0.238 0.220 0.175 -0.018 -0.022 -0.020 0.167 0.156 0.136
BLEU 0.337 0.306 0.246 0.275 0.259 0.227 0.373 0.356 0.306
CHRF 0.564 0.528 0.436 0.353 0.315 0.275 0.486 0.459 0.396
Compression -0.309 -0.296 -0.238 -0.088 -0.080 -0.071 -0.312 -0.307 -0.269
Coverage 0.012 0.005 0.003 -0.045 -0.044 -0.037 0.056 0.044 0.037
CTC 0.453 0.431 0.348 0.270 0.249 0.215 0.476 0.442 0.382
Density 0.078 0.070 0.054 -0.054 -0.052 -0.044 0.119 0.109 0.091
Lite3Pyramid-l2c 0.537 0.523 0.466 0.219 0.219 0.207 0.524 0.519 0.494
Lite3Pyramid-l3c 0.532 0.521 0.466 0.217 0.214 0.204 0.540 0.535 0.509
Lite3Pyramid-p2c 0.582 0.546 0.452 0.303 0.284 0.245 0.599 0.539 0.467
Lite3Pyramid-p3c 0.584 0.543 0.448 0.310 0.285 0.246 0.615 0.549 0.475
Meteor 0.537 0.496 0.407 0.327 0.308 0.268 0.471 0.430 0.373
MoverScore 0.388 0.364 0.292 0.320 0.296 0.252 0.398 0.375 0.320
Novel-1gram -0.008 -0.005 -0.003 0.051 0.048 0.041 -0.070 -0.066 -0.056
Novel-2gram -0.026 -0.035 -0.028 0.057 0.057 0.050 -0.112 -0.103 -0.087
Repeated-1gram 0.071 0.067 0.052 0.010 0.006 0.005 0.172 0.172 0.152
Repeated-2gram 0.061 0.060 0.048 0.010 0.006 0.005 0.059 0.057 0.052
QAEval-em 0.350 0.334 0.296 0.159 0.156 0.149 0.383 0.377 0.352
QAEval-f1 0.454 0.427 0.358 0.226 0.215 0.198 0.437 0.421 0.384
ROUGE1 0.457 0.430 0.348 0.302 0.292 0.253 0.416 0.398 0.345
ROUGE1p 0.190 0.175 0.140 0.227 0.224 0.194 0.113 0.119 0.103
ROUGE1r 0.579 0.552 0.468 0.328 0.322 0.293 0.503 0.485 0.439
ROUGE2 0.444 0.407 0.329 0.277 0.255 0.222 0.380 0.350 0.301
ROUGE2p 0.307 0.287 0.229 0.241 0.229 0.200 0.214 0.210 0.181
ROUGE2r 0.552 0.529 0.453 0.301 0.291 0.266 0.456 0.436 0.395
ROUGEL 0.430 0.399 0.321 0.266 0.249 0.215 0.395 0.372 0.323
ROUGELp 0.192 0.179 0.143 0.214 0.208 0.180 0.121 0.120 0.103
ROUGELr 0.561 0.537 0.454 0.297 0.285 0.258 0.480 0.460 0.415
SimCSE 0.461 0.429 0.346 0.308 0.290 0.248 0.450 0.420 0.360
SummaQA 0.165 0.153 0.121 0.022 0.015 0.013 0.045 0.049 0.039
SummaQA-prob 0.155 0.150 0.119 0.026 0.023 0.019 0.131 0.120 0.102
Summary-length 0.315 0.296 0.238 0.081 0.075 0.067 0.314 0.307 0.268
SUPERT 0.211 0.206 0.165 0.047 0.049 0.042 0.191 0.168 0.141
UniEval-coherence 0.098 0.127 0.100 0.017 0.011 0.012 0.186 0.197 0.167
UniEval-consistency 0.007 0.015 0.010 0.017 0.013 0.013 0.044 0.037 0.031
UniEval-fluency -0.008 -0.022 -0.015 -0.031 -0.040 -0.034 -0.006 -0.035 -0.028
UniEval-overall 0.111 0.132 0.104 0.089 0.078 0.067 0.171 0.187 0.157
UniEval-relevance 0.129 0.154 0.121 0.180 0.181 0.152 0.201 0.235 0.197

Table 16: The summary-level Pearson’s r, Spearman’s ρ, and Kendall’s τ correlation coefficients between the
automatic metric scores and un-normalized ACU scores of system outputs on CNNDM, XSum and SamSum.
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CNNDM XSum SamSum
r ρ τ r ρ τ r ρ τ

BARTScore-f1-cnndm 0.539 0.706 0.455 -0.148 0.095 0.071 0.920 0.786 0.643
BARTScore-f1-parabank 0.692 0.706 0.455 0.478 0.429 0.429 0.907 0.714 0.571
BARTScore-p-cnndm 0.430 0.524 0.333 -0.622 -0.571 -0.429 0.945 0.738 0.643
BARTScore-p-parabank 0.421 0.413 0.242 -0.341 -0.452 -0.286 0.915 0.691 0.500
BARTScore-r-cnndm 0.461 0.364 0.273 0.893 0.786 0.643 0.774 0.738 0.571
BARTScore-r-parabank 0.756 0.615 0.455 0.932 0.881 0.714 0.786 0.738 0.571
BERTScore-f1-deberta 0.643 0.783 0.576 0.593 0.429 0.429 0.985 0.952 0.857
BERTScore-f1-roberta 0.733 0.755 0.545 0.639 0.429 0.429 0.955 0.976 0.929
BERTScore-p-deberta 0.335 0.378 0.242 0.191 0.405 0.357 0.756 0.619 0.571
BERTScore-p-roberta 0.432 0.420 0.242 0.233 0.333 0.286 0.779 0.667 0.571
BERTScore-r-deberta 0.664 0.489 0.333 0.863 0.762 0.571 0.845 0.714 0.500
BERTScore-r-roberta 0.725 0.552 0.364 0.909 0.786 0.571 0.802 0.714 0.500
BLANC -0.122 -0.126 -0.061 0.020 -0.024 0.071 0.506 0.452 0.357
BLEU 0.442 0.482 0.303 0.676 0.595 0.571 0.906 0.905 0.786
CHRF 0.701 0.601 0.424 0.869 0.762 0.571 0.818 0.714 0.500
Compression -0.099 -0.077 -0.091 -0.128 0.071 0.000 -0.361 -0.357 -0.214
Coverage -0.599 -0.797 -0.576 -0.603 -0.571 -0.429 0.606 0.381 0.286
CTC -0.074 -0.035 -0.030 0.350 0.405 0.214 0.792 0.738 0.571
Density -0.366 -0.685 -0.485 -0.427 -0.381 -0.286 0.574 0.286 0.214
Lite3Pyramid-l2c 0.501 0.462 0.273 0.903 0.809 0.643 0.856 0.786 0.643
Lite3Pyramid-l3c 0.486 0.448 0.273 0.908 0.809 0.643 0.845 0.786 0.643
Lite3Pyramid-p2c 0.510 0.462 0.273 0.915 0.833 0.714 0.847 0.786 0.643
Lite3Pyramid-p3c 0.498 0.503 0.303 0.921 0.809 0.643 0.840 0.786 0.643
Meteor 0.744 0.601 0.424 0.901 0.762 0.571 0.796 0.714 0.500
MoverScore 0.540 0.594 0.394 0.718 0.571 0.500 0.879 0.905 0.786
Novel-1gram 0.637 0.811 0.636 0.635 0.452 0.357 -0.594 -0.381 -0.286
Novel-2gram 0.593 0.769 0.576 0.612 0.619 0.429 -0.609 -0.429 -0.286
Repeated-1gram 0.357 0.224 0.182 0.119 0.095 0.143 0.102 0.000 0.000
Repeated-2gram 0.382 0.252 0.182 0.243 0.119 0.143 -0.211 -0.095 -0.071
QAEval-em 0.408 0.350 0.242 0.489 0.452 0.357 0.909 0.786 0.643
QAEval-f1 0.602 0.489 0.333 0.588 0.500 0.429 0.894 0.714 0.571
ROUGE1 0.915 0.881 0.788 0.704 0.476 0.357 0.909 0.786 0.643
ROUGE1p 0.272 0.329 0.182 0.257 0.405 0.357 0.548 0.524 0.429
ROUGE1r 0.516 0.413 0.273 0.737 0.857 0.714 0.644 0.738 0.571
ROUGE2 0.770 0.699 0.515 0.665 0.500 0.429 0.961 0.881 0.714
ROUGE2p 0.317 0.406 0.242 0.382 0.429 0.429 0.839 0.833 0.714
ROUGE2r 0.651 0.510 0.364 0.893 0.786 0.643 0.842 0.786 0.643
ROUGEL 0.811 0.790 0.606 0.620 0.429 0.429 0.897 0.857 0.714
ROUGELp 0.275 0.280 0.151 0.243 0.357 0.286 0.660 0.667 0.571
ROUGELr 0.600 0.524 0.364 0.815 0.809 0.643 0.688 0.738 0.571
SimCSE 0.801 0.685 0.545 0.876 0.809 0.571 0.847 0.786 0.643
SummaQA 0.196 0.133 0.061 -0.239 -0.119 0.000 0.334 0.071 0.071
SummaQA-prob 0.591 0.503 0.212 0.251 0.214 0.143 0.416 0.357 0.286
Summary-length 0.087 0.042 0.030 0.166 -0.071 0.000 0.329 0.357 0.214
SUPERT -0.233 -0.329 -0.212 -0.057 -0.095 -0.071 0.293 0.238 0.071
UniEval-coherence -0.620 -0.357 -0.273 0.062 0.095 0.071 0.481 0.333 0.286
UniEval-consistency -0.534 -0.748 -0.515 0.023 0.071 0.071 0.606 0.214 0.000
UniEval-fluency 0.286 0.189 0.121 -0.681 -0.643 -0.500 0.667 0.500 0.357
UniEval-overall 0.178 0.126 0.121 -0.072 0.048 0.071 0.734 0.381 0.286
UniEval-relevance 0.365 0.762 0.545 0.064 0.333 0.214 0.717 0.548 0.429

Table 17: The system-level Pearson’s r, Spearman’s ρ, and Kendall’s τ correlation coefficients between the automatic
metric scores and normalized ACU scores of system outputs on CNNDM, XSum and SamSum datasets.
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CNNDM XSum SamSum
r ρ τ r ρ τ r ρ τ

BARTScore-f1-cnndm 0.398 0.384 0.296 0.276 0.274 0.228 0.445 0.413 0.341
BARTScore-f1-parabank 0.465 0.441 0.342 0.327 0.310 0.260 0.483 0.442 0.371
BARTScore-p-cnndm 0.284 0.273 0.209 0.205 0.208 0.172 0.389 0.355 0.295
BARTScore-p-parabank 0.355 0.338 0.259 0.257 0.262 0.216 0.411 0.367 0.307
BARTScore-r-cnndm 0.485 0.435 0.334 0.329 0.303 0.257 0.439 0.411 0.345
BARTScore-r-parabank 0.507 0.462 0.357 0.361 0.329 0.277 0.462 0.444 0.372
BERTScore-f1-deberta 0.518 0.491 0.386 0.317 0.323 0.274 0.517 0.472 0.401
BERTScore-f1-roberta 0.515 0.486 0.386 0.333 0.330 0.280 0.512 0.470 0.401
BERTScore-p-deberta 0.423 0.411 0.320 0.248 0.294 0.248 0.413 0.382 0.323
BERTScore-p-roberta 0.389 0.378 0.296 0.261 0.296 0.250 0.411 0.377 0.319
BERTScore-r-deberta 0.491 0.454 0.354 0.329 0.291 0.246 0.474 0.441 0.372
BERTScore-r-roberta 0.515 0.476 0.371 0.349 0.306 0.260 0.470 0.442 0.375
BLANC 0.045 0.020 0.014 -0.031 -0.041 -0.036 0.034 0.038 0.035
BLEU 0.441 0.414 0.328 0.294 0.300 0.260 0.469 0.432 0.368
CHRF 0.527 0.479 0.379 0.351 0.301 0.256 0.438 0.412 0.351
Compression -0.053 -0.002 0.021 -0.037 0.069 0.071 -0.037 -0.021 0.001
Coverage -0.016 -0.020 -0.019 -0.051 -0.049 -0.040 0.055 0.045 0.037
CTC 0.349 0.317 0.237 0.274 0.231 0.194 0.414 0.385 0.326
Density -0.031 -0.040 -0.032 -0.059 -0.067 -0.055 0.050 0.051 0.046
Lite3Pyramid-l2c 0.452 0.424 0.355 0.212 0.197 0.181 0.410 0.404 0.374
Lite3Pyramid-l3c 0.449 0.427 0.358 0.213 0.197 0.180 0.418 0.417 0.385
Lite3Pyramid-p2c 0.482 0.420 0.321 0.294 0.259 0.216 0.462 0.419 0.353
Lite3Pyramid-p3c 0.489 0.430 0.330 0.298 0.253 0.211 0.469 0.419 0.354
Meteor 0.484 0.435 0.337 0.329 0.303 0.260 0.427 0.391 0.335
MoverScore 0.509 0.483 0.380 0.341 0.329 0.275 0.513 0.459 0.386
Novel-1gram 0.017 0.020 0.018 0.054 0.045 0.037 -0.066 -0.059 -0.049
Novel-2gram 0.053 0.049 0.037 0.063 0.068 0.055 -0.060 -0.058 -0.052
Repeated-1gram -0.029 -0.044 -0.033 -0.015 -0.030 -0.022 -0.004 0.007 0.011
Repeated-2gram -0.012 -0.016 -0.007 0.004 -0.009 -0.007 -0.036 -0.032 -0.027
QAEval-em 0.322 0.302 0.253 0.161 0.155 0.144 0.328 0.321 0.289
QAEval-f1 0.412 0.379 0.301 0.227 0.207 0.188 0.367 0.349 0.307
ROUGE1 0.541 0.510 0.403 0.324 0.324 0.278 0.494 0.464 0.399
ROUGE1p 0.386 0.380 0.298 0.263 0.303 0.262 0.320 0.308 0.269
ROUGE1r 0.425 0.374 0.290 0.317 0.276 0.244 0.349 0.329 0.286
ROUGE2 0.504 0.473 0.375 0.296 0.292 0.253 0.432 0.402 0.343
ROUGE2p 0.439 0.424 0.335 0.270 0.291 0.253 0.346 0.330 0.283
ROUGE2r 0.474 0.433 0.347 0.298 0.274 0.243 0.379 0.359 0.317
ROUGEL 0.512 0.481 0.378 0.288 0.293 0.252 0.462 0.427 0.365
ROUGELp 0.380 0.375 0.294 0.249 0.287 0.248 0.313 0.293 0.254
ROUGELr 0.424 0.378 0.293 0.292 0.258 0.227 0.338 0.321 0.279
SimCSE 0.437 0.393 0.300 0.321 0.305 0.255 0.454 0.422 0.356
SummaQA 0.059 0.044 0.031 0.018 0.001 0.002 0.010 0.022 0.014
SummaQA-prob 0.076 0.069 0.050 0.019 -0.003 -0.003 0.050 0.054 0.047
Summary-length 0.040 0.002 -0.021 0.027 -0.075 -0.079 0.010 0.021 -0.001
SUPERT 0.062 0.045 0.030 0.031 0.013 0.008 0.064 0.059 0.044
UniEval-coherence 0.083 0.087 0.060 0.011 -0.018 -0.014 0.108 0.112 0.090
UniEval-consistency 0.001 -0.006 -0.009 0.008 -0.015 -0.010 0.087 0.075 0.060
UniEval-fluency 0.017 0.001 0.001 -0.031 -0.040 -0.032 0.035 0.014 0.009
UniEval-overall 0.130 0.146 0.107 0.088 0.062 0.052 0.204 0.208 0.168
UniEval-relevance 0.150 0.173 0.127 0.187 0.192 0.158 0.236 0.252 0.203

Table 18: The summary-level Pearson’s r, Spearman’s ρ, and Kendall’s τ correlation coefficients between the
automatic metric scores and normalized ACU scores of system outputs on CNNDM, XSum and SamSum datasets.
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System-level Correlation Summary-level Correlation
Prior Ref-free Ref-based nACU Prior Ref-free Ref-based nACU

BARTScore_f1_cnndm -0.030 -0.121 0.656 0.364 0.060 0.032 0.335 0.280
BARTScore_f1_parabank -0.091 -0.182 0.656 0.364 0.079 0.038 0.369 0.324
BARTScore_p_cnndm -0.091 -0.182 0.595 0.242 -0.008 -0.033 0.281 0.210
BARTScore_p_parabank -0.273 -0.364 0.534 0.242 -0.001 -0.039 0.321 0.235
BARTScore_r_cnndm 0.545 0.455 -0.076 0.212 0.159 0.162 0.290 0.281
BARTScore_r_parabank 0.394 0.364 0.199 0.485 0.175 0.192 0.292 0.323
BERTscore_f1_deberta -0.061 -0.212 0.779 0.576 0.040 0.013 0.398 0.366
BERTscore_f1_roberta -0.091 -0.182 0.779 0.485 0.030 -0.001 0.399 0.358
BERTscore_p_deberta -0.333 -0.485 0.626 0.364 -0.077 -0.132 0.366 0.310
BERTscore_p_roberta -0.242 -0.333 0.687 0.333 -0.101 -0.125 0.334 0.283
BERTscore_r_deberta 0.273 0.121 0.626 0.667 0.171 0.178 0.312 0.314
BERTscore_r_roberta 0.273 0.121 0.565 0.727 0.176 0.193 0.331 0.328
BLANC 0.545 0.576 -0.504 -0.212 0.256 0.310 -0.051 -0.006
BLEU -0.182 -0.333 0.534 0.515 -0.025 -0.046 0.260 0.296
CHRF 0.576 0.424 0.199 0.485 0.161 0.181 0.284 0.347
Compression -0.606 -0.758 0.382 0.091 -0.344 -0.422 0.081 0.046
Coverage -0.030 0.121 -0.779 -0.606 0.076 0.074 -0.035 -0.019
CTC 0.455 0.545 -0.473 -0.242 0.267 0.295 0.193 0.221
Density 0.121 0.273 -0.687 -0.515 0.134 0.117 -0.082 -0.055
Lite3Pyramid-l2c 0.545 0.576 -0.046 0.212 0.214 0.218 0.230 0.337
Lite3Pyramid-l3c 0.545 0.636 -0.107 0.091 0.199 0.219 0.223 0.342
Lite3Pyramid-p2c 0.576 0.667 -0.168 0.121 0.234 0.254 0.206 0.301
Lite3Pyramid-p3c 0.576 0.667 -0.107 0.182 0.210 0.242 0.196 0.305
Meteor 0.394 0.242 0.382 0.485 0.157 0.149 0.274 0.313
MoverScore -0.151 -0.364 0.870 0.545 0.009 -0.018 0.360 0.356
Novel-1gram 0.030 -0.121 0.779 0.606 -0.071 -0.066 0.037 0.018
Novel-2gram -0.061 -0.273 0.870 0.636 -0.097 -0.088 0.088 0.057
Repeated-1gram 0.212 0.303 -0.321 -0.121 0.097 0.102 -0.035 -0.032
Repeated-2gram 0.000 -0.091 -0.046 0.030 0.068 0.074 -0.010 -0.007
QAEval-em 0.303 0.333 -0.107 0.030 0.087 0.100 0.131 0.227
QAEval-f1 0.485 0.515 -0.076 0.151 0.127 0.122 0.203 0.274
ROUGE1 -0.061 -0.212 0.840 0.636 0.033 -0.008 0.346 0.377
ROUGE1p -0.364 -0.515 0.687 0.394 -0.158 -0.241 0.293 0.278
ROUGE1r 0.697 0.667 -0.107 0.182 0.272 0.322 0.211 0.248
ROUGE2 0.000 -0.151 0.595 0.636 0.004 -0.005 0.304 0.329
ROUGE2p -0.273 -0.424 0.626 0.424 -0.095 -0.118 0.309 0.302
ROUGE2r 0.455 0.364 0.199 0.424 0.134 0.177 0.248 0.285
ROUGEL -0.061 -0.212 0.779 0.636 0.024 0.005 0.325 0.370
ROUGELp -0.394 -0.545 0.656 0.364 -0.148 -0.218 0.279 0.289
ROUGELr 0.606 0.576 0.046 0.333 0.234 0.296 0.211 0.263
SimCSE 0.273 0.242 0.351 0.364 0.154 0.154 0.266 0.284
SummaQA 0.636 0.606 -0.290 0.000 0.158 0.218 -0.020 0.000
SummaQA-prob 0.515 0.424 0.260 0.303 0.144 0.176 0.021 0.049
Summary-length 0.576 0.727 -0.473 -0.182 0.344 0.422 -0.081 -0.046
SUPERT 0.333 0.485 -0.656 -0.424 0.206 0.245 -0.026 0.029
UniEval-coherence 0.151 0.121 -0.107 -0.061 0.229 0.176 0.025 0.071
UniEval-consistency -0.091 0.061 -0.565 -0.545 0.077 0.064 -0.045 -0.030
UniEval-fluency 0.303 0.273 0.260 0.333 0.080 0.058 0.004 0.018
UniEval-overall 0.151 0.000 0.443 0.303 0.219 0.142 0.116 0.122
UniEval-relevance -0.061 -0.212 0.656 0.394 0.191 0.114 0.181 0.129

Table 19: The Kendall’s correlation between the automatic metric and different human evaluation protocols on
CNNDM dataset.
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