Analyzing and Reducing the Performance Gap in Cross-Lingual Transfer
with Fine-tuning Slow and Fast

Yiduo Guo'; Yaobo Liang?, Dongyan Zhao'*°] Bing Liu®, Duan Nan?
'Wangxuan Institute of Computer Technology, Peking University
2Microsoft Research Asia
3Department of Computer Science, University of Illinois at Chicago

“National Key Laboratory of General Artificial Intelligence,

®BIGAI, Beijing, China

yiduo@stu.pku.edu.cn,yaobo.liang@microsoft.com, zhaody@pku.edu.cn
nanduan@microsoft.com,liub@uic.edu

Abstract

Existing research has shown that a multilingual
pre-trained language model fine-tuned with one
(source) language also performs well on down-
stream tasks for non-source languages, even
though no fine-tuning is done on these lan-
guages. However, there is a clear gap between
the performance of the source language and that
of the non-source languages. This paper ana-
lyzes the fine-tuning process, discovers when
the performance gap changes and identifies
which network weights affect the overall per-
formance most. Additionally, the paper seeks
to answer to what extent the gap can be reduced
by reducing forgetting. Based on the analysis
results, a method named Fine-tuning slow and
fast with four training policies is proposed to
address these issues. Experimental results show
the proposed method outperforms baselines by
a clear margin.

1 Introduction

Multilingual pre-trained language models (LMs),
such as mBERT (Devlin et al., 2018) and XLM-
R (Conneau et al., 2019) have shown strong Zero-
Shot Cross-Lingual transfer capabilities. Such a
model F'is usually pre-trained with unlabeled cor-
pora D in multiple languages S to enable the model
to learn cross-lingual knowledge H%'55s. To adapt
to a downstream task, the pre-trained LM F' is typi-
cally fine-tuned with a supervised dataset D; of the
downstream task 7" in one source language 5§ € S
due to data scarcity in other languages. When the
fine-tuned model F is applied to the test set of
the same task in the source language 3, it achieves
strong performance P;. Interestingly, when F is ap-
plied to non-source languages, it can also achieve
good performance (Conneau et al., 2019). We
denote the average performance on the test sets
of other languages than $ as Pg/;. However, the

“Work done during internship at Microsoft Research Asia
Corresponding author

XNLI dataset and Adamw optimizer
0.200

—— Original Performance Gap
Learning slow

—— Learning fast

—— Our method

0.175 +

0.150

0.125 4

0.100 4

Accuracy

0.075

0.050

0.025 A

0.000 T T T T T T T T
o 15K 30K 45K 60K 75K 90k 105k 120k

fteration/k

Figure 1: The performance gap P; — Ps/; every hun-
dred updates on the XNLI dataset. ’Original perfor-
mance gap’ means that we directly fine-tune the model,
and ’Fine-tuning slow’/’fine-tuning fast’/’our method’
means that we use the fine-tuning slow algorithm/fine-
tuning fast algorithm/the combination of both algo-
rithms respectively to fine-tune the model.

gap P; — Pg/; is quite large (e.g., 13 percent for
the XNLI dataset in Figure 1). One potential rea-
son is that: during the fine-tuning of the model,
the performance of non-source languages firstly
increases with the performance of source language,
then the arising of the performance of non-source
languages becomes slower than that of the perfor-
mance of source language as the forgetting of cross-
lingual knowledge, resulting in a larger gap. In-
spired by the study of catastrophic forgetting (CF)
phenomenon in continual learning (CL), we intro-
duce a classical concept in CL here to help solve
our problem: the dilemma of plasticity vs. stability.

Plasticity vs Stability. In CL (Kirkpatrick et al.,
2017), the learner needs to learn a sequence of dif-
ferent tasks incrementally. Plasticity means learn-
ing and performing well on the new task and stabil-
ity means maintaining the learned knowledge of the
previous tasks.The learner needs to find a balance
between plasticity and stability because too much
plasticity (e.g, changing the entire model drasti-
cally) causes serious CF of the learned knowledge,
and too much stability (e.g. freezing the whole

4002

Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 4002-4017
July 9-14, 2023 ©2023 Association for Computational Linguistics

model) makes the model can not learn new things.
Fine-tuning a multi-lingual LM F' using only the
corpus of one source language also meets this bal-
ance dilemma. Thus, Fine-tuning LM F' needs to
protect the cross-lingual knowledge H% 55 (stabil-
ity) and also learn the new task knowledge H;'"/
via fine-tuning to adapt to the specific downstream
task (plasticity). However, further analysis of the
performance gap and the dilemma of plasticity and
stability in cross-lingual fine-tuning is needed.

This paper further investigates three research
questions: 1) When does the performance gap arise
during fine-tuning using a labeled source language
corpus? 2) Where is the most important part of the
pre-trained model for achieving strong zero-shot
cross-lingual performances? 3) To what extent can
we reduce the performance gap by reducing the
forgetting of H%'5ss? Based on the experiments
on three datasets of different downstream tasks,
our analysis found that the performance gap arises
significantly in the initial fine-tuning phase and
increases slowly in the later phase (see Figure 2).
Feed-forward weights in the bottom four layers
are the key weights for the cross-lingual knowl-
edge (See Figure 3 and Table 1) and should be
updated slowly to avoid forgetting Hbrpss. At-
tention weights in the top two layers have the
pre-training task (e.g., Masked-Language Model-
ing) knowledge H!'* and HY ¢ is useless for the
downstream task. So these weights should be up-
dated fast to encourage forgetting H} . We also
find that protecting the cross-lingual knowledge
by freezing the weights related to it can reduce
the performance gap (enough stability) but cannot
eliminate the gap completely (See Figure 4). That
means only reducing the forgetting of HZ'5ss is not
enough for solving the performance gap.

Un-forgetting vs forgetting. Based on the
above analysis, we propose a method called Fine-
tuning slow and Fast algorithm to mitigate the
forgetting of cross-lingual knowledge (stability)
and also to selectively forget the knowledge re-
lated to the pre-training task (plasticity) to adapt
F' to the downstream task in fine-tuning F'. Note
that traditional techniques for solving the forgetting
problem in continual learning are not applicable to
our setting directly (see the reasons in Sec 5).

The proposed method consists of four learning
rate policies. Policies I and II (stability policies)
are respectively designed to avoid forgetting of
HL'5ss in the first fine-tuning stage and to avoid

the forgetting of HZ.5ss based on the tendency of
the learning curve in the second fine-tuning stage.
Policies III and IV (plasticity policies) are respec-
tively designed to selectively forget the pre-training
task knowledge in Hj, 5, in the initial fine-tuning
stage where the loss drops drastically and to fur-
ther encourage forgetting of the pre-training task
knowledge H} ¢ and the learning of H;'°} in the
second fine-tuning stage.

This paper’s main contributions are as follows:

(1) We analyze the performance gap in cross-
lingual fine-tuning and answer to what extent we
can reduce the performance gap by avoiding forget-
ting cross-lingual knowledge.

(2) We propose a method consisting of four
learning rate policies to reduce forgetting of cross-
lingual knowledge (stability) and to encourage
forgetting of pre-training task-related knowledge
(plasticity).

(3) We test our method in multiple datasets under
zero and few-shot settings. Compared to the base-
line, our method reduces the performance gap (Fig-
ure 1(XNLI) and Figure 5 in Appendix A (MLQA
and NER)) and achieves better overall performance
(Table 2) by protecting the cross-lingual knowledge
and learning better task representation.

2 Analysis of Performance Gap and
Forgetting of Cross-Lingual Knowledge
in Fine-Tuning

This section studies three research questions, i.e.,
when P; — Pg/; happens and where the weights
influence the overall performance mostly? It also
answers to what extent we can reduce the perfor-
mance gap P; — Pg/; by reducing the forgetting of
cross-language knowledge in HZ5ss.

2.1 Overall Setup

We directly use the multilingual pre-trained model
XLM-R (Conneau et al., 2019) as the base LM due
to its strong zero-shot cross-lingual transfer perfor-
mance. We consider the Cross-lingual Natural Lan-
guage Inference (XNLI) dataset (Conneau et al.,
2018) which is a cross-lingual textual entailment
dataset (classification task). Multilingual Question
Answering (MLQA) dataset (Lewis et al., 2019)
which is a multilingual machine reading compre-
hension task and NER dataset (named entity recog-
nition task) in XTREME benchmark (Hu et al.,
2020b). The metric for MLQA and NER is the
F1 score and the metric for XNLI is accuracy. All

4003

XNLI dataset and Adamw optimizer

MLQA dataset and Adamw optimizer

NER dataset and Adamw optimizer

—— Performance Gap
— Loss

0.10 0.10

—— Pperformance Gap

—— Performance Gap
- Loss
175

— Loss

o
0 15K 30K 45K 60K 75K 90k 105k 120k o 2K 4K 6K
Iteration/k

Iteration/k

6K 8K 10k 12k
Ieration/k

Figure 2: We record the loss and the performance gap between English and non-source languages every hundred
updates over three different datasets and plot the curves in this figure.

results are the average of 4 random seeds. We
use the zero-shot cross-lingual transfer setting with
English as the source language for all experiments.
More training details are in Appendix B.

2.2 When does the Performance Gap Arise?

We record the loss and calculate the performance
gap on the validation set every hundred updates.
Figure 2 shows that the occurrence of the perfor-
mance gap can be divided into two phases: (1) In
the first phase P, (the first 20% of iterations),
the performance gap occurs early and increases
dramatically as the loss drops quickly in the ini-
tial training stage. (2) In the second phase P
(the last 80 % iterations), the gap increases but
is obviously slower than in the first phase and
the loss drops slowly.

2.3 Where is the Knowledge that Helps
Cross-Lingual Transfer?

We use freezing and re-initializing functions to
investigate the influence of the weights of each
layer on overall performance. Note that we only
choose one layer to do re-initializing/freezing op-
erations in each experiment. Figure 3 shows that
the cross-lingual knowledge HZ. 5, widely exists
in the first 10 layers as re-initializing the weights
in any of the ten layers causes performance drop
and is mainly located in the first four layers as
re-initializing the weights in one of the first four
layers makes the performance drops obviously and
freezing them boosts the performance. Also inter-
estingly, the pre-trained knowledge in the last two
layers has little influence on performance. Some-
times re-initializing one layer in the two layers even
makes the performance better than the baseline
performance (e.g., for the MLQA dataset). That
is because the task of pre-training (e.g. Masked
Language Model task) is different from the down-
stream task and mainly located in the last two lay-
ers. We call this kind of knowledge learned from

the pre-training task the pre-training task knowl-
edge H,, 5, which can have a negative transfer to

the downstream task.

2.4 How much can We Reduce the
Performance Gap by Reducing
Forgetting?

To study this question, we fine-tune only the last
one/two/three layers to provide strong stability for
HE5ss. Figures 2 and 4 show that fine-tuning only
the last few layers delays the first appearance of the
performance gap and clearly decreases the perfor-
mance gap. Also, the fewer layers are fine-tuned,
the smaller the gap is. However, (1) a great gap still
exists even if we only fine-tune the last layer (e.g.,
9% difference on the XNLI dataset). That means
avoiding the forgetting of the pre-trained H%
can reduce the gap to some extent, but cannot
solve the problem entirely. (2) Fine-tuning fewer
layers makes the overall performance drops signif-
icantly as the model does not have enough space
to learn H;"}’ (see Table 1). That means a smaller
performance gap is not equal to better overall per-
formance and we need to consider the plasticity
too.

3 Method

This section proposes a method to avoid the forget-
ting of cross-lingual knowledge HZ'5ss (stability)
and to encourage the forgetting of task knowledge
for the pre-training task H}, ; and learn new task’s
knowledge H;5Y (plasticity). The core is to set

ask
different learning rate policies for the weights of
the model based on both the layer’s location and

the training phase.
3.1 Reducing Forgetting of Cross-Lingual
Knowledge with Fine-tuning slow

We consider the protection of HZ.5ss first. The
key challenge here is to strike a balance between

4004

0.760

XNLI dataset and Adamw optimizer

0.755

— Average Accuracy for all languages (Re-initializing one layer)
— Average Accuracy for all languages (Freezing one layer)
---- Average Accuracy for all languages (Directly Finetuning the model)

MLQA dataset and Adamw optimizer

NER dataset and Adamw optimizer

— Average F1 scores for all languages (Re-initializing one layer)
—— Average F1 scores for all languages (Freezing one layer)
--- Average F1 scores for all languages (Directly Finetuning the model)

— Average F1 scores for all languages (Re-initializing one layer)
— Average F1 scores for all languages (Freezing one layer)
--- Average F1 scores for all languages (Directly Finetuning the model)

0.750
0.62

0.745

o
>
>

0.740

o
o
3

Accuracy
F1 Score
F1 Score

13
I3
2

0.735

0.58
0730

0725

0.720

Figure 3: For all twelve layers in the pre-trained XLM-R model, we choose one layer and re-initialize its weight
before training or freeze its weight during training. We record the final average performance and plot the curve.
Y-axis is the metric and X-axis is the index of the layer we chose. The dotted line is the performance of directly
fine-tuning model F'.

0.200

0.175

XNLI dataset and Adamw optimizer

MLQA dataset and Adamw optimizer

030 NER dataset and Adamw optimizer

—— Performance Gap (Only finetuning the last three layers)
—— Performance Gap (Only finetuning the last two layers)
Performance Gap (Only finetuning the last layer)

—— Performance Gap (Only finetuning the last three layers)
—— Performance Gap (Only finetuning the last two layers)
performance Gap (Only finetuning the last layer)

—— Performance Gap (Only finetuning the last three layers)
—— Performance Gap (Only finetuning the last two layers)
—— Performance Gap (Only finetuning the last layer)

0.150

0.125

o
1)
3

Accuracy

0.075

0.050

0.025

0.20

o
&

F1 Score

0.10

)
=
&

F1 Score

0.10

0.05

0.000

15K 30K

45K 60K

75K 90k

105k 120k

Iteration/k

0.00
0

2K 4K 6K

8K

10k 12k 14k

2K 4K 6K

s 1k 1k

Iteration/k

Iteration/k

Figure 4: We fine-tune only the last one/two/three layers and record the performance gap on the validation set every
hundred updates. We then plot those curves in this figure.

Dataset|Baseline | Last one |Last two|Last three|| Freeze four|Freeze attention |Freeze feed-forward||Enlarge two|Enlarge attention|Enlarge feed-forward
XNLI |74.740.2|60.540.2|67.5+03| 71.54+04 || 74.8+0.1 75.040.1 75.2+03 74.54+02 75.14+04 75.0+03
MLQA [64.740.3|33.240.7|48.9+0.3| 43.440.1 || 52.5+0.5 64.840.2 66.3+0.3 66.4+0.3 66.140.5 65.84+0.6

NER |61.2+0.1(40.1+£0.2|48.9+03| 52.8+0.5 || 60.4+0.6 61.5+03 61.8+0.1 59.7+0.1 61.3+02 60.5+02

Table 1: Performance on XNLI, MLQA, and NER datasets in the zero-shot setting. All values are the averages of four
different seeds. For the baseline, we directly fine-tune the pre-trained model. In the ’Last one/two/three’ experiments,
we only fine-tune the last one/two/three layers respectively. In the *Freeze four’/’Freeze attention’/’Freeze feed-
forward’ experiments, we freeze the weights/attention weights/feed-forward weights in the first four layers. In
the "Enlarge two’/’Enlarge attention’/’Enlarge feed-forward’ experiments, we enlarge the learning rate of the
weights/attention weights/feed-forward weights in the last two layers by multiplying it with 10.

maintaining H/sss and learning H;'“%. Based on
the above analysis, we propose a fine-tuning slow
algorithm consisting of the following two training
policies and apply them to different sets.

learning rate multiplier K = ¢; (c1 < 1).

Policy II: Adjusting the learning rate of the
key weights for cross-lingual transfer dynami-
cally in the second fine-tuning phase P,. After

Policy I: Avoiding drastic update of weights
related to cross-lingual knowledge in the first
fine-tuning phase P;. The performance gap in-
creases quickly in P, and H%'5ss in weights are
forgetting quickly. That is because the loss in this
phase drops drastically and gives a big gradient
update for each weight to update, and the stability
for HE'5ss is not enough. So our goal here is to
reduce the update of weights related to HZ o5 in
this stage by multiplying their learning rate with a

the first phase, the gap increases slowly and our
goal is to make the weights adapt to the down-
stream task and to avoid forgetting cross-lingual
knowledge. So we set ' = 1 for weights related to
HE'5ss to provide more plasticity and dynamically
adjust the learning rate of the key weights related
to HE'ss additionally to avoid the forgetting. Our
idea for the key weights is to provide more plastic-
ity for them when the loss drops quickly to learn
a new task and to provide more stability (avoid-

4005

ing unnecessary forgetting) when the loss drops
slowly. We propose to set a dynamic multiplier
K based on the learning curve for the key weights
of HY 5ss. Assume that £; is the training loss at
the tth iteration and ¢(L;) € [0,1] is a function
reflecting the tendency of the learning curve. The
bigger the ¢(L;) is, the faster the loss drops. Then
we have K = R(¢(L;)), where R is a monotonic
function. In this way, when the loss of the model
drops quickly to adapt to the new task, K is also
bigger to provide more plasticity. Note that policy
II in P> has no conflict with policy I as the dras-
tic loss drop in P is not desirable for the weights
related to HZ5ss to adapt to the task.

Layers to apply policies I and II. If re-
initializing the weights in one layer obviously drops
the performance across three datasets, we denote
the weights in this layer belong to Sg . If freez-
ing the weights in one layer improves the perfor-
mance, we denote the weights in this layer belong
to S}T (S}T € S}). The latter is usually more
important for cross-lingual transfer. Based on the
re-initializing/freezing experiment (see Figure 3),
we know that weights in the first 10 layers belong
to SQI and weights in the first 4 layers belong to
Sél . For policy I, we apply it to Sé as we do not
want to forget cross-lingual knowledge HZoss due
to the big gradient updates.

Attention vs Feed-forward To further investi-
gate the best choice of protecting weights in the
first four layers, we conduct experiments to freeze
all weights/all weights of the multi-head layer/all
weights of the feed-forward layer in the first four
layers. The results in the second part of Table 1
show that freezing all weights of the feed-forward
layer in the first four layers achieves the best perfor-
mance over three datasets. With the additional re-
initialization experiments (see Table 6 in Appendix
C), we find that is because the weights of the feed-
forward layer are the most important weights for
cross-lingual transfer in the first four layers. So we
apply policy II to the weights of the feed-forward
layer in SI! as we want to protect H%'oss and to
provide more plasticity to learn H%25%,

3.2 Encouraging Forgetting of Pre-training
Task Knowledge with Learning Fast

As shown earlier, the pre-training task knowledge
H;ﬁgk is usually useless or even harmful to the
downstream task. Here we design an algorithm to

utilize big gradient updates (naturally happen in the

first phase or are created by enlarging the learning
rate) to encourage the model to forget I T’;ffgk and to

learn better downstream task’s knowledge H%.
We refer to this as the fine-tuning fast algorithm
consisting of two training policies and apply them

to different sets:

Policy I1I: Do not slow down the update of the
weights related to Hf,ﬂgk in the first fine-tuning
phase P;. In Py, the model is actively looking for
a point that can reduce the loss drastically and has
enough energy to break the limitation of the pre-
trained knowledge Hf,‘,fgk So we allow the model

to update the weights related to H*** in this phase

re
without lessening their learning rgte.

Policy I'V: Increasing the learning rate of the
key weights related to Hfjﬁjk in the second fine-
tuning phase P,. In P, the loss drops gradually
and the model finally needs to converge to local
minima. But the model may not stop learning the
new task’s knowledge H'*. To verify this, we
use the representation similarity metric CKA (Ko-
rnblith et al., 2019) to measure the similarity of the
representation of the current training data batch to
the pre-trained model and to the current training
model. Figure 6 in Appendix D shows that the simi-
larity of the hidden representation from the last two
layers is still dropping in the second phase (except
the NER dataset) and the model is striving to learn
a better task representation that is different from
the pre-trained one. But the loss becomes small
and drops slowly in P» and the model doesn’t have
enough energy (Pezeshki et al., 2021) to forget the
pre-training task knowledge and to learn Hfl‘éﬂf .
So if the representation similarity of the last two
layers is still dropping in P>, we encourage the
model to update the key weights relevant to the
task knowledge by multiplying their learning rate

with a learning rate multiplier K = ca (c2 > 1).

Layers to apply policies III and IV. Based on
the re-initializing experiment (Figure 2), we know
that re-initializing the weights in the last two lay-
ers improves the performance or drops the perfor-
mance slightly. That means that the weights in
the two layers have little cross-lingual knowledge
and have Hgﬁ‘;‘;k which has a negative effect on the
learning of the downstream task. We denote the set
of weights that has this property as V}f and apply

policy III to it.

Attention vs Feed-forward In the second phase,
the model is trying to learn a better task represen-
tation and needs to converge to a stable point. So

4006

enlarging the learning rate of all weights in Vel may
not be the best choice (e.g., disturbing the conver-
gence). To investigate the best choice of weights in
the last two layers, we conduct experiments with
an increased learning rate of different weight sets.
Based on the results of the third part of Table 1, we
find that increasing the learning rate of all weights
in the attention layer of the last two layers achieves
the best performance. That implies the weights of
the attention layer are the key weight in the learn-
ing of the downstream task and that not changing
the learning rate of other weights in the last two
layers provides much stability. So we denote the
weights of the attention layer in VGI as VQI I and
apply policy IV to it.

3.3 Fine-tuning slow and Fast Algorithm

Formally, a typical multi-lingual pre-trained model
F' comprises a stack of L transformer layers with
each layer containing an attention head layer [§
followed by a feed-forward network lg . At the t-
th training iteration of the fine-tuning process, the
updating rule of the weight 6; of model F' based on
our fine-tuning slow and fast algorithm is:

if tePLAOESE
tinPs A € ViU SE!
otherwise

{ 0r—1 — K -1V0; 4
0 =
Or—1 —1rV0i_1
ey
where r is the learning rate and V6;_; is
the weight modification calculated by the back-
propagation algorithm. SZ, Séf , V},I and Véf I are
the weight sets for the application of policy I, II,
III, and IV respectively. We use ¢ € P to identify
if the ¢-th iteration belongs to the first phase P;.

The learning rate multiplier K is determined by:

K:{ z;
R(¢(Ly))

where ¢; and ¢y are constant and R(¢(Ly)) is a
monotonic function based on the function ¢(L;)
that can reflect the tendency of the learning curve.
Our method maintains the stability for cross-lingual
knowledge and increases the plasticity to adapt to
the new task. We verify it in the following section.

if tecPiAOCES]
if t¢PnOeV! (2)
if t¢PiAGcSE

4 Experiment

We now use three downstream tasks: Named En-
tity Recognition (NER), Question Answering (QA),
and Natural Language Inference (NLI), to experi-
mentally evaluate the performance of our proposed

Fine-tuning slow and fast algorithm under the
zero-shot and few-shot settings.

4.1 Experiment Setup

Datasets: We adopt the NER (Hu et al., 2020b),
MLQA (Lewis et al., 2019), and XNLI (Conneau
et al., 2018) datasets from the XTREME bench-
mark (Hu et al., 2020b) for NER, QA, and NLI
respectively. The details of the datasets and train-
ing details are listed in Section 2.

Zero-shot and Few-shot settings. We define the
zero-shot setting as fine-tuning a pre-trained model
for a downstream task using its labeled data in one
source language (e.g. English). Then we apply the
fine-tuned model to all target languages. We de-
fine the few-shot setting as fine-tuning a pre-trained
model for a downstream task using its labeled data
in one source language (e.g., English) and a few
labeled data from other languages. All labeled data
are mixed to form a training dataset and then we
use it to fine-tune the pre-trained model. For the
source of the few-shot data, we split the original
validation set into the few-shot data group and the
new validation set. Note that the number of data
points in the validation set is usually larger than
5000. So extracting the few-shot data from the vali-
dation set does not influence its validation function.

Baselines: (1) Directly Fine-tuning (DF) the
model with the English training corpus; (2) Noisy-
Tune (Wu et al., 2022), which prevents LMs from
overfitting the data in pre-training and reducing the
gap between pre-training and downstream tasks by
adding a small amount of noise to perturb the LM
parameters before fine-tuning. (3) Fine-tuning slow
algorithm (FS), which fine-tunes the model with
the fine-tuning slow algorithm. (4) Learning Fast
algorithm (FF), which fine-tunes the model with
the fine-tuning fast algorithm.

Choice of adaptive multiplier R(¢(L;)) and
t € Py, and hyper-parameters: For R(¢(L;))
in Eq. 2, we first calculate the average value of
the losses in the recent 100 iterations as ﬁtiolgm
and the losses in the 100 iterations prior to the
recent 100 iterations as W. Then we de-
fine ¢(Ly) = % When the loss drops
quickly (L£;—200:¢—100 > Li—100:¢), ¢(L¢) is close
to 0. And when the loss drops slowly, ¢(L;) is
close to 1. We do not use % to represent ¢ (L)
as the losses in adjacent iterations usually do not
have a big difference and so it cannot accurately
describe the tendency. Then R(¢(L;)) is defined

4007

Dataset XNLI NER MLQA
M 0 5 10 20 0 5 10 20 0 5 10 20
DF 74.7+£0.2 75.140.2 75.440.3 75.540.3|61.34+0.2 68.1+0.1 70.640.1 72.5+0.1|(64.740.2 64.8+0.3 64.840.2 64.9+0.2
NosiyTune |74.9+0.2 75.14+0.1 75.5+0.2 75.640.1{61.3+0.1 67.840.3 70.7+0.2 72.7+0.2|64.84+0.2 64.8+£0.2 64.94+03 65.0+0.2
FS 75.240.3 75.540.2 75.540.3 76.040.1|/62.34+0.2 68.5+0.2 71.240.3 72.7+0.2|66.140.5 66.3+0.3 66.440.5 66.8+0.2
FF 75.04£0.2 75.440.2 75.64+0.4 75.940.2|162.14+0.2 68.340.3 70.740.1 72.540.2|/66.440.2 66.5+0.3 66.54+0.2 66.7+0.3
Our method|75.6+0.1 75.74+0.3 76.1+0.2 76.54+0.2(62.5+0.1 69.14+0.2 71.7+0.1 72.940.1|66.6+0.2 66.8+0.3 66.8+0.2 67.0-+0.3

Table 2: Performance on XNLI, MLQA, and NER datasets in the zero-shot and few-shot settings. All values are
the averages of four different seeds. M is the number of few-shot training data for each non-source language. DF
(directly fine-tuning the model), NoisyTune (Wu et al., 2022), FS (fine-tuning slow algorithm), and FF (fine-tuning

fast algorithm) are the baselines.

Language en fr de avg
DF 70.2+0.2 69.140.5 70.0£0.1 69.740.2
Our method|70.5+0.2 70.44-0.1 70.7+0.2 70.540.2

Table 3: Accuracy performance on Large QAM dataset
in the zero-shot setting. All values are the averages of
four different seeds. "avg’ is the average performance
over all target languages.

Method Baseline Our method
Performance| source non-source source non-source
XNLI 84.8+03 74.0+03 |85.640.2 (+0.8) 74.9+0.2 (+0.9)
NER 82.3+02 60.7+0.3 |82.340.2 (+0.0) 62.0+0.1 (+1.3)
MLQA |79.4+03 62.2+02 |80.5+0.2 (+1.1) 64.3+0.2 (+2.1)

Table 4: Source and non-source languages’ performance
in the zero-shot setting. For the baseline, we directly
fine-tune the model. All values are the averages of four
different seeds.

as:
R(¢(Ly)) = max(1 — ¢(L)",0) 3)

where 7 is a hyper-parameter. When the loss drops
quickly, R(¢(L;)) is close to 1 and gives the param-
eters more plasticity to adapt to the new task and
vice versa. We choose [:*‘200”‘1%%_&‘1001 > 0.1
to represent ¢ € P; in Eq. 1 as the loss drops very
quickly in this case and the model needs policies
I and III to protect HE G5 and learn H'“%¥. We set
r as 3. We set ¢; and ¢y (Eq. 2) as 0.01 and 10

respectively. The ablation study is in Section 4.6.

4.2 Results of Zero-Shot Fine-Tuning

To evaluate the zero-shot performance of our
method and baselines, we record the average F1
score performance (mean and standard deviation)
of all target languages for the MLQA and NER
datasets and the average accuracy for the XNLI
dataset. The results are reported in Table 2, which
shows that our method achieves highly superior
results to the baseline methods.

4.3 Results of Few-Shot Fine-Tuning

The results of few-shot fine-tuning performance
are reported in Table 2, which shows that:(1) with

the increasing number of few-shot data per lan-
guage, the performance improves as the model can
learn better cross-lingual task representation from
the multi-lingual training corpus. (2) Our method
still outperforms baselines obviously as it protects
the pre-trained cross-lingual knowledge HZ5ss and

forgets the pre-training task’s knowledge H!' ¢ .

4.4 Large Training Corpus Fine-Tuning

We collect and construct a QAM task dataset
(Liang et al., 2020) with 12 million English training
data points by a business search engine. QAM clas-
sification task aims to predict whether a <question,
passage> pair is a QA pair. Zero-shot fine-tuning
model on a corpus like this is more challenging
as the model is easier to forget HZ'5ss. From Ta-
ble 3, we observe that our method outperforms the
baseline obviously, which shows that our method
also works well with a large dataset. From Figure 7
in Appendix E, we find that (1) the performance
of non-source languages firstly increases and then
drops (due to forgetting) (2) the performance of
source language increases during the whole train-
ing process and the gap becomes larger in the later
phase. (3) our method reduces the gap by protect-
ing cross-lingual knowledge and improves the per-
formance of non-source languages. More analyses
and training details are in Appendix E.

4.5 Analysis of the Influence on Source
Language and Non-Source Language

Our method improves both source and non-source
languages’ performance in Table 4. Additionally,
it helps non-source languages more, as it protects
the cross-lingual knowledge in HZ.5ss, leading to a
significant improvement in non-source languages’
performance. We report each language’s perfor-
mance on the XNLI dataset in Appendix F.

4008

Hyper-parameter c1 &) r
Value 0.5 0.1 0.01 0.001 0 5 10 15 20 100 1 2 3 4
XNLI 75.340.1 75.140.2 75.6+0.1 75.54£0.2 75.540.1{75.14£0.2 75.640.1 75.0+0.1 74.9+0.4 71.8+0.3|75.2+0.1 75.4+0.1 75.640.1 75.4403
NER 62.1£0.2 62.2+0.2 62.5+0.1 62.3+0.1 62.0+0.2 - 62.1+0.1 62.3+0.1 62.5+0.1 62.2+0.2
MLQA 66.1£0. 66.5+0.1 66.6+0.2 66.3+£0.3 66.3+0.3|66.1+£0.2 66.6+0.2 66.4+0.1 66.0+0.2 27.3+0.7|66.4+0.3 66.4+0.2 66.6+0.2 66.2+0.2

Table 5: Performance on XNLI, NER, and MLQA datasets in the zero-shot with different hyper-parameter values
of c1,c9, and r. All values are the averages of four different seeds. We don’t record the performance on the NER
dataset with different c5 here. The reason is: as a low-level task, the NER task is similar to the pre-training task and
its task representation does not continue to be far from the pre-trained one in the second phase (see Figure 6) and so

we don’t apply policy IV on this dataset.

4.6 Analysis of the Influence of Learning Rate
Multiplier Hyper-Parameters c;, co and r

We ablate on the learning rate multiplier’s hyper-
parameters c1, co (Eq. 2) and r(Eq. 3). We analyze
their influence by setting different values for them
and recording the final overall performance. From
Table 5, we observe that reducing the value of ¢;
from 0.5 to 0 improves performance initially (by
protecting HZ5ss) but then decreases performance
(due to lack of enough plasticity). We set c; as
0.01 as it strikes a balance between stability and
plasticity. Increasing the value of cy from 5 to
100 improves performance initially (by learning
better [;7}) but then decreases performance (due
to lack of stability to converge). So we set ¢y to
10. Increasing r from 1 to 4 improves performance
initially (as the adaptive multiplier is closer to 1
and provides more stability) but then decreases
performance (due to lack of enough plasticity). So
we set r as 3. Our choice is consistent across the
three datasets, showing our method’s robustness.

4.7 Analysis of the Influence of the Usage
Order of Weight Sets Sg R Sél ,VGI and VQI I,

To further verify the effectiveness of our method
in applying different weight sets for each policy,
we conduct experiments that apply both Policies
I and 1II to only Sé/SéI respectively, as well as
experiments that apply Policy I to Sé T and Policy
IIto Sé . We also perform similar experiments for
sets Val and VQI T From Table 8 in Appendix G, we
find that our method achieves the best performance
by making a good balance between plasticity and
stability. Further analyses are in Appendix G.

5 Related Work

Fine-tuning multilingual language models
(MLLMs). Recent MLLM systems (e.g., nBERT
(Devlin et al., 2018), mT5(Xue et al., 2020), and
XLM-R (Conneau et al., 2019)) have shown strong
zero-shot transfer ability to non-source languages
when fine-tuning with only a source language

corpus. However, the performance gap between
the source language and non-source languages is
still large. Most previous works focus on learn-
ing robust task representation(Fang et al., 2021;
Zheng et al., 2021; Jiang et al., 2022) and strong
pre-trained cross-lingual representation (Chi et al.,
2020; Wang et al., 2020; Ouyang et al., 2020; Hu
et al., 2020a). But they haven’t analyzed the perfor-
mance gap in fine-tuning and the relation between
forgetting and the gap. We fill this research gap.

Forgetting in continual learning. Continual
learning aims to design algorithms to learn tasks
incrementally. Its main challenge is forgetting.
Many methods have been proposed to reduce for-
getting. (1) Regularization methods(Kirkpatrick
et al., 2017; Chen et al., 2020; Li et al., 2022;
Lee et al., 2021) penalize the changes on impor-
tant weights for previous tasks, (2) Replay meth-
ods(Buzzega et al., 2020; Rolnick et al., 2019;
Wang et al., 2022) re-train a few previous samples
with new task’s data, and (3) Parameter-fixed meth-
ods(Vidoni et al., 2020; He et al., 2021; Xu et al.,
2021) protect parameters learned for previous tasks.
The regularization method needs to estimate the im-
portant weight during pre-training and the replay
method needs to store data from the pre-training
corpus. But we usually don’t have those during
the fine-tuning phase. Moreover, all of those meth-
ods focus on avoiding forgetting but we find that
pre-training task knowledge is not suitable for the
adaptation of downstream tasks and those methods
cannot get rid of it. We propose a novel method
that controls the forgetting effect to avoid the for-
getting of cross-lingual knowledge and encourage
the forgetting of pre-training task knowledge to
learn better new task knowledge. Our method is
orthogonal to previous works in cross-lingual fine-
tuning.

6 Conclusion

This paper first analyzed when the performance gap
arises and where the important cross-lingual knowl-

4009

edge is and reduced the lower bound of the per-
formance gap by avoiding forgetting cross-lingual
knowledge. Based on our analysis, a novel method
is proposed to control the forgetting effect in fine-
tuning a multi-lingual pre-trained model. We verify
its effectiveness over multiple datasets and settings.

7 Limitations

Although we believe that controlling the forget-
ting in the fine-tuning phase to avoid forgetting
cross-lingual/general knowledge and to reduce the
negative interference from misaligned pre-training
tasks and downstream tasks can benefit other fine-
tuning settings (e.g. Multi-task setting), we have
not yet investigated these settings. In the future,
we will try to propose a more general method for
fine-tuning a large pre-trained model across various
settings.

References

Pietro Buzzega, Matteo Boschini, Angelo Porrello, Da-
vide Abati, and Simone Calderara. 2020. Dark expe-
rience for general continual learning: a strong, simple
baseline. Advances in neural information processing
systems, 33:15920-15930.

Sanyuan Chen, Yutai Hou, Yiming Cui, Wanxiang Che,
Ting Liu, and Xiangzhan Yu. 2020. Recall and learn:
Fine-tuning deep pretrained language models with
less forgetting. arXiv preprint arXiv:2004.12651.

Zewen Chi, Li Dong, Furu Wei, Nan Yang, Sak-
sham Singhal, Wenhui Wang, Xia Song, Xian-Ling
Mao, Heyan Huang, and Ming Zhou. 2020. In-
foxlm: An information-theoretic framework for
cross-lingual language model pre-training. arXiv
preprint arXiv:2007.07834.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmaén, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2019. Unsupervised
cross-lingual representation learning at scale. arXiv
preprint arXiv:1911.02116.

Alexis Conneau, Guillaume Lample, Ruty Rinott, Ad-
ina Williams, Samuel R Bowman, Holger Schwenk,
and Veselin Stoyanov. 2018. Xnli: Evaluating cross-
lingual sentence representations. arXiv preprint
arXiv:1809.05053.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Yuwei Fang, Shuohang Wang, Zhe Gan, Siqi Sun, and
Jingjing Liu. 2021. Filter: An enhanced fusion
method for cross-lingual language understanding. In

Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 12776-12784.

Ruidan He, Linlin Liu, Hai Ye, Qingyu Tan, Bosheng
Ding, Liying Cheng, Jia-Wei Low, Lidong Bing,
and Luo Si. 2021. On the effectiveness of adapter-
based tuning for pretrained language model adapta-
tion. arXiv preprint arXiv:2106.03164.

Junjie Hu, Melvin Johnson, Orhan Firat, Aditya Sid-
dhant, and Graham Neubig. 2020a. Explicit align-
ment objectives for multilingual bidirectional en-
coders. arXiv preprint arXiv:2010.07972.

Junjie Hu, Sebastian Ruder, Aditya Siddhant, Gra-
ham Neubig, Orhan Firat, and Melvin Johnson.
2020b. Xtreme: A massively multilingual multi-
task benchmark for evaluating cross-lingual gener-
alisation. In International Conference on Machine

Learning, pages 4411-4421. PMLR.

Lan Jiang, Hao Zhou, Yankai Lin, Peng Li, Jie Zhou,
and Rui Jiang. 2022. Rose: Robust selective fine-
tuning for pre-trained language models. arXiv
preprint arXiv:2210.09658.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, et al. 2017. Over-
coming catastrophic forgetting in neural networks.
Proceedings of the national academy of sciences,
114(13):3521-3526.

Simon Kornblith, Mohammad Norouzi, Honglak Lee,
and Geoffrey Hinton. 2019. Similarity of neural
network representations revisited. In Proceedings
of the 36th International Conference on Machine
Learning, volume 97, pages 3519-3529. PMLR.

Seanie Lee, Hae Beom Lee, Juho Lee, and Sung Ju
Hwang. 2021. Sequential reptile: Inter-task gradient
alignment for multilingual learning. arXiv preprint
arXiv:2110.02600.

Patrick Lewis, Barlas Oguz, Ruty Rinott, Sebastian
Riedel, and Holger Schwenk. 2019. Mlqa: Eval-
uating cross-lingual extractive question answering.
arXiv preprint arXiv:1910.07475.

Dingcheng Li, Zheng Chen, Eunah Cho, Jie Hao, Xi-
aohu Liu, Fan Xing, Chenlei Guo, and Yang Liu.
2022. Overcoming catastrophic forgetting during
domain adaptation of seq2seq language generation.
In Proceedings of the 2022 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 5441-5454.

Yaobo Liang, Nan Duan, Yeyun Gong, Ning Wu, Fenfei
Guo, Weizhen Qi, Ming Gong, Linjun Shou, Daxin
Jiang, Guihong Cao, et al. 2020. Xglue: A new
benchmark datasetfor cross-lingual pre-training, un-
derstanding and generation. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6008-6018.

4010

Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun,
Hao Tian, Hua Wu, and Haifeng Wang. 2020. Ernie-
m: Enhanced multilingual representation by aligning
cross-lingual semantics with monolingual corpora.
arXiv preprint arXiv:2012.15674.

Xiaoman Pan, Boliang Zhang, Jonathan May, Joel Noth-
man, Kevin Knight, and Heng Ji. 2017. Cross-lingual
name tagging and linking for 282 languages. In Pro-
ceedings of the 55th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 1946-1958.

Mohammad Pezeshki, Oumar Kaba, Yoshua Bengio,
Aaron C Courville, Doina Precup, and Guillaume La-
joie. 2021. Gradient starvation: A learning proclivity
in neural networks. Advances in Neural Information
Processing Systems, 34:1256-1272.

Afshin Rahimi, Yuan Li, and Trevor Cohn. 2019. Mas-
sively multilingual transfer for ner. arXiv preprint
arXiv:1902.00193.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint
arXiv:1606.05250.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timo-
thy Lillicrap, and Gregory Wayne. 2019. Experience
replay for continual learning. Advances in Neural
Information Processing Systems, 32.

Marko Vidoni, Ivan Vuli¢, and Goran Glavas.
2020. Orthogonal language and task adapters in
zero-shot cross-lingual transfer. arXiv preprint
arXiv:2012.06460.

Liyuan Wang, Xingxing Zhang, Kuo Yang, Longhui
Yu, Chongxuan Li, Lanqing Hong, Shifeng Zhang,
Zhenguo Li, Yi Zhong, and Jun Zhu. 2022. Memory
replay with data compression for continual learning.
arXiv preprint arXiv:2202.06592.

Zirui Wang, Zachary C Lipton, and Yulia Tsvetkov.
2020. On negative interference in multilingual mod-
els: Findings and a meta-learning treatment. arXiv
preprint arXiv:2010.03017.

Adina Williams, Nikita Nangia, and Samuel R Bow-
man. 2017. A broad-coverage challenge corpus for
sentence understanding through inference. arXiv
preprint arXiv:1704.05426.

Chuhan Wu, Fangzhao Wu, Tao Qi, Yongfeng Huang,
and Xing Xie. 2022. Noisytune: A little noise can
help you finetune pretrained language models better.
arXiv preprint arXiv:2202.12024.

Runxin Xu, Fuli Luo, Zhiyuan Zhang, Chuangi Tan,
Baobao Chang, Songfang Huang, and Fei Huang.
2021. Raise a child in large language model: To-
wards effective and generalizable fine-tuning. arXiv
preprint arXiv:2109.05687.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale,
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and
Colin Raffel. 2020. mt5: A massively multilingual
pre-trained text-to-text transformer. arXiv preprint
arXiv:2010.11934.

Bo Zheng, Li Dong, Shaohan Huang, Wenhui Wang,
Zewen Chi, Saksham Singhal, Wanxiang Che, Ting
Liu, Xia Song, and Furu Wei. 2021. Consistency
regularization for cross-lingual fine-tuning. arXiv
preprint arXiv:2106.08226.

A Performance gap of the MLQA dataset
and NER dataset

From Figure 5, we observe that (1) our method
delays the first appearance of the performance gap.
(2) our method has a lower performance gap com-
pared to the baseline.

B Details of the datasets and model.

XNLI is a cross-lingual textual entailment dataset.
In this dataset, we use the MultiNLI (Williams
et al., 2017) training data (English) to fine-tune
the pre-trained model and then test the fine-tuned
model with all 15 languages.

MLQA is a multilingual machine reading com-
prehension task for question answering. The test
performance gap is the gap between the F1 score
of the source (English) and the average F1 score
of the other six target languages (Arabic, German,
Spanish, Hindi, Vietnamese and Chinese).

NER is a named entity recognition task and we
use the Wikiann (Pan et al., 2017) dataset. The
metric is the F1 score. We use the balanced train,
dev, and test splits in (Rahimi et al., 2019).

Following (Hu et al., 2020b), the fine-tuning
batch size is 32. We use the Adam optimizer with
warm-up and learning rate 5e-6. For XNLI, we
fine-tune the model with the English corpus for 10
epochs and evaluate it on the English dev set every
3k steps to select the best model. For NER, we
fine-tune 20 epochs. For MLQA, we follow BERT
(Devlin et al., 2018) for SQuAD (Rajpurkar et al.,
2016) and set the learning rate to 3e-5, batch size
to 12, and we train the model for 2 epochs.

We select the model with the best of the average
result on the dev sets of all languages.

XLM-R has 550 million parameters and we run
the experiments with GPU A100.

4011

MLQA dataset and Adamw optimizer NER dataset and Adamw optimizer

0.30 0.30
—— original Performance Gap (Directly fine-tuning the model)
— Performance Gap (Our method)

0.25 025

—— Original performance gap (Directly fine-tuning the model)
—— Performance gap (Our method)

0.20 0.204

0.15 1 0.15 1

F1 Score
F1 Score

0.10 1 0.10 1

0.05 0.05

0.00 T T T 0.00 u U u u T T
0 2K 4K 6K 8K 10k 12k 14k 0 2K 4K 6K 8K 10k 12k

Iteration/k lteration/k

(@) (b)
Figure 5: The performance gap P; — Pg/; every hundred updates on the MLQA and NER datasets. *Original
performance gap’ means that we directly fine-tune the model, and ’our method’ means that we use the Fine-tuning
slow and fast algorithm to fine-tune the model.

Dataset |Baseline |Re-initialize four|Re-initialize attention|Re-initialize feed-forward
XNLI |74.7+0.2 64.0+0.1 68.140.1 67.610.2
MLQA [64.7+03 28.7+0.3 50.1+0.1 46.040.1

NER |61.2+0.1 45.1+02 52.5402 45.5+02

Table 6: Performance on XNLI, MLQA, and NER datasets in the zero-shot setting. All values are the averages of four
different seeds. For the baseline, we directly fine-tune the pre-trained model. In the *Re-initialize four’, *Re-initialize
attention’ and ’Re-initialize feed-forward’ experiments, we re-initialize the weights/attention weights/feed-forward

weights in the first four layers and then we fine-tune the model.

C Re-initialization experiments for the
weights in the first four layers

From Table 6, we find that (1) re-initializing
weights in the first four layers reduces the over-
all performance as the cross-lingual knowledge is
lost. (2) Re-initializing the feed-forward weights
in the first four layers has a worse effect on the
overall performance than re-initializing the atten-
tion weights in the first four layers. That means
the feed-forward weights in the first four layers are
more important than the attention weights in the
first four layers for cross-lingual transfer.

D Figure for the CKA representation
similarity

Figure 6 describes the similarity of the hidden rep-
resentations from the pre-trained model and the
working model. We observe that the bottom layers
usually have a higher similarity than the top layers,
indicating that the top layers need larger adjust-
ments to adapt to the downstream task. Also, we
find that the similarity of the last two layers contin-
ues to decrease in the second phase over the MLQA
and XNLI datasets, indicating that the model is still
trying to learn a better task representation by modi-
fying the weights in the last two layers during the
second phase.

E The performance analysis of the QAM
dataset

We use the Adam optimizer with warm-up and
learning rate 5e-6 to fine-tune the model with the
English corpus for 1 epoch as the training corpus
is big enough for the model to achieve the best
performance by running one epoch. The batch
size is 32. We select the model with the best of
the average result on the dev sets of all languages
(every 3k updates).

We record the performance gap and each lan-
guage’s performance on the dev set every thousand
updates and report the curve in the first 120k iter-
ations (Figure 7) as the best overall performance
model is selected in the first 120k iterations. In
the later iterations, the gap rises and the overall
performance drops. As shown in Figure 7, the ten-
dency of the gap curve is monotonically increasing
during the whole training process, and the main
reason for this is the decline in the performance of
the non-source languages. Our method improves
overall performance by reducing the forgetting of
cross-lingual knowledge.

4012

Average CKA similarity

XNLI dataset and AdamW optimizer

1.00

MLQA dataset and AdamW optimizer

et ———t
layerl

— layen
— layen3
— layers
— layers AN o A
layers
layer?
layers
layers
layer10

layer1L vanf AN AL

(=N

4
©
G

o
©
S

|

Average CKA similarity
°
@
&

//\\/M/‘/\/\rv T iR e

layerl
— layer2
— layer3
— layers
— layers

Average CKA similarity

NER dataset and AdamW optimizer

_—

— layer12 layers — layer12 T
layer? W i
layer8 s - .
0.80 layera 02
layerL0
layerll
— layerl2
T T T 0.75 T - - - : v + 00 . : y - v -
0 200 400 600 800 1000 1200] 20 40 60 80 100 120 140 0 20 40 60 80 100 120

Iterations

Iterations

Iterations

Figure 6: For the pre-trained model and the current working model, we first calculate each layer’s hidden rep-
resentation on the current data batch, and then calculate and record the representation similarity of the hidden
representations from the same layer in the pre-trained model and the working model every hundred updates over
three different datasets. We plot the curves in this figure. A lower value (similarity) indicates a larger distance.

QAM dataset and Adamw optimizer

QAM dataset and Adamw optimizer

0.30
—— Performance Gap (Directly fine-tuning the model)
—— Performance Gap (Our method)
0.7 4 0.25 4
0.20 4
0.6
oy oy
@ m
E é 0.15 1
€ 051 €
—— Performance on English dev set(Directly fine-tuning the model) 0.10 4
Performance on French dev set(Directly fine-tuning the model)
0.4 Performance on German dev set(Directly fine-tuning the model)
—— Performance on English dev set{Our method) 0.05 4
—— Performance on French dev set(Our method)
—— Performance on German dev set(Our method)
03— , ' T ; T — 0.00 - ' : . ' . .
0 20K 40K 60K 80K 100K 120K 0 20K 40K 60K 80K 100K 120K
Iteration/k lteration/k

(a)

(b)

Figure 7: We directly fine-tune the model on the QAM dataset as the baseline. English is the source language.
German and French are the non-source language. We calculate and record their performance on the validation set
every thousand updates.

F Analysis of the influence of our method G Analysis of the influence of S7,5}7,V,/,

for each language

From Table 7, we find that the fine-tuning slow
algorithm improves almost all languages’ perfor-
mance as it protects the cross-lingual knowledge.
The fine-tuning fast algorithm (learning the new
task knowledge H|;") also improves the perfor-
mance of the source language and some non-source
languages as it provides a better task representation.
Our method achieves the best performance over all
languages, especially for some low-resource lan-

guages (e.g., sw and ur).

and V}'’

From Table 8, we observe that the *Only Sé /Sgl ’
experiments achieve worse performance than our
method as they lack enough plasticity/stability for
the cross-lingual knowledge, respectively. The
*S}T to S} experiment achieves the worst perfor-
mance as it lacks enough stability in the first phase
and lacks enough plasticity in the second phase.
The *Only VQI /VHI I> experiments do not provide
enough space for learning new tasks in the first
phase/stability to converge in the second phase, re-
spectively, so their performance is worse. The ’ 91 I
to VQI > experiment has both disadvantages of the
’Only Vel /VGI > experiments, so its performance is

4013

Language ar bg de el en es fr hi ru SW th tr ur vi zh
DF 72.240.3 78.0+£0.3 77.3+0.2 76.0+0.1 84.8+0.3 79.5+0.2 78.74+03 70.74+0.2 76.140.5 65.14+0.4 72.7+0.2 73.1+0.1 66.5+0.5 75.1+0.1 74.5+0.4

NosiyTune |72.240.3 78.0+0.3 77.340.2 75.6+0.1 84.840.3 79.540.2 78.7+0.3 70.7+0.2 76.1+05 65.140.4 72.740.2 73.140.1 66.5+0.5 75.1+0.1 74.5+0.4
FS 73.040.2 78.4+0.5 77.6+0.2 76.6+0.3 85.2+0.2 80.0+0.1 79.340.1 71.140.1 76.840.4 65.440.5 72.940.1 74.0+£0.3 66.5+0.3 75.7+0.1 75.0+0.3
FF 72.6+0.4 78.0+£0.2 77.4+0.1 76.1+0.2 85.0+0.0 79.1+0.4 78.54+0.4 70.74+02 76.14+0.4 65.440.4 73.6+0.1 73.8+£0.4 67.2+0.6 75.4+0.3 74.9+0.1

Our method [73.640.2 79.04£0.2 78.1£0.3 76.6+0.2 85.6+0.2 80.2+0.5 79.5+0.1 71.5+0.2 77.1+03 65.94+0.3 73.340.1 74.240.3 67.1£0.1 76.2+0.1 75.9+0.2

Table 7: Each target language’s performance on the XNLI dataset in the zero-shot setting. All values are the averages
of four different seeds.

also poor. We did not apply policy IV on the NER

dataset, so we did not record the result of the ’VQI 1
to VHI > experiment on the NER dataset.

4014

Dataset|Our method[Only S7[Only SZ7[S}7toSZ [[Only Vi [Only Vi T [V toV{
XNLI | 75.6+0.1 |75.2+0.1| 74.5+0.1 |74.202([74.6£03| 74.7+02 | 74.5+02
MLQA | 66.6£02 |66.2402] 65.9+03 [65.1+0.1][66.3+03 | 66.2+02 | 66.3+0.1
NER | 62.5+£0.1 |62.4403]62.3+02|62.3+02([62.5+0.1| 62.3%0.1 -

Table 8: Performance on XNLI, MLQA, and NER datasets in the zero-shot setting. All values are the averages of
four different seeds. In the Only Sg/Sé > experiments, we apply both policies I and II to only Sg/ the weights of
the feed-forward layer in Sé I respectively. In the ’5(5 1 toS,’ experiment, we apply policy I to the weights of the
feed-forward layer in Sé T and apply policy II to Sé . In the ’Only VOI / VQI > experiments, we apply both policy III

and IV to only V,J/V! respectively. In the *V,//toV}}” experiment, we apply policy Il to V,/ and apply policy IV
to V.

4015

ACL 2023 Responsible NLP Checklist

A For every submission:

¥ Al. Did you describe the limitations of your work?
Section 7

[l A2. Did you discuss any potential risks of your work?
Not applicable. Left blank.

¥ A3. Do the abstract and introduction summarize the paper’s main claims?
Section 1

0 A4. Have you used Al writing assistants when working on this paper?
Not applicable. Left blank.

B [Did you use or create scientific artifacts?
Not applicable. Left blank.

O B1. Did you cite the creators of artifacts you used?
Not applicable. Left blank.

0J B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Not applicable. Left blank.

0 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?

Not applicable. Left blank.

0J B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Not applicable. Left blank.

[l B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Not applicable. Left blank.

¥f B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Left blank.

C ¥ Did you run computational experiments?
Section 4
¥ C1. Did you report the number of parameters in the models used, the total computational budget

(e.g., GPU hours), and computing infrastructure used?
Appendix 2

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on Al writing
assistance.

4016

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

v C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Appendix 2

v C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?

Section 4

O C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?

Not applicable. Left blank.

D Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

O DI1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Not applicable. Left blank.

(] D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?

No response.

[0 D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?

No response.

0 D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

0] DS. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

4017

