
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 3759–3770

July 9-14, 2023 ©2023 Association for Computational Linguistics

Free Lunch for Efficient Textual Commonsense Integration in Language
Models

Wanyun Cui
Shanghai University of Finance and Economics

cui.wanyun@shufe.edu.cn

Xingran Chen
University of Michigan

chenxran@umich.edu

Abstract
Recent years have witnessed the emergence
of textual commonsense knowledge bases,
aimed at providing more nuanced and context-
rich knowledge. The integration of external
commonsense into language models has been
shown to be a key enabler in advancing the
state-of-the-art for a wide range of NLP tasks.
However, incorporating textual commonsense
descriptions is computationally expensive, as
compared to encoding conventional symbolic
knowledge. In this paper, we propose a method
to improve its efficiency without modifying
the model. We group training samples with
similar commonsense descriptions into a sin-
gle batch, thus reusing the encoded description
across multiple samples. One key observation
is that the upper bound of batch partitioning can
be reduced to the classic graph k-cut problem.
Consequently, we propose a spectral clustering-
based algorithm to solve this problem. Exten-
sive experiments illustrate that the proposed
batch partitioning approach effectively reduces
the computational cost while preserving perfor-
mance. The efficiency improvement is more
pronounced on larger datasets and on devices
with more memory capacity, attesting to its
practical utility for large-scale applications.

1 Introduction

While pre-trained language models have made sub-
stantial progress in natural language processing,
they still lack certain knowledge. Thus it is criti-
cal to incorporate external knowledge sources (Pe-
ters et al., 2019; Zhang et al., 2019; Logan et al.,
2019). Previous research has primarily focused on
incorporating symbolic knowledge from structured
knowledge graphs. Recently, realizing the lack
of expressiveness and contextualization of sym-
bolic knowledge, many forms of commonsense
knowledge bases are constructed, such as if-then
knowledge (Sap et al., 2019) and discourse knowl-
edge (Fang et al., 2021). The integration of such
textual commonsense knowledge into language

models has been shown to improve the state of the
art for various tasks, such as named entity recogni-
tion (Wu et al., 2020) and commonsense knowledge
base completion (Malaviya et al., 2020).

However, integrating such commonsense knowl-
edge are computationally expensive. Common-
sense knowledge in text form requires more com-
plex encoders (e.g. Transformer (Vaswani et al.,
2017)), as opposed to the simple lookup opera-
tion for discrete symbolic knowledge. The feed-
forward and back-propagation process for the text
encoder is significantly more computationally ex-
pensive than the standalone symbolic knowledge
embeddings. Therefore, it is essential to reduce
the computational cost for efficient integration of
textual commonsense knowledge, particularly for
large-scale applications.

In this paper, we propose a method to accelerate
the process of incorporating textual commonsense
knowledge into language models. Our approach is
based on the observation that if multiple training
samples in a mini-batch share the same common-
sense description, the encoding for that description
can be reused across those samples. In other words,
we only need to encode each distinct description
in a mini-batch once. For example, consider the
training samples x1···4 and the associated common-
sense t1···4 in Fig. 1. In the batch partitioning in
Fig. 1a, the samples in one batch have no shared de-
scriptions, requiring seven times of commonsense
encoding for ti. However, in the batch partitioning
shown in Fig. 1b, each description will be encoded
only once, resulting in only four times of encod-
ing for ti. The cost of encoding the commonsense
is significantly reduced by effective partitioning
of the training samples. Therefore, our goal is to
group the training samples in such a way as to min-
imize the total number of distinct commonsense
descriptions per mini-batch.

To optimize the batch partitioning, we begin by
theoretically analyzing the objective (§2.1). Our

3759

t1

t2

x1

x3

batch1

t3

t4

x2

x4

batch2

x1 x2

x3

t1

t2

x4 t3

batch1

batch2

t1

t2

t3

t4

(a) If samples are divided ran-
domly into batches, a total of
7 times of encoding for ti is
required.

t1

t2

x1

x3

batch1

t3

t4

x2

x4

batch2

x1 x2

x3

t1

t2

x4 t3

batch1

batch2

t1

t2

t3

t4

(b) If samples are divided
delicately, only a total of 4
times of encoding for ti is re-
quired.

Figure 1: Idea of batch partitioning.

key observation is that the upper bound of the cost
can be reduced to the well-studied graph k-cut prob-
lem (Rangapuram et al., 2014) (§ 3.1 § 3.2). As
a result, we minimize the upper bound instead by
adapting the classic spectral clustering algorithm
(§ 3.3). The average distinct commonsense descrip-
tions per batch are approximated by the distance to
the cluster centroid, and is optimized by spectral
clustering. This is also empirically verified (§ 5.4).

The main contributions of this paper are as fol-
lows: (1) We propose the use of batch partitioning
for improving the efficiency of textual common-
sense integration for language models. (2) We the-
oretically demonstrate that the batch partitioning
problem can be reduced to the classic graph k-
cut problem, and we use the well-studied spectral
clustering to optimize it. (3) We empirically show
that the efficiency of integrating commonsense de-
scriptions can be significantly improved without
sacrificing effectiveness. The acceleration is even
more pronounced for large-scale training.

2 The Batch Partitioning Problem

In this section, we analyze the training efficiency
w.r.t. batch partitioning. We first show in § 2.1
that the complexity of the model depends on the
number of corresponding knowledge descriptions
per sample. Then, in § 2.2, we formally define this
batch partitioning problem.

2.1 Model Setup and Complexity Analysis

In this paper, we use the OK-Transformer (Cui and
Chen, 2022) as the backbone. OK-Transformer
is a recently proposed model that effectively in-
troduces commonsense knowledge into language

models. Traditional approaches for such introduc-
tion required pre-training language models on a
large corpus along with external commonsense,
which was time-consuming (Peters et al., 2019;
Zhang et al., 2019). The OK-Transformer model,
on the other hand, is able to directly incorporate
extra knowledge without pre-training. This model
utilizes commonsense tokens and attention mecha-
nisms to effectively integrate textual commonsense.
Our proposed batch partitioning method is also
applicable to other models that encode target sen-
tences and associated commonsense descriptions.

To analyze the computational complexity of en-
coding commonsense knowledge and formulate
the problem, we briefly describe how the original
OK-Transformer works. It consists of three Trans-
formers, where Transformer(1) is used to repre-
sent the target sentence, Transformer(2) is used to
represent each textual commonsense description,
and Transformer(3) is used to incorporate com-
monsense embeddings from Transformer(2) into
Transformer(1).

We now concretely analyze the complexity of
integrating external textual commonsense. When
encoding a sample with associated commonsense
descriptions, the complexity consists of three mod-
ules:

• For encoding the target sentence via
Transformer(1), the complexity of encoding
a sentence of length L into dimension D is
O(L2D).

• For encoding textual commonsense descrip-
tions via Transformer(2), the complexity of
encoding C knowledge descriptions of length
L is O(CL2D).

• For integrating the knowledge embeddings
into the target sentence via Transformer(3),
the complexity is O(C2D).

Module Complexity
Target sentence encoding O(L2D)
External knowledge encoding O(CL2D)
Knowledge integration O(C2D)

Table 1: Module complexities.

We summarize the complexity in Table 1. Since
in practice we usually have L2 ≫ C, the key is is
to reduce the complexity of encoding for textual
commonsense descriptions, i.e., reduce O(CL2D).

3760

Relation to retrieval-based knowledge incor-
poration Integrating text commonsense is related
to learning dense retrievers for efficiently retriev-
ing and introducing external textual commonsense,
such as REALM (Guu et al., 2020). In common-
sense incorporation, each sample only retrieves
a small number of knowledge descriptions based
on trigger words. So the key of our problem is
to efficiently and effectively incorporate certain
knowledge descriptions, rather than the informa-
tion retrieval in dense retrievers. Specifically, dense
retrievers typically consist of a retriever and a
knowledge-augmented encoder. Our work can be
analogous to reducing the cost of the knowledge-
augmented encoder.

2.2 Problem Formulation

We now formulate the problem of batch partition-
ing. As stated in the introduction, different samples
may correspond to the same textual commonsense
description. We only need to encode the distinct
commonsense descriptions once for a batch of sam-
ples. Therefore, the goal of batch partitioning is
to minimize the number of distinct commonsense
descriptions per batch.

More formally, suppose the training data is
Dtrain = {xi, T (xi), yi}Ni=1, where xi is the orig-
inal sample, yi is the corresponding label, and
T (xi) = {ti1, · · · , tici} is a collection of exter-
nal knowledge descriptions for xi. For a batch with
s samples x1, · · · , xs, the number of knowledge
descriptions we need to encode is |⋃s

i=1 T (xi)|.
For convenience, we assume that N is divisible

by batch size s. To reduce the time complexity,
we need to partition Dtrain into k = N/s batches
B1, · · · , Bk such that each batch contains s sam-
ples and the total number of distinct textual com-
monsense descriptions in each batch is minimized:

min
k∑

i=1

|
⋃

x∈Bi

T (x)|

s.t. |Bi| = s (size constraint for each batch)
(1)

3 Solving the Batch Partitioning Problem

To solve the batch partitioning problem, we first
approximate the upper bound of Eq. (1) in § 3.1.
We minimize its upper bound instead of directly
minimizing Eq. (1). In § 3.2, we show that optimiz-
ing the upper bound can be reduced to the classic

minimum graph k-cut problem, so that some well-
studied algorithms can be applied. We show how
we adapt the classical spectral clustering to this
problem in § 3.3, and how to scale it up in § 3.4.

3.1 Upper Bound Analysis
We analyze the upper bound of Eq. (1) in Theo-
rem 1.
Theorem 1 (Upper bound).

k∑

i=1

|
⋃

x∈Bi

T (x)|

≤
k∑

i=1

[
∑

x∈Bi

|T (x)| − sExa,xb∈Bi,xa ̸=xb
|T (xa) ∩ T (xb)|]

(2)

Proof. For a batch B with s samples {x1, · · · , xs},
we have:

|
s⋃

i=1

T (xi)| =
s∑

i=1

|T (xi)−
i−1⋃

j=1

T (xj)|

=
s∑

i=1

|T (xi)−
i−1⋃

j=1

T (xj) ∩ T (xi)|

=

s∑

i=1

|T (xi)| −
s∑

i=1

|
i−1⋃

j=1

T (xj) ∩ T (xi)|

≤
s∑

i=1

|T (xi)| −
s∑

i=1

max
1≤j≤i−1

|T (xj) ∩ T (xi)|

(3)

The upper bound in Eq. (3) after relaxation is
related to the sample order of that batch, while
our original objective in Eq. (1) is actually order-
independent. To introduce order-independence, let
π be an arrangement of 1 · · · s that πi ∈ {1, · · · , s}.
Noticing that

∑s
i=1 |T (xi)| is a constant, based on

the order-independence, we transform Eq. (3) into
the expectation under different πs:

Eπ

s∑

i=1

max
1≤j≤i−1

|T (xπj) ∩ T (xπi)|

=
s∑

i=1

Eπ max
1≤j≤i−1

|T (xπj) ∩ T (xπi)|

≥
s∑

i=1

max
1≤j≤i−1

Eπ |T (xπj) ∩ T (xπi)|

= sExa,xb∈Bi,xa ̸=xb
|T (xa) ∩ T (xb)|

(4)

Therefore Theorem 1 holds.

It is worth highlighting that the relaxation in the
last inequality of Eq. (3) is valid due to the non-
random distribution of words in samples. Specifi-
cally, samples with similar meanings tend to have
similar word distributions. By grouping similar

3761

samples into the same batch, each sample pair
within a batch will possess similar textual com-
monsense knowledge descriptions. This allows us
to use the maximal common descriptions between
T (xi) and T (xj) as an approximation for the com-
mon descriptions between T (xi) and

⋃i−1
j=1 T (xj).

According to Theorem 1, since∑s
i=1

∑
x∈Bi

|T (x)| =
∑

x∈Dtrain
|T (x)| is

a constant, minimizing Eq. (1) is equivalent to
maximizing:

k∑

i=1

Exa,xb∈Bi,xa ̸=xb
|T (xa) ∩ T (xb)| (5)

We will show that this is a balanced graph k-cut
problem in § 3.2.

3.2 Connection to the Graph k-Cut Problem
We now illustrate the relationship between Eq. (5)
and the graph k-cut problem. We demonstrate that,
with proper transformation, maximizing Eq. (5)
can be reduced to the graph k-cut problem. Addi-
tionally, in § 3.3, we explain how to incorporate
the constraint of the size of each mini-batch using
the balanced graph k-cut.

Consider constructing a weighted graph G(V,E)
as follows:

• For each sample xi in the training data, create
a vertex vi.

• For each pair of distinct vertices (vi, vj), cre-
ate an edge between them with a weight of
|T (xi) ∩ T (xj)|.

The graph k-cut for G(V,E) partitions G(V,E)
into k non-empty components: V1, · · · , Vk such
that the sum weight of cross-component edges
is minimized. According to the construction of
G(V,E), maximizing Eq. (5) is equivalent to mini-
mizing the sum weight of the cut. This is formal-
ized in Theorem 2.

Theorem 2 (Relation to minimum k-cut problem).
Suppose the weight of the k-cut for G(V,E) is w,
then we have:

Eq. (5) =
2

s(s− 1)

n−1∑

i=1

n∑

j=i

|T (xi) ∩ T (xj)| − w

(6)

Proof. A k-cut of G(V,E) consists of k compo-
nents. These k components correspond to k batches
in the k-partition. Therefore, the sum weight of

inner-component edges of the k-cut is equal to
Eq. (5) ∗ s(s−1)

2 . Since the total weight of edges
in G(V,E) is equal to the sum weight of inner-
component edges plus the sum weight of the cut,
Theorem 2 holds.

As
∑n−1

i=1

∑n
j=i |T (xi) ∩ T (xj)| is a constant

for the given training data, Theorem 2 shows that
maximizing Eq. (5) is equivalent to minimizing the
k-cut for G(V,E). Thus, we convert the problem
of maximizing Eq. (5) into the classic minimum
k-cut problem.

3.3 Spectral Clustering for the Balanced
k-Cut

Based on the analysis in § 3.2, we propose to use
spectral clustering, a widely used approach for
solving the minimum graph k-cut problem, as our
batch partition algorithm. Spectral clustering em-
ploys spectral relaxation of the ratio/normalized cut
and uses k-means in the embedding of the vertices
found by the first k eigenvectors of the graph Lapla-
cian in order to obtain the clustering. In addition to
the classic minimum graph k-cut problem, we need
to incorporate the constraint that each cut/batch
must have a size of s.

To incorporate the batch size constraint, we
make a simple modification to the k-means step
in spectral clustering. In the traditional k-means,
each node is assigned to the nearest cluster center.
In our algorithm, if the nearest cluster center has
already been assigned s nodes, the node will be
assigned to the nearest center that has fewer than
s assigned nodes. The specific spectral clustering
algorithm is presented as follows.

1. Compute the spectral embedding Y ∈ Rn×k

by stacking the normalized first k eigenvectors
of G(V,E) in columns as described in (Ng
et al., 2002).

2. Treat the i-th row of Y as the feature of the
i-th training point ei ∈ Rk.

3. Given an initial set of k means m1, · · · ,mk

by randomly selecting k nodes as centers,
repeat the following two steps until conver-
gence:

(a) Assignment step Assign nodes to cen-
ters:

i. Compute distances to centers
disi,j = distance(ei,mj), where
the Euclidean distance is used.

3762

ii. Sort i, j in ascending order of disi,j
for all 1 ≤ i ≤ n, 1 ≤ j ≤ k.

iii. Iterate through all i, j. If node i is not
assigned in this round and center j
has less than s assigned nodes, assign
node i to center j.

(b) Update step Compute new centers by
taking the mean of their assigned nodes.

3.4 Spectral Clustering at Scale

The above algorithm consists of computation of the
eigenvectors, and the use of k-means. K-means is
efficient even for large-scale data. However, when
n and k are large, the graph construction and eigen-
vectors computation become computationally ex-
pensive.

To compute the spectral embeddings at scale,
high-performance optimization techniques are
available such as (Liu et al., 2013; Kolev and
Mehlhorn, 2016; Boutsidis et al., 2015; Tremblay
et al., 2016). Also, in our experiments, a simple
trick was found that yields meaningful results: only
calculate k′-dimensional feature vectors (k′ < k)
and perform k-means with the k′ dimensions. We
found that k′ = 8 is a good practice in our experi-
ments.

4 Related Work

Integrating knowledge into language models
has been one of the focuses of language model-
ing research in recent years. The main integra-
tion methods currently include using pre-trained
entity embeddings, and constructing knowledge-
aware corpora. ERNIE (Zhang et al., 2019), Know-
BERT (Peters et al., 2019), and KGLM (Logan
et al., 2019) are typical methods using pre-trained
entity embeddings. ERNIE uses Wikidata (Vran-
dečić and Krötzsch, 2014) as the knowledge base
and uses TransE (Bordes et al., 2013) to encode
knowledge. KnowBERT, on the other hand, uses
skip-gram like objective (Mikolov et al., 2013)
based on Wikipedia descriptions as the pre-trained
entity embeddings. In addition, KnowBERT adds
a loss on entity linking to the pre-trained objective.
KGLM (Logan et al., 2019) allows modification/up-
dating of knowledge by building a local knowl-
edge graph for the target sentence. WKLM (Xiong
et al., 2019) constructs a corpus of incorrect knowl-
edge descriptions by replacing Wikipedia’s entities
with different entities of the same type. It trains
the model to identify incorrect and correct knowl-

edge descriptions. Recently, models that integrate
textual knowledge have also been proposed. In
this paper, we adopt the model structure in OK-
Transformer (Cui and Chen, 2022).

Textual knowledge bases Noting the deficien-
cies of symbolic knowledge in terms of expres-
siveness and contextual information representation,
some work has started to use text as a form of
knowledge. ATOMIC (Sap et al., 2019; Hwang
et al., 2021) is a large-scale manually annotated
common-sense textual knowledge base that in-
cludes social interaction, event-centered, physical
entity. ATOMIC contains knowledge like (PersonX
reaches PersonX’s home, Before, PersonX needs
to park the car). ASER (Zhang et al., 2020) is an
eventuality knowledge graph of activities, states,
events, and their relations. Its knowledge atoms are
in natural language form, e.g. (I do not have lunch,
succession, I am hungry). COMET (Bosselut et al.,
2019) is an extension of ATOMIC based on the gen-
erative language model. It mainly solves the prob-
lem of insufficient coverage of ATOMIC. Some
primitive research (Guan et al., 2020; Shwartz et al.,
2020) has started to apply these textual knowledge
bases in some specific tasks. OK-Transformer (Cui
and Chen, 2022) is proposed to integrate textual
knowledge for general purposes. However, in our
experimental tests, it takes too much time in encod-
ing the commonsense. To our knowledge, there is
still a lack of research on how to integrate textual
knowledge into general text understanding tasks
efficiently.

Comparison with dense textual knowledge re-
triever When introducing external texts, another
style is to use a retriever that returns only top k
candidate texts in terms of similarity (Chen et al.,
2017; Karpukhin et al., 2020; Wang et al., 2019).
However, this method requires a heavy pre-training
process to learn the retriever. On the other hand, for
the textual knowledge base we use in this paper, we
can directly use the manually labeled trigger words
for each knowledge description to retrieve knowl-
edge. Therefore, in this paper, we focus on how
to efficiently and effectively integrate knowledge
from a textual knowledge base.

High-performance language models More gen-
eral techniques for high-performance language
models have also received extensive studies. The
main approaches of previous studies include (1)
model compression and quantization (Sanh et al.,
2019; Jacob et al., 2018), and (2) efficient repre-

3763

sentation of long texts (Kitaev et al., 2019; Peng
et al., 2020). However, the model compression
approaches require heavy pre-training before they
can be adapted to language models. Moreover,
the techniques for optimizing the efficiency for
long text do not have significant effects on short
texts (Peng et al., 2020). Besides, each common-
sense description we considered in this paper tends
to be short. In addition, these works have not con-
sidered the characteristics of the knowledge inte-
gration problem in this paper, i.e., a training sample
corresponds to multiple candidate textual knowl-
edge from the knowledge base.

5 Experiments

In this section, we conducted extensive experiments
to evaluate batch partitioning. We aim to address
the following key questions:

1. (§ 5.2) How much is the efficiency improve-
ment of batch partitioning? Can it improve
efficiency without sacrificing effectiveness?

2. (§ 5.3) What is the scalability of batch parti-
tioning as an acceleration method, and can it
be applied to large-scale training?

3. (§ 5.4) Is the main theoretical contribution of
this paper, i.e., solving the balanced graph-k
cut by spectral clustering, consistent with the
real datasets?

5.1 Implementation Details and Setup
Textual knowledge base We follow (Cui and Chen,
2022) to use ATOMIC2020 (Hwang et al., 2021)
as the textual knowledge base. Each atom in
ATOMIC2020 is commonsense in text form. For
each sentence in the downstream task, we retrieve
the knowledge associated with it from the tex-
tual knowledge base. Note that, unlike retriev-
ing knowledge from free text (Guu et al., 2020),
the textual knowledge base ATOMIC2020 is con-
structed manually, and each knowledge description
has corresponding trigger words. These trigger
words are usually verbs or verb phrases. We re-
trieve related textual commonsense descriptions by
keyword-matching of these trigger words.

Model architecture We use OK-
Transformer (Cui and Chen, 2022) as the
backbone of our model. It directly incorporates
extra knowledge without pre-training. OK-
Transformer is based on either BERT or RoBERTa.
We use OK-Transformer based on BERT by

default. We also follow the hyperparameter
settings of OK-Transformer. All experiments were
run on 8 Nvidia RTX 3090Ti GPUs.

Datasets We evaluate batch partitioning via com-
monsense reasoning and sentence classification.
Since the textual knowledge introduced in this pa-
per is commonsense descriptions, we first verify
whether the proposed method in this paper could
be applied to the commonsense reasoning tasks.
To this end, we choose a wide range of common-
sense reasoning tasks to conduct the experiments:
CommonsenseQA (Talmor et al., 2019), Physi-
calQA (Bisk et al., 2020), as well as several Wino-
grad Schema Challenge (WSC) datasets including
WSC273 (Levesque et al., 2012), PDP (Morgen-
stern et al., 2016), WinoGrande (Sakaguchi et al.,
2019), WinoGender (Rudinger et al., 2018). Fur-
thermore, for a comprehensive comparison, we also
evaluate the efficiency and effectiveness of the pro-
posed batch partitioning method on the text classi-
fication benchmark GLUE (Wang et al., 2018).

5.2 Effectiveness and Efficiency
Baselines To verify the efficiency and effective-
ness of batch partitioning, we used the following
baselines:

• Vanilla BERT/RoBERTa without external
knowledge.

• OK-Transformer To show the efficiency
gains of the batch partitioning proposed in
this paper, we compare it with the original
OK-Transformer. The baseline randomly par-
titions samples into batches. We consider this
baseline as the lower upper bound of effec-
tiveness of commonsense integration.

• Frozen knowledge encodings For a compre-
hensive comparison, we propose to freeze the
encoding of commonsense descriptions dur-
ing fine-tuning. This approach allows us to
introduce external textual commonsense de-
scriptions via embedding lookup with mini-
mal time cost. We consider this baseline as
the upper bound on the efficiency of com-
monsense integration.

The results of commonsense reasoning and text
classification are presented in Table 2 and Table 3,
respectively. The effectiveness of our batch parti-
tioning approach is demonstrated by its improve-
ment over vanilla language models on both com-
monsense reasoning and text classification tasks.

3764

LM Comm.QA PhysicalQA WSC273 PDP WinoGrande WinoGender Avg. Speed-up ↑
BERT BERT 55.86 68.71 66.30 85.00 51.38 68.19 65.44 -
Frozen knowledge BERT 56.43 68.06 65.93 83.33 51.30 68.47 65.59 1.4×
OK-Transformer BERT 56.27 69.09 67.40 86.67 52.64 71.53 66.56 1.0×
Batch Partitioning BERT 56.59 69.53 66.67 86.67 52.17 72.78 67.40 1.4×
RoBERTa RoB. 73.55 79.76 90.10 90.00 - 94.60 83.95 -
Frozen knowledge RoB. 75.02 52.77 90.48 88.33 - 96.81 80.01 1.5×
OK-Transformer RoB. 75.92 80.09 91.58 90.00 - 95.00 84.75 1.0×
Batch Partitioning RoB. 75.59 80.20 90.48 91.66 - 96.25 85.14 1.4×

Table 2: Results on commonsense reasoning tasks. The effectiveness of batch partitioning surpasses the vanilla
BERT/RoBERTa, and is competitive with its upper bound (OK-Transformer). In terms of efficiency, the speed-up of
batch partitioning is also competitive to its upper bound (frozen knowledge). RoB. denotes RoBERTa.

LM MRPC CoLA RTE QNLI STS-B SST-2 Avg. Speed-up
BERT BERT 86.52/90.66 59.50 71.43 91.20 89.35/88.93 91.97 82.28 -
Frozen knowledge BERT 87.50/91.28 57.31 70.76 91.71 87.31/87.20 92.43 81.78 2.3×
OK-Transformer BERT 87.50/91.04 58.29 72.20 91.58 89.82/89.46 92.66 82.54 1.0×
Batch Partitioning BERT 87.99/91.45 61.41 71.48 91.32 89.64/89.19 93.69 83.09 2.1×
RoBERTa RoB. 90.49/93.07 66.84 86.28 93.37 91.83/91.95 95.64 87.86 -
Frozen knowledge RoB. 89.71/92.61 68.22 87.36 94.39 90.74/90.47 96.10 88.19 2.4×
OK-Transformer RoB. 91.91/94.24 66.89 86.28 94.71 92.19/92.36 96.44 88.49 1.0×
Batch Partitioning RoB. 90.69/93.44 67.75 85.92 94.07 92.41/92.20 96.22 88.27 2.1×

Table 3: Results on text classification tasks. Both the effectiveness and the efficiency of batch partitioning are
competitive to their upper bounds (OK-Transformer and frozen knowledge).

0

0.3

0.6

0.9

1.2

1.5

90

91

92

93

94

95

16 32 64

Sp
ee
d-
U
p

Ac
cu
ra
cy

Upper Number of Knowledge Descriptions

Batch Partitioning OK-Transformer Speed-Up

Figure 2: The effect of the scale of extra commonsense.
We control the scale by limiting the upper number of
commonsense descriptions per sample in SST-2.

The effectiveness is comparable or slightly superior
to that of OK-Transformer, which serves as the up-
per bound for effectiveness. In terms of efficiency,
our approach significantly accelerates knowledge
integration models across a range of tasks. On aver-
age, it reduces the time cost for knowledge encod-
ing by 40% for commonsense reasoning tasks, and
110% for text classification tasks. This acceleration
is close to the frozen knowledge, and serves as the
upper bound for efficiency. Overall, our approach
is close to its efficiency upper bound without losing
effectiveness.

5.3 Scalability for Dataset Sizes, Device
Capacities, and Knowledge Sizes

In this subsection, we investigate the scalability
of batch partitioning with different batch sizes, as
well as the different dataset sizes. Larger dataset
sizes usually mean devices with larger memory. In
particular, we calculated the speedups of knowl-
edge encoding for different batch sizes and differ-
ent tasks. The results are shown in Fig. 4. The
datasets are sorted by size in descending order.

It can be clearly seen that as the size of the
dataset rises or the memory of the device rises
(larger batch size), the speedup of batch partition-
ing becomes more significant. This is because, for
data-intensive tasks, the knowledge overlapping
among different samples is more significant, which
increases the feasibility of using batch partition-
ing. This result verifies the scalability of batch
partitioning.

We also investigate the scalability of batch parti-
tioning over different scales of integrated common-
sense. To control the scale, we set the upper num-
ber of commonsense descriptions for each sample
to 16/32/64, respectively, and study the efficiency.
Intuitively, richer commonsense descriptions lead
to higher effectiveness but more computation cost.
The results are shown in Fig. 2.

As commonsense knowledge becomes richer, the

3765

0

0.2

0.4

0.6

0.8

4

8

12

16

1 2 3 4 5

Di
st

an
ce

 to
 th

e
ce

nt
ro

id

Av
g.

 d
ist

in
ct

 p
er

 b
at

ch

Iterations

avg disinct
avg distance

(a) MRPC

0

0.2

0.4

0.6

0.8

1

0

2

4

6

8

1 2 3 4 5

Di
st

an
ce

 to
 th

e
ce

nt
ro

id

Av
g.

 d
ist

in
ct

 p
er

 b
at

ch

Iterations

(b) CoLA

0

0.2

0.4

0.6

0.8

10

15

20

25

1 2 3 4 5

Di
st

an
ce

 to
 th

e
ce

nt
ro

id

Av
g.

 d
ist

in
ct

 p
er

 b
at

ch

Iterations

(c) RTE

0

0.2

0.4

0.6

0.8

1

2

4

6

8

1 2 3 4 5

Di
st

an
ce

 to
 th

e
ce

nt
ro

id

Av
g.

 d
ist

in
ct

 p
er

 b
at

ch

Iterations

(d) STS-B

Figure 3: Strong correlation between the distinct commonsense descriptions per batch and the average distance to
the centroid during clustering.

QNLI SST-2 CoLA STS-B MRPC RTE
Dataset

8
16

32
B

at
ch

 S
iz

e

1.4 1.5 1.2 1.5 1.4 1.3

1.8 1.9 1.6 1.7 1.5 1.5

1.9 2.8 1.9 1.8 1.6 1.6

1.25 1.50 1.75 2.00 2.25 2.50 2.75

Figure 4: Speed-up of proposed batch partitioning
method over different training batch size and dataset
size. Note that the datasets are arranged in descending
order according to dataset size.

effectiveness and the acceleration both increase.
This is because the knowledge overlapping among
samples also becomes more significant. The result
verifies that batch partitioning is applicable for in-
corporating large-scale commonsense knowledge
bases.

5.4 Effect of Spectral Clustering Theory

In this paper, we propose the use of spectral clus-
tering to solve the batch partitioning problem. We
approximate and optimize the distinct number of
descriptions per batch in Eq. (1) by minimizing the
distance of each node to the centroid of the cluster
in spectral clustering. In this subsection, we demon-
strate the rationale behind this approximation by
highlighting the strong correlation between the ob-
jective of Eq. (1) and the distance minimization in
spectral embeddings.

To this end, we plot how the centroid distance
and the distinct descriptions per batch vary at each
iteration of the spectral clustering algorithm in
Fig. 3. The results show a strong correlation be-
tween the value we directly optimize (i.e., the cen-

troid distance) and the target of the batch parti-
tioning (i.e., distinct descriptions per batch). This
supports the feasibility of using spectral clustering
to convert the batch partitioning problem into a bal-
anced graph k-cut problem and solve it efficiently.

6 Conclusion

In this paper, we study how to improve the effi-
ciency of incorporating commonsense knowledge
in language models. Due to the high encoding
costs of commonsense descriptions, it is crucial to
reduce their encoding complexity. Our idea is that
by carefully dividing samples with similar descrip-
tions into the same batch, the knowledge encoding
utilization can be improved.

With such an idea, we theoretically analyze the
optimization objective of this batch partitioning.
We found that the upper bound of this problem can
be reduced to the classical graph k-cut problem.
We propose to use the well-studied spectral clus-
tering algorithm to optimize the batch partitioning.
By experimenting with a variety of tasks, we show
that the proposed batch partitioning approaches its
upper bound in terms of both effectiveness and ef-
ficiency. And the method is more applicable for
larger datasets and on devices with more capabili-
ties.

7 Limitations

The theoretical results and the algorithm should be
applicable for other knowledge integration models
which encode target sentences and associated tex-
tual knowledge descriptions in mini-batches. How-
ever, this paper does not extensively apply the pro-
posed method to various knowledge integration
models to explore its efficiency and effectiveness.

3766

References
Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,

et al. 2020. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 7432–7439.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. Advances in neural information pro-
cessing systems, 26.

Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chai-
tanya Malaviya, Asli Celikyilmaz, and Yejin Choi.
2019. COMET: Commonsense transformers for auto-
matic knowledge graph construction. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4762–4779, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Christos Boutsidis, Prabhanjan Kambadur, and Alex Git-
tens. 2015. Spectral clustering via the power method-
provably. In International conference on machine
learning, pages 40–48. PMLR.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine
Bordes. 2017. Reading Wikipedia to answer open-
domain questions. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1870–1879,
Vancouver, Canada. Association for Computational
Linguistics.

Wanyun Cui and Xingran Chen. 2022. Enhancing nat-
ural language representation with large-scale out-of-
domain commonsense. In Findings of the Associa-
tion for Computational Linguistics: ACL 2022, pages
1746–1756, Dublin, Ireland. Association for Compu-
tational Linguistics.

Tianqing Fang, Hongming Zhang, Weiqi Wang,
Yangqiu Song, and Bin He. 2021. Discos: Bridg-
ing the gap between discourse knowledge and com-
monsense knowledge. In Proceedings of the Web
Conference 2021, pages 2648–2659.

Jian Guan, Fei Huang, Zhihao Zhao, Xiaoyan Zhu, and
Minlie Huang. 2020. A knowledge-enhanced pre-
training model for commonsense story generation.
Transactions of the Association for Computational
Linguistics, 8:93–108.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Mingwei Chang. 2020. Retrieval augmented
language model pre-training. In International Con-
ference on Machine Learning, pages 3929–3938.
PMLR.

Jena D. Hwang, Chandra Bhagavatula, Ronan Le Bras,
Jeff Da, Keisuke Sakaguchi, Antoine Bosselut, and
Yejin Choi. 2021. Comet-atomic 2020: On sym-
bolic and neural commonsense knowledge graphs. In
AAAI.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Meng-
long Zhu, Matthew Tang, Andrew Howard, Hartwig
Adam, and Dmitry Kalenichenko. 2018. Quanti-
zation and training of neural networks for efficient
integer-arithmetic-only inference. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 2704–2713.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6769–6781,
Online. Association for Computational Linguistics.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya.
2019. Reformer: The efficient transformer. In Inter-
national Conference on Learning Representations.

Pavel Kolev and Kurt Mehlhorn. 2016. A note on spec-
tral clustering. In 24th Annual European Sympo-
sium on Algorithms (ESA 2016). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik.

Hector Levesque, Ernest Davis, and Leora Morgenstern.
2012. The winograd schema challenge. In Thir-
teenth International Conference on the Principles of
Knowledge Representation and Reasoning. Citeseer.

Jialu Liu, Chi Wang, Marina Danilevsky, and Jiawei
Han. 2013. Large-scale spectral clustering on graphs.
In Twenty-Third International Joint Conference on
Artificial Intelligence.

Robert Logan, Nelson F. Liu, Matthew E. Peters, Matt
Gardner, and Sameer Singh. 2019. Barack’s wife
hillary: Using knowledge graphs for fact-aware lan-
guage modeling. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 5962–5971, Florence, Italy. Associa-
tion for Computational Linguistics.

Chaitanya Malaviya, Chandra Bhagavatula, Antoine
Bosselut, and Yejin Choi. 2020. Commonsense
knowledge base completion with structural and se-
mantic context. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 34, pages
2925–2933.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositionality.
In Advances in neural information processing sys-
tems, pages 3111–3119.

Leora Morgenstern, Ernest Davis, and Charles L Ortiz.
2016. Planning, executing, and evaluating the wino-
grad schema challenge. AI Magazine, 37(1):50–54.

Andrew Y Ng, Michael I Jordan, and Yair Weiss. 2002.
On spectral clustering: Analysis and an algorithm. In
Advances in neural information processing systems,
pages 849–856.

3767

https://doi.org/10.18653/v1/P19-1470
https://doi.org/10.18653/v1/P19-1470
https://doi.org/10.18653/v1/P17-1171
https://doi.org/10.18653/v1/P17-1171
https://doi.org/10.18653/v1/2022.findings-acl.138
https://doi.org/10.18653/v1/2022.findings-acl.138
https://doi.org/10.18653/v1/2022.findings-acl.138
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/P19-1598
https://doi.org/10.18653/v1/P19-1598
https://doi.org/10.18653/v1/P19-1598

Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy
Schwartz, Noah Smith, and Lingpeng Kong. 2020.
Random feature attention. In International Confer-
ence on Learning Representations.

Matthew E Peters, Mark Neumann, Robert Logan, Roy
Schwartz, Vidur Joshi, Sameer Singh, and Noah A
Smith. 2019. Knowledge enhanced contextual word
representations. In Conference on Empirical Meth-
ods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language
Processing (EMNLP-IJCNLP).

Syama Sundar Rangapuram, Pramod Kaushik Mu-
drakarta, and Matthias Hein. 2014. Tight continuous
relaxation of the balanced k-cut problem. Advances
in Neural Information Processing Systems, 27:3131–
3139.

Rachel Rudinger, Jason Naradowsky, Brian Leonard,
and Benjamin Van Durme. 2018. Gender bias in
coreference resolution. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers),
pages 8–14.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhaga-
vatula, and Yejin Choi. 2019. Winogrande: An ad-
versarial winograd schema challenge at scale. arXiv
preprint arXiv:1907.10641.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Maarten Sap, Ronan Le Bras, Emily Allaway, Chan-
dra Bhagavatula, Nicholas Lourie, Hannah Rashkin,
Brendan Roof, Noah A Smith, and Yejin Choi. 2019.
Atomic: An atlas of machine commonsense for if-
then reasoning. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 33, pages
3027–3035.

Vered Shwartz, Peter West, Ronan Le Bras, Chandra
Bhagavatula, and Yejin Choi. 2020. Unsupervised
commonsense question answering with self-talk. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 4615–4629.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. Commonsenseqa: A question
answering challenge targeting commonsense knowl-
edge. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4149–4158.

Nicolas Tremblay, Gilles Puy, Rémi Gribonval, and
Pierre Vandergheynst. 2016. Compressive spectral
clustering. In International conference on machine
learning, pages 1002–1011. PMLR.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Denny Vrandečić and Markus Krötzsch. 2014. Wiki-
data: a free collaborative knowledgebase. Communi-
cations of the ACM, 57(10):78–85.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. Glue:
A multi-task benchmark and analysis platform for
natural language understanding. In Proceedings of
the 2018 EMNLP Workshop BlackboxNLP: Analyz-
ing and Interpreting Neural Networks for NLP, pages
353–355.

Zhiguo Wang, Patrick Ng, Xiaofei Ma, Ramesh Nal-
lapati, and Bing Xiang. 2019. Multi-passage bert:
A globally normalized bert model for open-domain
question answering. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 5878–5882.

Ledell Wu, Fabio Petroni, Martin Josifoski, Sebastian
Riedel, and Luke Zettlemoyer. 2020. Scalable zero-
shot entity linking with dense entity retrieval. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 6397–6407.

Wenhan Xiong, Jingfei Du, William Yang Wang, and
Veselin Stoyanov. 2019. Pretrained encyclopedia:
Weakly supervised knowledge-pretrained language
model. In International Conference on Learning
Representations.

Hongming Zhang, Xin Liu, Haojie Pan, Yangqiu Song,
and Cane Wing-Ki Leung. 2020. Aser: A large-scale
eventuality knowledge graph. In Proceedings of the
web conference 2020, pages 201–211.

Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang,
Maosong Sun, and Qun Liu. 2019. Ernie: Enhanced
language representation with informative entities. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1441–
1451.

3768

ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

Sec 5

� A2. Did you discuss any potential risks of your work?
Not applicable. Left blank.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Left blank.

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �7 Did you use or create scientific artifacts?
Left blank.

� B1. Did you cite the creators of artifacts you used?
Not applicable. Left blank.

� B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Not applicable. Left blank.

� B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Not applicable. Left blank.

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Not applicable. Left blank.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Not applicable. Left blank.

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Left blank.

C �3 Did you run computational experiments?
we discuss the experiments in sec5

�7 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
parameters same as BERT/RoBERTa.

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

3769

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
in sec5

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Fig. 2

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
We follow the implementation and experiments setting of OK-Transformer as we mentioned in sec 5.

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Not applicable. Left blank.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
Not applicable. Left blank.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
Not applicable. Left blank.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Not applicable. Left blank.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Not applicable. Left blank.

3770

