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Abstract

Currently, learning better unsupervised sen-
tence representations is the pursuit of many
natural language processing communities. Lots
of approaches based on pre-trained language
models (PLMs) and contrastive learning have
achieved promising results on this task. Experi-
mentally, we observe that the over-smoothing
problem reduces the capacity of these pow-
erful PLMs, leading to sub-optimal sentence
representations. In this paper, we present
a Simple method named Self-Contrastive
Learning (SSCL) to alleviate this issue, which
samples negatives from PLMs intermediate lay-
ers, improving the quality of the sentence rep-
resentation. Our proposed method is quite
simple and can be easily extended to vari-
ous state-of-the-art models for performance
boosting, which can be seen as a plug-and-
play contrastive framework for learning un-
supervised sentence representation. Exten-
sive results prove that SSCL brings the supe-
rior performance improvements of different
strong baselines (e.g., BERT and SimCSE)
on Semantic Textual Similarity and Transfer
datasets. Our codes are available at https:
//github.com/nuochenpku/SSCL.

1 Introduction

Learning effective sentence representations is a
long-standing and fundamental goal of natural lan-
guage processing (NLP) communities (Hill et al.,
2016; Conneau et al., 2017; Kim et al., 2021; Gao
etal., 2021; You et al., 2022), which can be applied
to various downstream NLP tasks such as Seman-
tic Textual Similarity (Agirre et al., 2012, 2013,
2014, 2015, 2016; Cer et al., 2017; Marelli et al.,
2014) and information retrieval (Xiong et al., 2021;
Li et al., 2022). Compared with supervised sen-
tence representations, unsupervised sentence repre-
sentation learning is more challenging because of
lacking enough supervised signals.
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Figure 1: Inter-layer cosine similarity of sentence rep-
resentations computed from SimCSE and Ours. We
calculate the sentence representation similarity between
two adjacent layers on STS-B test set. In this exam-
ple, we extend our methods of SimCSE by utilizing the
penultimate layer as negatives.

In the context of unsupervised sentence repre-
sentation learning, prior works (Devlin et al., 2018;
Lan et al., 2020) tend to directly utilize large pre-
trained language models (PLMs) as the sentence
encoder to achieve promising results. Recently, re-
searchers point that the representations from these
PLMs suffer from the anisotropy (Li et al., 2020;
Su et al., 2021) issue, which denotes the learned
representations are always distributed into a narrow
one in the semantic space. More recently, several
works (Giorgi et al., 2021; Gao et al., 2021) prove
that incorporating PLMs with contrastive learning
can alleviate this problem, leading to the distribu-
tion of sentence representations becoming more
uniform. In practice, these works (Wu et al., 2020a;
Yan et al., 2021a) propose various data augmenta-
tion methods to construct positive sentence pairs.
For instance, Gao et al. (2021) propose to leverage
dropout as the simple yet effective augmentation
method to construct positive pairs, and the corre-
sponding results are better than other more complex
augmentation methods.

Experimentally, aside from the anisotropy and
tedious sentence augmentation issues, we observe
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Model Ours

79.03

SimCSE (10)
70.45

SimCSE (12)
76.85

Performance

Table 1: Spearman’s correlation score of different mod-
els on STS-B. SimCSE (10) and SimCSE (12) means
we use the 10 and 12 transformer layers in the encoder.

a new phenomenon also makes the model sub-
optimized: Sentence representation between two
adjacent layers in the unsupervised sentence en-
coders are becoming relatively identical when the
encoding layers go deeper. Figure 1 shows the
sentence representation similarity between two ad-
jacent layers on STS-B test set. The similarity
scores in blue dotted line are computed from Sim-
CSE (Gao et al., 2021), which is the state-of-the-
art PLM-based sentence model. Obviously, we
can observe the similarity between two adjacent
layers (inter-layer similarity) is very high (almost
more than 0.9). Such high similarities refer to that
the model doesn’t acquire adequate distinct knowl-
edge as the encoding layer increases, leading to
the neural network validity and energy (Cai and
Wang, 2020) decreased and the loss of discrimina-
tive power. In this paper, we call this phenomenon
as the inter-layer over-smoothing issue (Tang et al.,
2022).

Intuitively, there are two factors could result in
the above issue: (1) The encoding layers in the
model are of some redundancy; (2) The training
strategy of current model is sub-optimized, making
the deep layers in the encoder cannot be optimized
effectively. For the former, the easiest and most
reasonable way is to cut off some layers in the en-
coder. However, this method inevitably leads to
performance drop. As presented in Table 1, the
performance of SimCSE decreases from 76.85%
to 70.45% when we drop the last two encoder lay-
ers. Meanwhile, almost none existing works have
delved deeper to alleviate the over-smoothing issue
from the latter side.

Motivated by the above concerns, we present
a new training paradigm based on contrastive
learning: Simple contrastive method named Self-
Contrastive Learning (SSCL), which can signif-
icantly improve the performance of learned sen-
tence representations while alleviating the over-
smoothing issue. Simply Said, we utilize hidden
representations from intermediate PLMs layers as
negative samples which the final sentence represen-
tations should be away from. Generally, our SSCL
has several advantages: (1) It is fairly straightfor-

ward and does not require complex data augmenta-
tion techniques; (2) It can be seen as a contrastive
framework that focuses on mining negatives effec-
tively, and can be easily extended into different sen-
tence encoders that aim for building positive pairs;
(3) It can further be viewed as a plug-and-play
framework for enhancing sentence representations.
As presented in Figure 1, ours (red dotted line) that
extend of SImCSE with employing the penultimate
layer sentence representation as negatives results
in a large drop in the inter-layer similarity between
last two adjacent layers (11-th and 12-th), showing
SSCL makes inter-layer sentence representations
more discriminative. Results in Table 1 show ours
also could result in better sentence representations
while alleviating the inter-layer over-smoothing
issue.

We show SSCL brings superior performance im-
provements in 7 Semantic Textual Similarity (STS)
and 7 Transfer (TS) datasets. Experimentally, we
apply our method on two base encoders: BERT and
SimCSE. And the resulting models achieve 15.68%
and 1.65% improvements on STS tasks, separately.
Then, extensive in-depth analysis and probing tasks
are further conducted, revealing SSCL could im-
prove PLMs’ capability to capture the surface, syn-
tactic and semantic information of sentences via
addressing the over-smoothing problem. Besides
of these observations, another interesting finding is
that ours can keep comparable performance while
reducing the sentence vector dimension size signif-
icantly'. For instance, SSCL even obtains better
performances (62.42% vs. 58.83%) while reducing
the vector dimensions from 768 to 256 dimensions
when extending to BERT-base. In general, the con-
tributions of this paper can be summarized as:

* We first observe the inter-layer over-
smoothing issue in current state-of-the-art un-
supervised sentence models, and then propose
SSCL to alleviate this problem, producing su-
perior sentence representations.

* Extensive results prove the effectiveness of
the proposed SSCL on Semantic Textual Sim-
ilarity and Transfer datasets.

* Qualitative and quantitative analysis are in-
cluded to justify the designed architecture and
look into the representation space of SSCL.

'In real industry scenarios like search, embedding vec-

tor dimension is an important factor to influence the dense
retrieval serving cost. Larger size means higher serving cost.
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2 Background

In this section, we first review the formulation of
the over-smoothing issue in PLMs from the per-
spective of the intra-layer and inter-layer. Then
we discuss the difference of over-smoothing and
annisotropy problems.

2.1 Over-smoothing

Recently, Shi et al. (2022) point intra-layer over-
smoothing issue in PLMs from the perspective of
graph, which denotes different tokens in the input
sentence are mapped to quite similar representa-
tions. It can be observed via measuring the sim-
ilarity between different tokens in the same sen-
tence, named token-wise cosine similarity. Given a
sentence X = {x1, X2, ..., X, }, token-wise cosine
similarity of X can be calculated as:

T
X, Xu

1
TokSim =
m(m — 1) ; (1% l2]%0 |2

(1

where m is the number of tokens, x,,, X,, are the
representations of x,,, x,, from PLMs and || - [|2 is
the Euclidean norm.

In this paper, we argue that the over-smoothing
issue also also exists in inter-layer level, which
refers to sentence representations from adjacent
PLMs layers are relatively identical. In detail, inter-
layer over-smoothing means the sentence represen-
tations from adjacent layers have high similarity,
which can be measured by inter-layer similarity:

T
S; Si+1

lIsill2|lsiv1ll2

2)
where s; and s; 1 denote sentence representations
of X from two adjacent layers (i-th and i+1-th) in
PLMs.

In summary, the over-smoothing issue can di-
vided into two folds: inter-layer and intra-layer. In
this paper, we aim at alleviating the over-smoothing
issue from the perspective of inter-layer, improv-
ing the sentence representations. Surprisingly, we
find alleviating over-smoothing in inter-layer also
can alleviate the intra-layer over-smoothing issue
to some extent, which is discussed in Section 5.3.

2.2 Over-smoothing vs. Anisotropy

Currently, the anisotropy issue is widely studied to
improve sentence representations from PLMs. Ad-
mittedly, despite over-smoothing and anisotropy
are related concepts, they are nonetheless com-
pletely diverse. As described in (Li et al., 2020;

Su et al., 2021), the anisotropy problem refers to
the distribution of learnt sentence representations
in the semantic space is always constrained to a
certain area. As illustrated in (Shi et al., 2022),
"over-smoothing” can be summarized as the token
uniformity problems in BERT, which denotes to-
ken representations in the same input sentence are
highly related that is defined as intra-layer over-
smoothing in this paper. Moreover, we extend the
concept of over-smoothing issue to the inter-layer,
which refers there is a significant degree of similar-
ity between sentence representations from neigh-
bouring neural network layers. Experimentally, the
over-smoothing problem can cause one sentence
to have a greater token-wise similarity or nearby
layers in PLMs to have a higher sentence represen-
tation similarity, while anisotropy makes all pairs
of sentences in the dataset achieve a relatively iden-
tical similarity score. Obviously, over-smoothing
is different from the anisotropy issue. Therefore,
we distinguish these two concepts in the paper.

3 Methodology

In this section, we first introduce the traditional
contrastive methods for learning unsupervised sen-
tence representation. Then, we describe the pro-
posed method SSCL for building negatives and
briefly illustrate how to extend SSCL of other con-
trastive frameworks.

3.1 Traditional Contrastive Methods

Considering learning unsupervised sentence rep-
resentation via contrastive learning needs to con-
struct plausible positives or negatives, traditional
contrastive methods (e.g., word deletion, dropout)
tends to utilize data augmentation on training data
to build positives. In detail, given a sentence collec-
tion: X = {X;}/",. Subsequently, we can utilize
some data augmentation methods: f(-) on each
X; € X to construct the semantically related posi-
tive sample X = f(X;) (e.g., dropout, word shuf-
fle and deletion), as shown in Figure 2 (a). Then,
let h; and h;r denote the PLMs (e.g., BERT) last
layer sentence representations of X; and Xj, the
contrastive training objective for (h;, h;") with a
mini-batch of N pairs can be formulated as:

exp(¥(h;,h)/7)
> exp(¥(h;, hy)/7)

where W(,) denotes the cosine similarity function,
T is temperature. Notice that, these methods focus

Licm = —10 3)
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(b) Traditional Contrastive methods with SSCL

Figure 2: The overall architecture of the traditional contrastive methods and our proposed SSCL.

on mining positive examples while directly utilize
in-batch negatives during training. Thereafter, we
introduce SSCL to build useful negatives, and thus,
can be seen as complementary to previous methods.

3.2 SSCL

SSCL is free from external data augmentation pro-
cedures which utilizes hidden representations from
PLMs intermediate layers as negatives. In this pa-
per, we treat the last layer representation as the
final sentence representation which is needed to
optimize. Concretely, we collect the intermediate
M-th layer sentence representation in PLMs, which
is regarded as the negatives of last layer represen-
tation and named as h;, as shown in Figure 2 (b).
Hence, we obtain the negative pairs (h;,h;"). As
aforementioned, we also treat hf as the positive
sample which obtained from any data augmenta-
tion method. Subsequently, the training objective
Lnne can be reformulated as follows:

exp(¥(h;, h)/7)

> ((exp(¥(hi, hy)/7) + exp(¥(h;, hi_)/T)%@

where the first term in the denominator refers to
the original in-batch negatives, and the second term
denotes the intermediate negatives. Through these
methods, SSCL makes the last layer representa-
tion of PLMs more discriminative from the pre-
vious layers via easily enlarging the number of
negatives, and thus, alleviating the over-smoothing
issue. Clearly, our approach is rather straightfor-
ward and can be simply implemented into these
conventional contrastive techniques.

—1log

4 Experiments

4.1 Evaluation Datasets

We conduct our experiments on 7 Semantic Textual
Similarity (STS) tasks and 7 Transfer tasks (TR).
Following the common setting, SentEval toolkit is
used for evaluation purposes.

Semantic Textual Similarity We evaluate our
method on the following seven STS datasets: STS
12-16 (Agirre et al., 2012, 2013, 2014, 2015, 2016),
STS-B (Cer et al., 2017) and SICK-R (Marelli
et al., 2014). And Spearman’s correlation coef-
ficient is used as evaluation metric of the model
performance.

Transfer We evaluate our models on the fol-
lowing transfer tasks: MR (Pang and Lee, 2005),
CR (Hu and Liu, 2004), SUBJ (Pang and Lee,
2004), MPQA (Wiebe et al., 2005), SST-2 (Socher
et al., 2013), TREC (Voorhees and Tice, 2000) and
MRPC (Dolan and Brockett, 2005). Concretely,
we also follow the default settings in (Gao et al.,
2021) to train each sentence representation learning
method.

4.2 Implementation Details

We use the same training corpus from (Gao et al.,
2021) to avoid training bias, which consists of
one million sentences randomly sampled from
Wikipedia. In our SSCL implement, we select
BERT (base and large version) as our backbone
architecture because of its typical impact. 7 is set
to 0.05 and Adam optimizer is used for optimiz-
ing the model. Experimentally, the learning rate
is set to 3e-5 and le-5 for training BERT},s. and
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Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.
Base Version
GloVe embeddings (avg.)o 55.14 70.66 59.73 68.25 63.66 58.02 53.76 61.32
BERT (cls.) 29.70 49.38 39.67 56.03 56.19 43.87 52.06 46.70
SSCL-BERT (cls.) 49.21 67.59 58.96 69.94 68.00 62.87 60.43 62.42
BERT (avg.) 48.26 47.72 46.83 52.30 59.88 54.27 56.41 52.24
SSCL-BERT (avg.) 53.93 63.10 56.41 68.00 70.46 64.85 61.15 62.56
BERT-flow” 58.40 67.10 60.85 75.16 71.22 68.66 64.47 66.55
BERT—whiteningo 57.83 66.90 60.90 75.08 71.31 68.24 63.73 66.28
IS-BERT® 56.77 69.24 61.21 75.23 70.16 69.21 64.25 66.58
CT-BERT" 61.63 76.80 68.47 77.50 76.48 74.31 69.19 72.05
SimCSE 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25
SSCL-SimCSE 71.68 83.50 76.42 83.46 78.39 79.03 71.76 77.90
Large Version
BERT 4 ge (cls.) 33.06 57.64 47.95 55.83 62.42 49.66 53.87 51.49
BERT4rge-flow 65.20 73.39 69.42 74.92 77.63 72.26 62.50 70.76
BERT 4 ge-Whitening 64.35 74.64 69.64 74.68 75.94 60.81 72.47 70.35
Consertiarge 70.69 82.96 74.13 82.78 76.66 77.53 70.47 76.45
SimCSE 4 ge 69.17 84.36 75.09 83.99 78.61 79.54 71.97 77.53
SSCL-SimCSE; ;g 71.98 85.74 77.94 85.94 80.08 81.20 74.28 79.69

Table 2: Sentence embedding performance on STS tasks (Spearman’s correlation, “all” setting). We highlight the
highest numbers among models with the same pre-trained encoder. We run each experiment three times and report
average results. © denotes results from (Gao et al., 2021).

BERT,,4c models. The batch size is set to 64 and ~ STS tasks Table 2 reports the results of methods

max sequence length is 32. It is worthwhile to no-
tice we utilize average pooling over input sequence
token representation and [CLS] vector to obtain
sentence-level representations, separately. More
concretely, we train our model with 1 epoch on a
single 32G NVIDIA V100 GPU. For STS tasks,
we save our checkpoint with best results on STS-B
development set; For Transfer tasks, we use the
average score of 7 seven transfer datasets to find
the best checkpoint.

4.3 Results

Baselines We compare our methods with the fol-
lowing baselines: (1) naive baselines: GloVe aver-
age embeddings (Pennington et al., 2014), Skip-
thought and BERT; (2) strong baselines based
on BERT: BERT-flow (Li et al., 2020), BERT-
whitening (Su et al., 2021), IS-BERT (Zhang et al.,
2020), CT-BERT (Carlsson et al., 2021), Con-
sert (Yan et al., 2021b) and SimCSE. For a fair
comparison, we extend SSCL to BERT and Sim-
CSE, separately. When extending to BERT (SSCL-
BERT), we don’t add any augmentation methods to
construct positives; Extending to SimCSE (SSCL-
SimCSE) means we utilize dropout masks as the
way of building positives.

on 7 STS datasets. From the table, we can observe
that: (1) Glove embeddings outperforms BERT, s,
indicating the anisotropy issue has the negative
impact of BERT sentence representations; (2)
SSCL-BERT}s (cls./avg.) surpasses BERTy s
(cls./avg.) by a large margin (62.42% vs. 46.70%,
62.56% vs. 52.54%), showing the effectiveness of
our proposed SSCL; (3) SSCL-SimCSEp, . boosts
the model performance of SimCSE;,,. (77.90%
vs. 76.25%), representing SSCL can easily extend
of other contrastive model which can be seen as
a plug-and-play framework. Results also prove
incorporating negatives in contrastive learning is
essential for obtaining better sentence representa-
tions. Similar results can be observed in the large
version of the above models.

Transfer tasks Table 3 includes the main re-
sults on 7 transfer datasets. @ From the ta-
ble, we can draw a conclusion that our model
SSCL-BERT}5/SSCL-BERT ;.. outperforms
BERT}45./BERT),,.4¢ On seven datasets, proving
the effectiveness of ours. Meanwhile, SSCL-
SimCSEpq/SSCL-SimCSE; ;.4 also shows a sub-
stantial model performance boost when com-
pared with SImCSEp,s./SImCSE, ;4. For exam-
ple, SSCL-SimCSE; ;.4 improves SimCSE; ;4. to
88.88% (87.17%), suggesting its effectiveness.
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Model MR CR SUBJ MPQA SST TREC MRPC Avg.
GloVe embeddings (avg.) 7725 78.30 91.17 87.85 80.18  83.00 72.87  81.52
Skip-thought 76.50 80.10 93.60 87.10  82.00 92.20 73.00  83.50
BERTpase (cls.) 76.86 82.68 93.73 85.87  80.56  88.20 70.13  82.57
SSCL-BERT} ;. (cls.) 80.48 85.88 95.26 8697 84.84 88.80 69.62  84.55
BERTpqse (avg.) 77.67 83.12 94.46 86.11 80.08  85.12 72.64  82.86
SSCL-BERT s (avg.) 78.87 8428 9531 8740 80.79  86.00 73.12  83.68
SimCSEpqse 81.62 8544 94.01 88.05 85.06 89.10 74.03  85.11
SSCL-SimCSEy ¢ 81.08 86.16 94.21 88.63 8524 89.61 7420  85.61
BERT4rge (cls.) 78.68 84.85 94.21 88.23  84.13  91.40 71.13  84.66
SSCL-BERT 4 ge (cls.) 7393 87.18 94.96 88.75 8596  88.64 7424  85.83
SimCSE;4rge 84.37 88.64 95.26 88.04 8995 90.40 7442 87.17
SSCL-SimCSE; 44 86.01 90.36 95.98 89.04 91.27 93.20 76.29  88.88

Table 3: Transfer task results of different sentence embedding models (measured as accuracy). We highlight the
highest numbers among models with the same pre-trained encoder.

Model TreeDepth  SentLen  CoordInv
(Syntactic)  (Surface) (Semantic)
BERT 21 67 34
SScL® 23.1 75.3 42.1
SimCSE 24 80 50
sscL* 25.3 88.5 60.18

Table 4: Probing task performances for each model.
SSCL® denotes SSCL based on BERT, SSCL* repre-
sents SSCL based on SimCSE. Concretely, we use the
large version of these models.

5 Analysis

In this section, we first conduct qualitative experi-
ments via probing tasks to analyse the structural of
the resulting representations (Table 4), including
syntactic, surface and semantic. Then, we explore
adequate quantitive analysis to verify the effective-
ness of SSCL, such as the negative sampling strat-
egy, strengths of SSCL in reducing redundant se-
mantics (vector dimension) and etc. Subsequently,
we further provide some discussions on SSCL,
like chicken-and-egg issue. In the Appendix B,
we show the strength of SSCL in fasting conver-
gence speed (Figure 6), and conduct discussions:
whether improvements of resulting model are
indeed from SSCL or just more negatives (Table
7).

5.1 Qualitative Analysis

Representation Probing In this component, we
aim to explore the reason behind the effectiveness
of the proposed SSCL. Therefore, we conduct some
probing tasks to investigate the linguistic structure
implicitly learned by our resulting model repre-

sentations. We directly evaluate each model using
three group sentence-level probing tasks: surface
task probe for Sentence Length (SentLen), syn-
tactic task probe for the depth of syntactic tree
(TreeDepth) and the semantic task probe for co-
ordinated clausal conjuncts (CoordInv). We re-
port the results in Table 4, and we can observe
our models significantly surpass their original base-
lines on each task. Specially, SSCL-BERT and
SSCL-SimCSE improve the baselines’ (BERT and
SimCSE) ability of capturing sentence semantic
(60.18% vs. 50%, 42.1% vs. 34%) and surface
(75.3% vs. 67%, 88.5% vs. 80%) by a large mar-
gin, which are essential to improve model sentence
representations, showing the reason of ours per-
form well on both STS and Transfer tasks.

5.2 Quantitive Analysis

Negative Sampling Strategy From the descrip-
tion in Section 3, we can raise an intuitive question:
Which single layer is most suitable for building
negatives in SSCL? Hence, we conduct a series of
experiments to verify the effect of intermediate lay-
ers with {0,1,2,3,4,5,6,7,8,9,10,11}, results
illustrated in Figure 3 (a). In the figure, layer-index
0 represents original SimCSE, and layer-index 1-11
represents corresponding transformer layers. We
can observe that our model SSCL-SimCSE ob-
tains the best result 77.80% while utilizing 11-th
layer representation as negatives. The reason be-
hind this phenomenon can be explained that SSCL
makes the PLMs more distinguishable between last
layer and previous layers, and thus alleviating over-
smoothing issues. More specifically, this effect will
be more obvious when utilizing 11-th layer repre-
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Figure 3: Layer negatives analysis of SSCL. (a) SSCL with different single layers to construct negatives, (b)
SSCL with stacked different layers to construct negatives named Progressive SSCL. We report the average model

performances in STS datasets.

sentation as negatives, helping the model achieve
best result.

Progressive SSCL  Intuitively, we also can stack
several intermediate layers to construct more nega-
tives in our SSCL implement. Thus, we stack pre-
vious several layers for building negatives which
named Progressive SSCL. We visualize the results
in Figure 3 (b), and the stack transformer layers
range 0 to 11. Stacking O layer represents original
SimCSE, and Stacking 1-11 layers means we stack
last 1-11 layers representation to construct nega-
tives. For example, stacking 2 layers represents
utilizing 11-th and 10-th transformer layers to form
negatives. From the figure, we can draw the fol-
lowing conclusion: (1) Progressive SSCL slightly
outperforms SSCL, showing incorporating more
negatives can help improve the model performance;
(2) Progressive SSCL with 2 layers can lead the
best model performance (77.90%), indicating using
11-th and 10-th transformer layers to construct neg-
atives can further make the token representations
of last layer become more distinguishable.

Vector Dimension From the above analysis and
experimental results, we can observe SSCL can
help the PLMs achieve sufficient sentence-level
semantic representations. Therefore, we conduct
experiments to verify whether our methods need
high vector dimensions (e.g., 768) to maintain cor-
responding results. We report results of BERT,
SSCL-BERT and SSCL-SimCSE with different
vector dimensions in the Table 5. First, we can
observe that BERT performance keeps dropping
when word vector dimension reducing, indicating
the high vector dimension is essential for main-

taining BERT performance. Then, we also find
SSCL-BERT and SSCL-SimCSE still achieve com-
parable performances with smaller vector dimen-
sions, showing our method can reduce redundant
information in the resulting sentence-level repre-
sentations, and thus lower dimensions is enough
for SSCL models obtaining competitive results. It
is worthwhile to notice that SSCL-BERT achieves
better performances when the vector dimension de-
creased. For example, SSCL-BERT improves the
model results from 58.83% to 62.42% when vector
dimensions reduced from 768 to 256.

Impact of 7 Intuitively, it is essential to study
the sensitivity analysis of the temperature 7 in con-
trastive learning. Thereafter, we conduct additional
experiments to verify the effectiveness of 7 on opti-
mizing the model. We test the model performances
with 7 € {0.001,0.01,0.05,0.1}. From the Table
6, we observe the different 7 indeed brings perfor-
mance improvements or drops of both models, and
ours achieve best results when 7 = 0.05.

5.3 Discussion on SSCL

Chicken-and-egg issue As mentioned in Sec-
tion 1, our methods effectively alleviate the over-
smoothing problem in sentence-level. In this com-
ponent, we also utilize TokSim in Eq.1 to conduct
quantitative analysis to verify whether SSCL could
alleviate the over-smoothing problem in intra-layer
level. We calculate TokSim for each sample from
STS-B (Cer et al., 2017) test set with SImCSE and
our resulting model SSCL-SimCSE. For compari-
son, both models are initialized from BERT stacked
with 12 transformer blocks. As shown in the Fig-

3558



Model Dimension Avg. STS
128 39.24
BERT 256 43.22
768 46.7
128 61.3
SSCL-BERT 256 62.42
768 58.83
128 76.53
SSCL-SimCSE 256 77.97
768 77.90

Table 5: Ablation studies of the vector dimension based
on the development sets using BERT. We utilize the
same simply linear projection head to transfer the vec-
tor dimensions. Here, the Spearman’s Correlation is
employed as the evaluation metric.

Model

0.001 0.01 0.05 0.1

SimCSE  74.82 75.33 76.25 7224
SSCL* 7577 77.40 7790 74.12

Table 6: Model performances with different 7 during
training. We report average results of SimCSE and
SSCL-SimCSE on STS tasks. SSCL* denotes SSCL-
SimCSE.

ure 4, TokSim is low from the first few layers,
showing token representations are highly distin-
guishable. However, TokSim becomes higher with
layers getting deeper. Concretely, TokSim of the
last layer from SimCSE is larger than 90%. There-
after, ours has a obvious TokSim drop in the last
few layers (11 and 12), proving our method allevi-
ates the over-smoothing issue in both sentence level
and token level while improving the model perfor-
mances (Figure 4 (b)). This is because sentence
representations are frequently obtained via adding
aggregation methods (e.h., mean pooling and max
pooling) over the token representations, resulting
in an entangled relationship (Mohebbi et al., 2021).
Therefore, alleviating over-smoothing in sentence
representation could eliminate over-smoothing at
token-level to some extent.

Visualization As shown in the Figure 5 (a), we
showcase the token representation similarities pro-
duced by SimCSE (Gao et al., 2021). Obviously,
we can observe each token representation in the
sentence is very close to each other. Nevertheless,
the token representations within the same sentence
should be discriminative even if the sentence struc-
ture is simple in the ideal setting (as shown in the
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Figure 4: TokenSim with different layers computed
from SimCSE and Ours (SSCL-SimCSE). We conduct
our analysis on STS-B test dataset. In this example,
we extend our methods of SIimCSE with utilizing the
penultimate layer as negatives.
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Figure 5: Token representation cosine similarity matri-
ces from SimCSE and SSCL-SimCSE. Representations
taken from the last layers of these models.

Figure 5 (b)). As aforementioned, such high sim-
ilar token representations may confuse the model
to capture global and reasonable sentence-level un-
derstanding, leading to sub-optimized sentence rep-
resentations. Nevertheless, our SSCL-SimCSE can
alleviate this problem from the inter-layer perspec-
tive while making token representations in the sen-
tence more discriminative, as seen in Figure 5 (b).

6 Conclusion

In this paper, we explore the over-smoothing prob-
lem in unsupervised sentence representation. Then,
we propose a simple yet effective method named
SSCL, which constructs negatives from PLMs in-
termediate layers to alleviate this problem, lead-
ing better sentence representations. The proposed
SSCL can easily be extended to other state-of-the-
art methods, which can be seen as a plug-and-play
contrastive framework. Experiments on seven STS
datasets and seven Transfer datasets prove the effec-
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tiveness of our proposed method. And qualitative
analysis indicates our method improves the result-
ing model’s ability of capturing the semantic and
surface. Also quantitative analysis shows the pro-
posed SSCL not only reduces redundant semantics
but also fasts the convergence speed. As an ex-
tension of our future work, we will explore other
methods to improve the unsupervised sentence rep-
resentation quality.

Limitations

The main contributions of this paper are towards
tackling over-smoothing issue for learning unsu-
pervised sentence representation. The proposed ap-
proach is fairly basic and may simply be extended
to improve the performance of other state-of-the-art
models. More broadly, we anticipate that the cen-
tral idea of this study will provide insights to other
research communities seeking to improve sentence
representation in an unsupervised setting. Admit-
tedly, the proposed strategies are restricted with
unsupervised training, and biases in the training
corpus also may influence the performance of the
resulting model. These concerns warrant further
research and consideration when utilizing this work
to build unsupervised retrieval systems.
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A Related Work

A.1 Unsupervised Sentence Representation

Unsupervised sentence representation learning has
gained lots of attention, which is considered to
be one of the most promising areas in natural lan-
guage understanding. Thanks to remarkable results
achieved by PLMs, quite a few works (Devlin et al.,
2018; Lan et al., 2020) tended to directly use the
output of PLMs, obtaining the sentence-level rep-
resentation via [CLS] token-based representation
or leveraging pooling methods (e.g., mean-pooling
and max-pooling). Recently, some works (Li et al.,
2020; Su et al., 2021; Shi et al., 2022) found that
there are anistropy and over-smoothing problems
(Gao et al., 2022) in BERT (Devlin et al., 2018)
representations. Facing these challenges, Su et al.
(2021) introduced whitening methods to obtain
isotropic sentence embedding distribution. More
recently, Shi et al. (2022) proposed to alleviate over-
smoothing problem via graph fusion methods. In
this paper, we design a novel and simple approach
to improve the quality of sentence representations,
making them more uniform while alleviating the
over-smoothing problem from a new perspective.

A.2 Contrastive Learning

During the past few years, contrastive learning
(Hadsell et al., 2006) has been proved as an ex-
tremely promising approach to build on learning
effective representations in different contexts of
deep learning (Chen et al., 2021a, 2022; Gao et al.,
2021; Chen et al., 2021b; You et al., 2021; You
et al.; Chen et al., 2023). Concretely, contrastive
learning objective aims at pulling together semanti-
cally close positive samples (short for positives) in
a semantic space, and pushing apart negative sam-
ples (short for negatives). In the context of learn-
ing unsupervised sentence representation, Wu et al.
(2020b) proposed leveraging several sentence-level
augmentation strategies to construct positives, ob-
taining a noise-invariant representation. Recently,
Gao et al. (2021) designed a simple method named
SimCSE for constructing positives into contrastive
learning via using dropout (Srivastava et al., 2014)
as noise. In detail, Gao et al. (2021) passed the each
sentence into the PLMs twice and obtained posi-
tives by applying random dropout masks in the rep-
resentations from last layer of PLMs. Subsequently,
Wang et al. (2022) extended of SimCSE to for-
mulate a new contrastive method called MixCSE,
which continually constructing hard negatives via
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Figure 6: Convergence speed of SImCSE and SSCL-
SimCSE. We evaluate the above models on STS-B de-
velopment set.

mixing both positives and negatives. However, it
is still limited to the specific framework. In this
paper, we focus on mining hard negatives for learn-
ing unsupervised sentence representation without
complex data augmentation methods and not lim-
ited to some specific frameworks. Accordingly, we
propose SSCL, a plug-and-play framework, which
can be extended to various state-of-the-art models.

B More Analysis
B.1 Convergence Speed

Moreover, we report the convergence speed of Sim-
CSE and our resulting model: SSCL-SimCSE in
the Figure 6. From the figure, we can observe
that SimCSE and SSCL-SimCSE both obtain their
best results before the training ends. And SSCL-
SimCSE manages to maintain an absolute lead of
5%-15% over SimCSE during the early stage of
training, showing our methods not only speed the
training time and achieves superior performances.
Concretely, SSCL-SimCSE achieves its best per-
formances with only 1500 steps iteration. That is,
our model can fast the convergence speed greatly,
and thus, save the time cost.

B.2 Discussion on More Negatives

As illustrated in Eq.4, our SSCL enlarges the size of
mini-batch negatives from N pairs to 2N pairs. In-
tuitively, there is a question: whether the improve-
ments of the resulting model are from SSCL? Or
the model can achieve such results via just enlarg-
ing the batch size to get more in-batch negatives.
To answer this question, we conduct additional ex-
periments, as shown in Table 7. When enlarging the
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Model BS STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

BERT (cls.) 64 29.70 49.38 39.67 56.03 56.19 43.87 52.06 46.70
' 128 31.05 49.96 40.54 57.68 57.05 45.99 52.95 47.89

SSCL-BERT (cls.) 64 49.21 67.59 58.96 69.94 68.00 62.87 60.43 62.42

SimCSE 64 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25
128 69.49 82.75 74.98 81.09 77.89 77.15 70.06 76.21
SSCL-SimCSE 64 71.68 83.50 76.42 83.46 78.39 79.03 71.76 77.90

Table 7: Model performances under different batch size.

batch size from 64 to 128, SImCSE still achieves
comparable performances rather than obtaining ob-
vious improvements like SSCL-SimCSE. In other
words, simply expanding in-bath negatives can not
effectively lead to better sentence representations,
that is, the performance boost of SSCL-simCSE
indeed comes from our method.
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