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Abstract

Entailment Graphs (EGs) have been con-
structed based on extracted corpora as a
strong and explainable form to indicate context-
independent entailment relations in natural lan-
guages. However, EGs built by previous meth-
ods often suffer from the severe sparsity issues,
due to limited corpora available and the long-
tail phenomenon of predicate distributions. In
this paper, we propose a multi-stage method,
Typed Predicate-Entailment Graph Generator
(TP-EGG), to tackle this problem. Given sev-
eral seed predicates, TP-EGG builds the graphs
by generating new predicates and detecting en-
tailment relations among them. The generative
nature of TP-EGG helps us leverage the recent
advances from large pretrained language mod-
els (PLMs), while avoiding the reliance on care-
fully prepared corpora. Experiments on bench-
mark datasets show that TP-EGG can generate
high-quality and scale-controllable entailment
graphs, achieving significant in-domain im-
provement over state-of-the-art EGs and boost-
ing the performance of down-stream inference
tasks1.

1 Introduction

The entailment relation between textual predicates
plays a critical role in natural language infer-
ence and natural language understanding tasks, in-
cluding question answering (Pathak et al., 2021;
McKenna et al., 2021) and knowledge graph com-
pletion (Yoshikawa et al., 2019; Hosseini et al.,
2019, 2021). To detect entailment relations, previ-
ous works pay attention to the Recognizing Textual
Entailment (RTE) task, which takes a pair of sen-
tences as input and predicts whether one sentence
entails the other (Bowman et al., 2015; He et al.,
2021b; Pilault et al., 2020). Current RTE mod-
els perform well on RTE benchmarks, but most of

∗Corresponding author.
1Our code is available at https://github.com/

ZacharyChenpk/TP-EGG
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Figure 1: An example of typed entailment graph includ-
ing several predicates, with argument types person and
government.

them are lacking in explainability, as they make use
of the black-box Language Models (LM) without
providing any explainable clues.

Recent works focus on learning the Entailment
Graph (EG) structure, which organizes typed predi-
cates in directional graphs with entailment relations
as the edges (Hosseini et al., 2018, 2019; McKenna
et al., 2021), as shown in Figure 1. With the explicit
graph structure containing predicates and their en-
tailment relations, similar to Knowledge Graphs
(KGs), using EGs becomes an explainable and
context-independent way to represent the knowl-
edge required in natural language inference and
other NLP tasks.

Most existing EGs are constructed with the Dis-
tributional Inclusion Hypothesis (DIH), which sug-
gests that all typical context features of a pred-
icate v can also occur with another predicate w
if v entails w (Geffet and Dagan, 2005). Con-
structing EGs with DIH requires distributional co-
occurrences of contextual features from large cor-
pora to calculate the semantic similarity between
predicates (Szpektor and Dagan, 2008; Schoen-
mackers et al., 2010). However, the EGs con-
structed from large corpora often suffer from two
different kinds of sparsity issues: the predicate
sparsity and the edge sparsity. Existing corpora
used for EG construction are mainly collected from
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Figure 2: An illustration of our TP-EGG. Given three seed predicates, TP-EGG generates a graph with 8 predicates
and 15 entailment relations. The circles represents different predicates, while the rounded rectangles is sentences in
natural language. Seed predicates is in green, and newly generated predicates is in blue.

specific resources (Zhang and Weld, 2013), such
as news articles. As a result, entailment relations
could not be learned between those predicates that
do not appear in the corpora, which leads to the
predicate sparsity issue. Meanwhile, if two pred-
icates scarcely appear around similar contexts in
the given corpora, the DIH could not indicate the
potential entailment relationship between them. It
leads to the edge sparsity of EGs as the correspond-
ing edges may be missing due the limited coverage
of the corpora.

To tackle the sparsity issues, previous works pay
attention to learning global graph structures to mine
latent entailment relations and alleviate the edge
sparsity (Berant et al., 2011, 2015; Hosseini et al.,
2018; Chen et al., 2022), but predicate sparsity is
still holding back the improvement of EGs. Solving
predicate sparsity by simply scaling up the distri-
butional feature extraction is impracticable, due
to the long-tail phenomenon of predicate distribu-
tion (McKenna and Steedman, 2022).

The shortcomings of extractive methods come in
quest for non-extraction way to overcome. Recent
progress in deep generative LMs, including GPT-
3 (Brown et al., 2020) and T5 (Raffel et al., 2022),
makes it possible to produce predicates and entail-
ment relations by generative methods. Inspired
by the Commonsense Transformer (Bosselut et al.,
2019), we propose a novel generative multi-stage
EG construction method, called Typed Predicate-
Entailment Graph Generator (TP-EGG). As shown
in Figure 2, TP-EGG takes several seed predicates
as input of the LM-based predicate generator to
depict the domain of predicates and generate more
in-domain predicates. With generated predicates,
TP-EGG uses a novel transitivity-ensured edge se-

lector by representing predicates as spheres in the
vector space, to pick out the potential entailment re-
lations among generated predicates. Then TP-EGG
calculates the corresponding edge weights by the
LM-based edge calculator. Our key insight is that
by re-modeling the predicate extraction process as
a generation process, we can leverage the under-
lying knowledge about natural language inference
inside the LMs to avoid the data sparsity issues of
extractive methods. By choosing appropriate seed
predicates and setting the parameters of TP-EGG,
one can generate EGs containing knowledge from
a specific domain in arbitrary scales to fit the down-
stream requirement, without limitations from the
uncontrollable distribution in domain-independent
corpora. Since almost all the EG construction mod-
ules in TP-EGG is controlled by pre-trained LMs,
the output EGs can be seen as explicit representa-
tions of the knowledge in LMs and used in down-
stream tasks, such as RTE in our experiments.

In a word, our contributions can be summarized
as follows: (1) We propose a novel generative EG
construction method to alleviate the data sparsity
issues on generated EGs and avoid the reliance on
corpora preparation in traditional EG methods; (2)
We propose a new method to evaluate the qual-
ity of EGs in downstream tasks such as RTE; (3)
Our TP-EGG outperforms strong baselines with
significant improvement on benchmark datasets,
and we show that generation-based EGs methods
can alleviate the predicate sparsity by leveraging
pre-trained LMs as predicate generators.

2 Related Work

Previous EG construction methods construct fea-
ture representations for typed predicates, weighted
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by counts or Pointwise Mutual Information (Berant
et al., 2015), and compute the distribution simi-
larity guided by DIH. For a predicate pair, differ-
ent similarities are calculated, such as cosine sim-
ilarity, Lin (Lin, 1998), Weed (Weeds and Weir,
2003), and Balanced Inclusion (Szpektor and Da-
gan, 2008). Markov chain of predicate-argument
transition (Hosseini et al., 2019) and temporal in-
formation from extracted corpora (Guillou et al.,
2020) are also used in EGs construction. These
methods independently calculate the entailment re-
lations for each pair, called local methods. Besides,
global constraints are used to detect new entailment
relations beyond local relations. The transitivity
in EGs, which means a entails b and b entails c
indicate a entails c for three predicates a, b and c,
is the most widely used in previous works as hard
constraints (Berant et al., 2011, 2015) or soft loss
functions (Hosseini et al., 2018; Chen et al., 2022).
The weight similarity constraints between different
typed EGs and similar predicates are also taken
into consideration (Hosseini et al., 2018).

As one of the most important areas of NLP,
text generation, or Natural Language Generation
(NLG), has also been advanced by the surgent de-
velopment of pre-trained LMs. BART (Lewis et al.,
2020) uses encoder-decoder transformer architec-
ture to re-correct the corrupted data in pre-training
phase; GPT-3 (Brown et al., 2020) uses transformer
decoder to achieve in-context learning with mas-
sive multi-task unsupervised data. T5 (Raffel et al.,
2022) unifies different tasks into natural language
prefixes and solves them by text generation.

Pre-trained LMs are also applied in recent EG
methods. CNCE (Hosseini et al., 2021) initializes
the contextualized embeddings of entity-relation
triplets by BERT (Devlin et al., 2019) and uses
random walk to get the entailment probability;
EGT2 (Chen et al., 2022) fine-tunes a pattern-
adapted LM on the predicate sentences and re-
calculates high-quality edge weights for global con-
straints; McKenna and Steedman (2022) applies
RoBERTa (Liu et al., 2019) as predicate encoder
and matches missing predicates in EGs with K-
Nearest Neighbor algorithm to alleviate the pred-
icate sparsity. As far as we are concerned, our
method is the first attempt to use generative LM in
EG construction and directly generate EGs without
the distributional features from large corpora.

3 Our Approach

EGs store predicates as nodes and entailment
relations between them as edges in graph struc-
tures. Following previous EG methods (Hosseini
et al., 2018, 2019; Chen et al., 2022), we use the
neo-Davisonian semantic form of binary relation
(Parsons, 1990) to indicate typed predicates, whose
types are defined by the combination of argument
types. Predicate p connecting two arguments
a1, a2 with types t1, t2 can be represented as
p = (w1.i1, w2.i2, t1, t2), where wj is the center
relation tokens (and perhaps prepositions) about aj ,
and ij is corresponding argument order of aj in wj .
For example, the event "The government is elected
in 1910 and adored by natives" contains two pred-
icates (elect.2, elect.in.2, government, time)
and (adore.1, adore.2, person, government).
We denote P as the collection of all typed
predicates, T as the collection of all argument
types, and τ1, τ2 : P → T as type indicator
functions, where τ1(p) = t1 and τ2(p) = t2 for
any predicate p = (w1.i1, w2.i2, t1, t2).

We formally define that a typed entailment
graph G(t1, t2)=<P (t1, t2), E(t1, t2)> includes
the collection of typed predicates P (t1, t2) =
{p|(τ1(p), τ2(p)) ∈ {(t1, t2), (t2, t1)}}, and the di-
rectional weighted edge set E(t1, t2), which can
be represented as an adjacent matrix W (t1, t2) ∈
[0, 1]|P (t1,t2)|×|P (t1,t2)|. For those G(t1, t2) whose
t1 ̸= t2, the order of types t1, t2 is naturally de-
termined. When t1 = t2 = t, argument types are
ordered such that G(t, t) can determine the order of
types like "Thing A" and "Thing B" to distinguish
predicates like "Thing A eat Thing B" and "Thing
B eat Thing A". This order obviously affect the
meaning of predicates, as “Thing A eats Thing B”
entails “Thing B is eaten by Thing A”, but “Thing
eats Thing” is doubtful to entail “Thing is eaten by
Thing”.

3.1 Predicate Generation

In order to avoid the predicate sparsity issue in a
given corpus, TP-EGG uses a predicate generator
G to generate novel in-domain predicates. G takes
a set of seed predicates Pseed ⊂ P (t1, t2) as in-
put and outputs a set of generated predicates PG ,
where Pseed are expected to contain the domain
knowledge of required EGs and PG should be se-
mantically related to Pseed in varying degrees.

Our G is designed to be based on generative
LMs, thus the input predicates p ∈ Pseed should
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be converted into natural language forms to fit
in the LMs. We use Chen et al. (2022)’s sen-
tence generator S to convert predicate p into
its corresponding sentence S(p). For example,
p = (elect.2, elect.in.2, government, time) will
be converted into Government A is elected in Time
B. With converted sentences, generator G uses a
generative LM, T5-large (Raffel et al., 2022) in
our experiments, to generate new sentences and
then re-converts them into generated predicates by
a sentence-predicate mapping function S−1 (de-
tails in Appendix C). Starting from the seed sen-
tences S0 = {S(p)|p ∈ Pseed}, the generative
LM outputs sentences S1 for the next step, and
S1 is used to generate S2 and so on, while S−1 is
used to re-convert Si to Pi = S−1(Si) for every
step. The generation process continues until the
union of seed predicates and generated predicates
P ′
i = Pseed ∪ P1... ∪ Pi is equal to P ′

i−1 or its size
|P ′

i | exceeds a pre-defined scale parameter Kp.
To use T5-large as the generation compo-

nent, we need to design an input template to
generate new sentences. For sentence s ∈
Si, the input template will be constructed like:
s, which entails that t1 A <extra_id_0> t2 B.
s, which entails that t2 B <extra_id_0> t1 A.

where <extra_id_0> is the special token represent-
ing the generating location of the T5-large output.
The max length of stripped output sequence s′ is
limited to 5, and the new predicate p′ is produced by
S−1("t1 A s′ t2 B.") or S−1("t2 B s′ t1 A.") corre-
spondingly. For each s, T5-large uses beam-search
algorithm with beam size Kbeam to find top-Ksent

output sequences s′ with highest probabilities.
To ensure the quality of generated predicates and

filter noisy ones, only those predicates which are
generated by T5-large from at least two different
predicates in P ′

i−1 could be included in Pi. Algo-
rithm 1 depicts how predicate generator G works
(more details and exmaples in Appendix D).

3.2 Edge Selection

After generating new predicates P (t1, t2) =
PG , TP-EGG constructs G(t1, t2) by generating
weighted edge set E(t1, t2). As TP-EGG does not
use large corpora to calculate distributional fea-
tures regarding context coherence, we need to de-
termine which predicate pairs could be potential en-
tailment relations for later calculation. Regarding
ALL pairs as candidates is a simple solution, but
when P (t1, t2) scales up, calculating all |P |2 pairs

Algorithm 1 The predicate generator G.
Require: A set of seed predicates Pseed, sentence generator

S, parameter Kbeam,Ksent,Kp

Ensure: A set of generated predicates PG
1: Ponce = {}
2: i = 0, P0 = P ′

0 = Pseed

3: while |P ′
i | ≤ Kp do

4: Si = {S(p)|p ∈ Pi}
5: Pi+1 = {}
6: for s ∈ Si do
7: Sg = T5(s,Kbeam,Ksent)
8: P g = Set(S−1(sg)|sg ∈ Sg)
9: P g = P g − P ′

i

10: Pi+1.update(P g ∩ Ponce)
11: Ponce = Ponce XOR Pg

12: end for
13: Pi+1 = Pi+1 − P ′

i

14: P ′
i+1 = P ′

i ∪ Pi+1

15: if P ′
i+1 = P ′

i then
16: return PG = P ′

i

17: end if
18: i = i+ 1
19: end while
20: return PG = P ′

i

will be unacceptably expensive as we intend to
adopt an LM-based edge weight calculator, which
only takes one pair as input at a time. Therefore, we
require an effective edge selector M to select po-
tential pairs E′ ⊂ P (t1, t2)×P (t1, t2) with accept-
able computational overhead, where |E′| should be
equal to a given parameter Kedge.

Calculating embeddings for each predicate and
quickly getting similarities between all pairs in
P (t1, t2) perform worse than pair-wise LMs with
cross attention in general, but are good enough as
the edge selector to maintain high-quality pairs in
high ranking. Inspired by Ristoski et al. (2017), we
represent predicate p as a sphere in the vector space.
TP-EGG uses BERT-base (Devlin et al., 2019) to
calculate embedding vector vp for every predicate
p based on S(p), and represents p as a sphere ⊙p

in a vector space with center cp and radius rp:

vp = BERT (S(p)) ∈ Rdv ,

cp = fc(vp) ∈ Rdc ,

rp = f+(fr(vp)) ∈ R+.

(1)

where fc, fr are two-layer trainable neural net-
works, dv, dr are corresponding vector dimensions,
f+(x) ∈ {exp(x), x2} ensures the positive radius.
By representing p as a sphere, we expect that when
p entails q, ⊙q should enclose ⊙p, as all points in
⊙p are also included in ⊙q. Under such assump-
tion, the transitivity referred in Section 2 is natu-
rally satisfied as ⊙a ⊂ ⊙b ⊂ ⊙c. The overlapping
ratio between spheres can be seen as the entail-
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ment probability Pr(p → q), and we simplify the
calculation of sphere overlapping to diameter over-
lapping along the straight line between two centers:

dpq = ||cp − cq||2

Pr(p → q) =





0 , rq ≤ dpq − rp
1 , rq ≥ dpq + rp
rp+rq−dpq

2rp
, otherwise

(2)
Chen et al. (2022) defines soft transitivity as

Pr(a → b)Pr(b → c) ≤ Pr(a → c) for all predi-
cate pairs above a threshold. Similar in spirit, our
simplified sphere-based probability holds transitiv-
ity in part:

Theorem 1 Given a threshold ϵ ∈ (0, 1), ∀a, b, c
where Pr(a → b) > ϵ and Pr(b → c) > ϵ, we
have Pr(a → c) > ϵ− (1− ϵ) rbra .

We give its proof in Appendix A. Noted that while
ϵ is close to 1, the right part ϵ − (1 − ϵ) rbra will
be nearly equal to ϵ. As we use this probability in
edge selection, higher Pr(a → b) and Pr(b → c)
will naturally ensure the appearance of (a, c) in
final entailment relations, without the disturbance
from low-confident edges. As Pr(p → q) is con-
stant when rq ≤ dpq − rp or rq ≥ dpq + rp, its
gradient becomes zero which makes it untrainable.
Therefore, we smooth it with order-preserving Sig-
moid function and interpolation, and finally get the
selected edge set for G(t1, t2):

M(p, q) = σ(
2rq − 2dpq

rp
),

E(t1, t2) = {topKedge(M(p, q))|p, q ∈ V (t1, t2)}
(3)

where σ is Sigmoid function σ(x) = 1/(1+ex). A
geometrical illustration presenting how the selector
M works can be found in Appendix B.

3.3 Edge Weight Calculation
With the selected edge set E(t1, t2) ⊂ P (t1, t2)×
P (t1, t2), TP-EGG calculates the edge weight
Wp,q for each predicate pairs (p, q) individually
in the adjacent matrix W (t1, t2). Inspired by Chen
et al. (2022), as the distributional features of gen-
erated predicates are unavailable for TP-EGG, we
re-implement their local entailment calculator W
to obtain the entailment edge weight Wp,q. W is
based on DeBERTa (He et al., 2020, 2021a) and
fine-tuned to adapt to the sentence patterns gener-
ated by S. The entailment-oriented LM will pro-
duce three scores, corresponding to entailment (E),

Name Valid Test Total #Pos/#Neg
Levy/Holt 5,486 12,921 18,407 0.270
Levy/Holt-r 5,450 12,817 18,267 0.261
Berant - 39,012 39,012 0.096
SherLIiC 996 2,989 3,985 0.498

Table 1: The dataset statistics.

neutral (N) and contradiction (C) respectively, for
each sentence pair. The score of entailment class is
used as the entailment edge weight in our EGs:

Wp,q = W(p, q) =
exp(LM(E|p, q))∑

r∈{E,N,C} exp(LM(r|p, q))
(4)

where LM(r|p, q) is the score of class r. After
calculating all predicate pairs (p, q) ∈ E(t1, t2) by
the LM-based calculator W , TP-EGG completes
the adjacent matrix W (t1, t2), and consequently
constructs G(t1, t2), as shown in Figure 2.

4 Experimental Setup

Datasets. Following previous works (Hosseini
et al., 2018, 2019, 2021; Chen et al., 2022), we
include Levy/Holt Dataset (Levy and Dagan, 2016;
Holt, 2018) and Berant Dataset (Berant et al., 2011)
into EG evaluation datasets. Besides, we reorga-
nize the SherLIiC Dataset (Schmitt and Schütze,
2019), a dataset for Lexical Inference in Con-
text (LIiC), into an EG benchmark. We further re-
annotate conflicting pairs in Levy/Holt, referred as
Levy/Holt-r Dataset. Dataset statistics are shown in
Table 1. More details can be found in Appendix F.

Metrics. Following previous works, we evalu-
ate TP-EGG on the test datasets by calculating the
area under the curves (AUC) of Precision-Recall
Curve (PRC) for precision>0.5 and traditional ROC
curve.2 The evaluated EGs are used to match the
predicate pairs in datasets and return the entailment
scores. Noted that our generated predicates might
be semantically same with required ones but have
different forms, like (use.2,use.in.2,thing,event)
and (be.1,be.used.in.2,thing,event) are both reason-
able for "Thing A is used in Event B" while our S−1

generates the first one. Hence we relax the predi-
cate matching standard in evaluation from exactly
matching to sentence matching, i.e., S(p) = S(p′)

2We have found that the evaluation scripts written by Hos-
seini et al. (2018) do not connect the curve with (1,0) and (0,1)
point correctly, which wrongly decreases the performance. We
fix and use the scripts to generate results in this paper.
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rather than p = p′. This modification has nearly no
effect on previous extraction-based EGs, but can
better evaluate generative methods..

Implementation Details. In experiments, TP-
EGG uses BERT-base in M and T5-large in G
implemented by the Hugging Face transformer
library (Wolf et al., 2020)3, and DeBERTa re-
implementation from Chen et al. (2022) to fine-
tune on MNLI and adapt to sentence pattern in
W . Taking both EG performance and computa-
tional overhead into account, we set Kp = 5× 103,
Kedge = 2 × 107, Kbeam = 50, Ksent = 50,
dr = 16, dv = 768. Discussion about Kp and
Kedge can be found in Appendix E.

For EG generation, TP-EGG uses the predi-
cates in validation set of Levy/Holt-r and SherLIiC
Dataset respectively as the seed predicate Pseed.
With different Pseed, we also only use correspond-
ing validation set as the training data for all later
modules to keep the EGs in-domain, called TP-
EGGL/H−r and TP-EGGSherLIiC respectively.

Only positive pairs are used to generate the
training inputs and outputs to fine-tune T5-large
in the predicate generator G with learning rate
αG = 10−3. We use f+(x) = exp(x) for TP-
EGGL/H−r and f+(x) = x2 for TP-EGGSherLIiC .
The edge selector M is also trained by the valida-
tion predicate pairs, but the positive examples are
repeat 5 times (for Levy/Holt-r) or 2 times (for
SherLIiC) to alleviate the label imbalance in train-
ing. BERT-base parameters are trained with learn-
ing rate αM,1 = 10−5, while other parameters,
including fc and fr, are trained with learning rate
αM,2 = 5× 10−4. The edge weight calculator W
is trained by the same method in Chen et al. (2022).

All modules are trained by AdamW opti-
mizer (Loshchilov and Hutter, 2018) with cross
entropy loss function, and controlled by early-stop
mechanism, which stops the training when perfor-
mances (loss for G and F1 for others) on validation
set do not reach the highest in the last 10 epoches.
It takes about 5-6 hours to train all modules in TP-
EGG, and about 2-3 hours to generate a typed EG
on GeForce RTX 3090. The three modules, G,M
and W , contain 738M, 109M and 139M parameters
respectively.

To be comparable with previous works (Hosseini
et al., 2018), we apply their lemma-based heuristic

3https://github.com/huggingface/transformers

on all datasets except SherLIiC, and their average
backup strategy on all datasets.

Compared Methods We compare TP-EGG with
the best local distributional feature, Balanced In-
clusion or called BInc (Szpektor and Dagan, 2008),
and existing state-of-the-art local and global EG
construction methods, including Hosseini et al.
(2018, 2019), CNCE (Hosseini et al., 2021) and
EGT2 (Chen et al., 2022).

Downstream Task. Despite of evaluating on EG
construction benchmarks, we adapt an LM-based
three-way RTE framework into the EG evalua-
tion testbed. For premise pm and hypothesis h,
RTE models take their concatenation [pm;h] as
inputs, and return three probability scores of three
classes. In order to incorporate the knowledge in
EGs into RTE models, we design the following ar-
chitecture available to any LM-based RTE model:
given pm and h, we extract binary predicates from
them, and try to match the predicates in our EGs.
Each matched predicates a in premise pm will
be replaced by its Knbr neighbors b with highest
weight Wab. For h, the neighbors b are with high-
est weight Wba. Replaced sentences pm1, ..., pmj

and h1, ..., hk for pm and h will be concatenated to
represent the information from EGs in calculation:

(sE1, sN1, sC1) = Softmax(LM1([pm;h])),

(sE2, sN2, sC2) = Softmax(LM2([pm;

pm1; ...; pmj ;h;h1; ...;hk])),

si = (si1 + si2)/2, i ∈ {E,N,C}.

(5)

where LM1 and LM2 represent two different LMs
followed by a linear layer respectively. As the ad-
ditional calculation unfairly requires more parame-
ters, we also consider the models with equal param-
eters but do not use the EGs, referred as NO-EG
setting, by inputting [pm;h] into LM2 directly. We
use SNLI (Bowman et al., 2015) and SciTail (Khot
et al., 2018) as our RTE benchmark datasets. We
use BERT-base and DeBERTa-base as the back-
bone, learning rate αRTE = 10−5, Knbr = 5 for
SNLI and Knbr = 3 for SciTail.

5 Results and Analysis

5.1 Main Results
The performance of different EGs on benchmark
datasets are shown in Table 2, and the Precision-
Recall Curves of EGs on Levy/Holt-r and Be-
rant datasets are presented in Figure 3. Without
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Methods L/H L/H-r Berant SherLIiC
PRC ROC PRC ROC PRC ROC PRC ROC

BInc (Szpektor and Dagan, 2008) .262 .632 .254 .632 .242 .676 .170 .605
Hosseini et al. (2018) .271 .638 .254 .637 .268 .682 .184 .611
Hosseini et al. (2019) .275 .640 .270 .640 .213 .678 .148 .566
CNCE (Hosseini et al., 2021) .301 .643 .300 .645 .269 .705 .233 .602
EGT2-Local (Chen et al., 2022) .453 .733 .447 .732 .562 .779 .385 .665
- w/ L3 global .477 .755 .478 .756 .583 .780 .391 .705
TP-EGGL/H−r .543 .755 .527 .748 .633 .780 .175 .606
- w/ EGT2-L1 global .549 .778 .532 .773 .637 .822 .184 .615
TP-EGGSherLIiC .263 .589 .261 .588 .171 .642 .394 .669
- w/ EGT2-L1 global .264 .616 .261 .616 .173 .658 .394 .680

Table 2: The main results for TP-EGGL/H−r, TP-EGGSherLIiC and baselines on EG benchmark datasets. The
best performances of each metric are boldfaced, and the out-domain results are with gray ground color.

using extracted features from large corpora, TP-
EGG achieves significant improvement or at least
reaches comparable performance with baselines
for in-domain evaluations (L/H and L/H-r for TP-
EGGL/H−r and SherLIiC for TP-EGGSherLIiC).
Interestingly, TP-EGG always performs better on
the AUC of PRC, which indicates the strong ability
of our generative methods to maintain impressive
recall with high precision as shown in the curves.
On Levy/Holt-r, TP-EGGL/H−r significantly out-
performs all other extraction-based methods on pre-
cision>0.5, showing that with higher classification
threshold, extraction-based methods fail to detect
the entailment relations between rare predicates
due to the sparsity issues, while generation-based
TP-EGG successfully finds these relations by gen-
erating more predicates and correctly assigns high
probabilities between them.

Noted that our TP-EGG is a local method, al-
though certain global properties are ensured by our
edge selector M. We try to apply a state-of-the-art
global method, EGT2-L1 (Chen et al., 2022) on our
local EGs4. As shown in the bottom of Table 2, the
global method further improves the performance of
TP-EGG, demonstrating the potential of our local
EGs to continuously reducing the data sparsity with
global EG learning methods.

Although we have observed the significant im-
provement of evaluation metrics by TP-EGG, it is
not clear enough to determine TP-EGG can allevi-
ate the predicate sparsity to what extent. Therefore,
we count the predicate pairs in Levy/Holt testset
that exactly appeared as edges in EGs. We find

4Chen et al. (2022) reports that L3 variant performs better
on their local graphs, but we find L1 is better on TP-EGG.
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Figure 3: The Precision-Recall Curves of EGs on (a)
Levy/Holt-r Dataset and (b) SherLIiC Dataset. For TP-
EGG, the EGs are constructed with in-domain data.

that 6,873 pairs appear in TP-EGGL/H−r, mean-
while 875 in EGT2-L3. The far more appearance
of in-domain predicates indicates the alleviation of
predicate sparsity.

Previous works have claimed that LMs for entail-
ments might be strong in undirectional paraphras-
ing, but weak in directional entailment recogniz-
ing (Cabezudo et al., 2020; Chen et al., 2022). To
check out the directional entailment ability of TP-
EGG and other methods, we evaluate them on the
directional portion5 of Levy/Holt Dataset as shown
in Table 3. The directional portion contains entail-
ment pairs (p, q) where (p → q)XOR(q → p) is

5https://github.com/mjhosseini/entgraph_eval/
tree/master/LevyHoltDS
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Methods PRC ROC
BInc .538 .528
Hosseini et al. (2018) .535 .529
Hosseini et al. (2019) .554 .556
CNCE .557 .561
EGT2-Local .597 .604
- w/ EGT2-L3 global .626 .644
TP-EGGL/H−r .609 .596
- w/ EGT2-L1 global .636 .633

Table 3: Performance on the directional portion of
Levy/Holt Dataset.

Pseed G M,W L/H-r SLIC
① L/H-r L/H-r L/H-r .527 .175
② L/H-r L/H-r SLIC .426 .213
③ L/H-r SLIC L/H-r .411 .323
④ L/H-r SLIC SLIC .312 .384
⑤ SLIC L/H-r L/H-r .452 .261
⑥ SLIC L/H-r SLIC .361 .328
⑦ SLIC SLIC L/H-r .307 .320
⑧ SLIC SLIC SLIC .261 .392

Table 4: Performance (AUC of PRC) on Levy/Holt-r
and SherLIiC with different combinations of training
data and modules. SLIC represents SherLIiC.

True, and therefore symmetric models will have
AUC<0.5. TP-EGG performs better than baselines
on the directional portion, and the AUC far higher
than 0.5 indicates its directional entailment ability.
Global models perform better here, which is rea-
sonable as global constraints are strongly related to
the directional reasoning.

5.2 Learning with Multiple Domains

Although TP-EGG performs well on in-domain
evaluation, the out-domain scenario is still hard, as
the knowledge required for out-domain evaluation
is inaccessible in all training and generation steps
of TP-EGG. To check the impact of training data
domains in different modules of TP-EGG, we use
Levy/Holt-r and SherLIiC Dataset to produce seed
predicates Pseed and train different modules, in-
cluding predicate generator G, edge selector M and
weight calculator W , with different combinations
of two datasets. As shown in Table 4, involving in-
domain training data into more modules will lead
to higher performance on corresponding dataset in
general, which is in accordance with expectation.

Interestingly, by comparing different combina-
tions, we find that fine-tuning G with data from do-

Pseed G,M,W L/H-r SherLIiC
❶ L+S L+S .496 .388
❷ L/H-r L/H-r .527 .175
❸ L+S L/H-r .532 .286
❹ L/H-r L+S .518 .321
❺ SherLIiC SherLIiC .261 .394
❻ L+S SherLIiC .322 .416
❼ SherLIiC L+S .405 .367

Table 5: Performances (AUC of PRC) on Levy/Holt-r
Dataset and SherLIiC Dataset of TP-EGG trained with
merged multi-domain data.

mains different with Pseed will lead to better overall
performance on two datasets. For example, row ③

attains improvement about 0.15 on SherLIiC with
dropping about 0.11 on Levy/Holt-r by changing
training data of G from Levy/Holt-r (①) to Sher-
LIiC, and when Pseed also changes to SherLIiC
(⑦), the performance on Levy/Holt-r is severely
damaged without benefit to SherLIiC. Similar sit-
uation is also observed in row ②,④ and ⑧. We
assume that involving knowledge from different
domains in predicate generation, i.e. Pseed and G,
could alleviate the over-fitting by mixing two predi-
cate domains and encouraging G to find more novel
predicates to cover the gap between training and
testing. Empirically, involving different data in G
leads to the best performance among the modules.

Next, we study the effect of using merged vali-
dation sets of Levy/Holt-r and SherLIiC Dataset at
different modules. The performance of TP-EGG
trained with the merged data, referred as L+S, are
shown in Table 5. While using merged data as
Pseed and also as training data for other modules
(❶), TP-EGG reaches impressive performances
on both datasets, which is not surprising, as both
datasets are in-domain in this situation.

Using merged dataset to train G,M and W
boosts out-domain performance with in-domain
performance loss (comparing ❷ and ❹, ❺ and ❼).
However, adding some out-domain predicates into
Pseed is surprisingly beneficial to the in-domain
evaluation while improving out-domain generaliza-
tion (comparing ❷ and ❸, ❺ and ❻). We attribute
it to the diversity of generated predicates led by the
newly incorporated seed predicates, which might
not be generated with the in-domain seed predi-
cates. The out-domain predicates help TP-EGG to
find new predicates related to in-domain predicates
as Algorithm 1 might tend to generate predicates
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Model EG SNLI SciTail

BERT

Original 90.03±0.04 91.42±0.21
NO-EG 90.17±0.19 92.64±0.07
CNCE 90.10±0.19 92.15±0.98
EGT2-L3 90.08±0.05 92.35±0.05
TP-EGG 90.28±0.22 92.94±0.92

DeBERTa

Original 91.59±0.26 94.20±0.55
NO-EG 91.69±0.03 94.62±0.23
CNCE 91.57±0.19 95.06±0.33
EGT2-L3 91.35±0.24 94.57±0.46
TP-EGG 91.90±0.11 95.19±0.20

Table 6: Performances of RTE models supported with
different EGs on RTE datasets (average over 3 runs).
The best performances are boldfaced.

from at least two predicates across two domains.
Therefore, the predicate coverage over evaluation
datasets can be increased.

5.3 Results on RTE
In downstream task evaluation, we use EGs gener-
ated by different methods to enhance LM-based
RTE models, and report the results in Table 6.
Compared with CNCE and EGT2, our TP-EGG
achieves better performance on two RTE datasets
with both BERTbase and DeBERTabase backbones.
The performances of TP-EGG on DeBERTabase are
significantly better than NO-EG (p<0.05). Noted
that TP-EGG offers pmj , hk for 4,600 sentences in
SNLI testset, which is 5,596 for EGT2-L3. Even
with lower coverage over predicates in the dataset,
TP-EGG supports RTE models with more high-
quality entailment relations to generate pmj , hk
and improve the performance. On the other hand,
the noisy entailment relations in CNCE and EGT2
perhaps misguide RTE models, thus lead to even
worse results than NO-EG in some cases.

5.4 Ablation Study
We run the ablation experiments which directly use
the original version of LMs in G,M and W with-
out fine-tuning on EG benchmark datasets. For
M, as non-LM parameters are involved, we re-
place it with randomly selecting Kedge edges. As
shown in Table 7, without fine-tuning G or W ,
the performance on Levy/Holt-r suffers a signif-
icant drop (about 0.1), indicating the importance of
fine-tuned modules for EG generation. The perfor-
mance on SherLIiC also decreases severely with-
out fine-tuning G, as the fine-tuning step can im-
prove the quality of generated predicates and cover

Method L/H-r Berant SherLIiC
TP-EGGL/H−r .527 .633 .175
- w/o fine-tuning G .422 .508 .132
- w/o training M .518 .615 .152
- w/o fine-tuning W .429 .305 .166

Table 7: Experiment results of ablation study with dif-
ferent modules in TP-EGG.

more out-domain predicates. Fine-tuning W criti-
cally affects the result on Berant Dataset, which is
compatible with the results in Chen et al. (2022),
showing the importance of fine-tuning and pattern
adaptation in weight calculation on this dataset.
Fine-tuning M is mainly beneficial to SherLIiC
by comparison. From the results, we can see that
high quality predicate pair construction from G and
M is more beneficial to out-domain evaluation,
while the weight calculation from W plays a more
important role for in-domain cases.

6 Conclusions

In this work, we propose a novel generative typed
entailment graph construction method, called TP-
EGG, with predicate generation, edge selection and
calculation modules. TP-EGG takes several seed
predicates as input to the predicate generator to find
novel predicates, selects potential entailment predi-
cate pairs as edges, and calculates the edge weights
without distributional features. TP-EGG can con-
struct high-quality EGs with flexible scales and
avoid the data sparsity issues to some extent. Ex-
periments on EG benchmacks and RTE task show
the significant improvement of TP-EGG over the
state-of-the-art EG learning methods. We find that
mixing data from different domains in different
ways can improve the generalization of TP-EGG
in varying degrees, and using out-domain data in
predicate generation modules brings the most sig-
nificant improvement.

Limitations

First, as we do not rely on specific corpora and
avoid the shortcomings of extractive methods, we
also lose their advantages. The typed EGs gener-
ated by our TP-EGG is strongly related to the seed
predicates and training data of generation mod-
ules, while extractive EGs can generate domain-
independent EGs from large corpora and do not
require supervised training data to a considerable
degree. Second, the edge calculator W is time-
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consuming even we can control the scales of output
EGs, as the edge num |E(t1, t2)| will be relatively
large for TP-EGG to generate powerful EGs. Fur-
thermore, how to effectively select seed predicates
still remains a difficult problem which has not been
discussed thoroughly in this work by using the vali-
dation datasets. We assume that this problem could
be solved by carefully confirming how the seed
predicates represent corresponding domain knowl-
edge and we leave it to future work.
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Processing, pages 1776–1786, Seattle, Washington,
USA. Association for Computational Linguistics.

A The Proof of Theorem 1

Theorem 1 Given a threshold ϵ ∈ (0, 1), ∀a, b, c
where Pr(a → b) > ϵ and Pr(b → c) > ϵ, we
have Pr(a → c) > ϵ− (1− ϵ) rbra .

As Pr(p → q) =
rp+rq−dpq

2rp
holds when dpq −

rp < rq < dpq + rp, and Pr(p → q) = 1 ≤
rp+rq−dpq

2rp
holds when rq ≥ dpq + rp, we have:

ra + rb − dab
2ra

≥ Pr(a → b) > ϵ

→ dab < rb + (1− 2ϵ)ra.

(6)

Similarly, for b, c:

dbc < rc + (1− 2ϵ)rb. (7)

For the case Pr(a → c) = 1, obviously the
theorem holds for ϵ ∈ (0, 1);

For the case Pr(a → c) = 0 or Pr(a → c) =
rp+rq−dpq

2rp
, we have Pr(a → c) ≥ rp+rq−dpq

2rp
as

rp + rq − dpq < 0 under Pr(a → c) = 0, and
therefore:

Pr(a → b)

≥ra + rc − dac
2ra

≥ra + rc − (dab + dbc)

2ra
(dac ≤ dab + dbc)

>
ra + rc − (rb + (1− 2ϵ)ra + rc + (1− 2ϵ)rb)

2ra

=
ϵra + (ϵ− 1)rb

ra

=ϵ+ (ϵ− 1)
rb
ra

.

(8)
Q.E.D.

B Geometrical Illustration of Edge
Selector M

To understand how the edge selector M works
more intuitively, we pick four predicate sentences
from Levy/Holt Dataset and visualize their corre-
sponding spheres ⊙p in Figure 4:
p0: Living Thing A is imported from Location B.

p1: Living Thing A is native to Location B.
p2: Living Thing A is found in Location B.

p3: Living Thing A is concentrated in Location B.
The centers cp and radius rp are generated by

M from our final TP-EGG model, while the di-
mension of cp are reduced to maintain the dis-
tances between them. Three entailment relations,
p0 → p1, p1 → p2 and p3 → p2, are annotated
in the dataset, and p0 → p3 is also plausible. In
Figure 4, the hypothesis spheres obviously enclose
premise spheres, and the more generic a predicate
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Figure 4: The visualized predicate spheres of four pred-
icates.

is, the bigger its sphere becomes, which is con-
sistent with our expectation about M. With high
directional overlapping, all of the four entailment
relations will correctly appear in later weight cal-
culation while low-confident inverse edges will be
filtered out.

C The Sentence-Predicate Mapping
Function S−1

The sentence-predicate mapping function S−1 used
in predicate generation is described in Algorithm 2.
Noted that S−1 is a simplified approximation of the
reverse function of sentence generator S while dif-
ferent predicates might generate the same sentence
by S. Therefore, S−1 does not cover all possible
predicates and sentences.

Algorithm 2 The mapping function S−1.

Require: A generated sentence s.
Ensure: A predicate p, or NULL indicating that s is not a

valid predicate sentence.
1: Split the sentences into tokens l and strip t1 A, t2 B
2: prefix=""
3: if |l| = 0 then
4: return NULL
5: end if
6: if not or n’t in l[0] then
7: prefix=NEG // representing the negation
8: end if
9: Remove the modal verbs in l

10: if l begins with have been or has been then
11: l=l[1:]
12: end if
13: if |l| > 1 and l[: 2] is have+P.P. then
14: l=l[1:]
15: end if
16: if |l| > 2 and the present tense of l[: 2] is have to then
17: l=l[2:]
18: end if

19: if |l| = 0 then
20: return NULL
21: end if
22: ihead = 0, itail = |l| − 1
23: while ihead ≤ itail and l[ihead] is not a verb do
24: ihead = ihead + 1
25: end while
26: while ihead ≤ itail and l[itail] is not a verb or a preposi-

tion do
27: itail = itail − 1
28: end while
29: if ihead > itail then
30: return NULL
31: end if
32: l′ = l[ihead : itail + 1] // cut the token between ihead

and itail
33: if l′[0 : 2] is a verb like be doing then
34: l′ = l′[1 :]
35: end if
36: t = lemmatize(l′[0])
37: if t is be then
38: if |l′| = 1 then
39: return prefix+(be.1, be.2, t1, t2)
40: end if
41: if l′[1] is not a preposition then
42: if l′[1] is an adverb then
43: l′ = l′[0 : 1] + l′[2 :]
44: end if
45: if l′[1] is an adjective or a noun, and l′[−1] is a

preposition then
46: l′[1] = lemmatize(l′[1])
47: return prefix+(l′[1].1, l′[1 :].2, t1, t2)
48: end if
49: if l′[1] is P.P. verb then
50: l′[1] = lemmatize(l′[1])
51: if l′[−1] is a preposition then
52: return prefix+(l′[1].2, l′[1 :].2, t1, t2)
53: else
54: return prefix+(l′[1].2, l′[1 :].3, t1, t2)
55: end if
56: end if
57: end if
58: return NULL
59: end if
60: l′[0] = lemmatize(l′[0])
61: if |l′| = 1 then
62: return prefix+(l′[0].1, l′[0].2, t1, t2)
63: end if
64: if l′[−1] is a preposition then
65: return prefix+(l′[0].1, l′.2, t1, t2)
66: end if
67: return NULL

D An Example of Generating Predicates
from Seed Predicates

We show an example process of generating new
predicates by the generator G of TP-EGG in Table 8.
We set Pseed = {p1, p2, p3}, Kbeam = Ksent = 8,
Kp = 15. The predicates repeating in current gen-
eration or appearing in previous stages, and sen-
tences that cannot be resolved by S−1 are omitted.
Predicates generated from at least two different s
are in red, and predicates appeared in generation of
previous steps are in blue. According to Algorithm
1, only seed predicates and colored predicates will
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Figure 5: The performances on the evaluation datasets
with different Kp and Kedge of TP-EGGL/H−r. The
y-axis of the curves on SherLIiC dataset is on the right
side.

appear in final predicate set P ′
2.

E Discussion about Graph Scales

As referred in Section 4, we set the number of pred-
icates Kp = 5× 103 and edges Kedge = 2× 107,
which determine the final scale of generated EGs.
We report the performance of TP-EGGL/H−r on
the evaluation datasets with different Kp and Kedge

in Figure 5. Changing Kp from 1× 103 to 2× 104,
the overall performance is the best while Kp =
5× 103. We assume that lower Kp might limit the
coverage of predicate set, while higher Kp makes
the EGs more sparse and miss potential entailment
relations. Noted that the computational overhead
and space occupation is almost proportional to
Kedge, setting Kedge = +∞ to regard ALL pairs
as candidates is impractical (the largest EG in TP-
EGGL/H−r will contain 7× 107 edges). We find
that Kedge = 2 × 107 is able to reach the over-
all performances comparable with Kedge = +∞
under our settings, while further decreasing Kedge

will significantly cut down the performances. To
balance between the overall performance and com-
putational overhead, we finally set Kp = 5× 103

and Kedge = 2× 107.

F Details about Datasets

Levy and Dagan (2016) uses questions and candi-
date answers with textual predicates to collect the
entailment relations, and proposes a widely used

EG evaluation dataset which is later re-annotated
by Holt (2018), called Levy/Holt Dataset. For ex-
ample, if the annotator figures out that "The govern-
ment is adored by natives" can be used to answer
"Who recognize the government?", the dataset will
indicate that "adore" entails "recognize" between
type person and government. Levy/Holt Dataset
contains 18,407 predicate pairs (14,491 negative
and 3,916 positive). We use the 30%/70% splitting
of validation/test set as Hosseini et al. (2018) in our
experiments.

However, because the QA annotation form in-
corporates additional information about entities
related to the predicates, some consistent predi-
cates pairs are annotated with different labels, and
the transitivity is disobeyed between some predi-
cate pairs. The inconsistent pairs are those (a, b)
which (a, b, T rue) and (a, b, False) both appear
in the dataset. The transitivity-disobeying pairs are
those (a, b), (b, c) and (a, c) which (a, b, T rue),
(b, c, T rue) and (a, c, False) all appear. We
find that there are 89 inconsistent pairs and 159
transitivity-disobeying pairs in Levy/Holt Dataset,
and re-annotate these 248 pairs by five annotators
with Fleiss’ κ = 0.43. After re-annotating, we get
the final Levy/Holt-r Dataset with 14,490 negative
and 3,777 positive pairs.

Berant et al. (2011) proposes an annotated entail-
ment relation dataset, containing 3,427 positive and
35,585 negative examples, called Berant Dataset.

Schmitt and Schütze (2019) extracts verbal rela-
tions from ClueWeb09 (Gabrilovich et al., 2013)
based on Freebase (Bollacker et al., 2008) enti-
ties, and splits the extracted relations into typed
one based on their most frequent Freebase types,
which is naturally compatible to typed EG settings.
We use their manually-labeled 1,325 positive and
2,660 negative examples in our EG benchmark,
called SherLIiC Dataset. The dataset is split into
25%(validation) and 75%(test) in our experiments.
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Stage Predicates and Sentences
Pseed(S0) p1 :(adore.1, adore.2, person,government) (Person A adores Government B),

p2 :(recognize.1, recognize.2, person,government) (Person A recognizes Government
B),
p3 :(know.1, know.2, person,government) (Person A knows Government B)

Sg(P g) p1 →{Person A is identified with Government B. (identify.2, identify.with.2, per-
son,government),
Person A is Government B. (be.1, be.2, person,government),
Government B is magnet for Person A. (magnet.1, magnet.for.2, government,person),
Government B is worshipped in Person A. (worship.2, worship.in.2, govern-
ment,person),
Government B is drawn to Person A. (draw.2, draw.to.2, government,person),
Person A is devoted to Government B. (devote.2, devote.to.2, person,government),
Person A is associated with Government B. (associate.2, associate.with.2, per-
son,government),
Government B is magnet of Person A. (magnet.1, magnet.of.2, government,person)}
p2 →{Government B is family of Person A. (family.1, family.of.2, govern-
ment,person),
Government B is associated with Person A. (associate.2, associate.with.2, govern-
ment,person),
Person A identifies with Government B. (identify.1, identify.with.2, per-
son,government),
Government B is drawn to Person A. (draw.2, draw.to.2, government,person),
Person A is associated with Government B. (associate.2, associate.with.2, per-
son,government),
Person A identifies with Government B. (identify.1, identify.with.2, per-
son,government),
Person A is connected with Government B. (connect.2, connect.with.2, per-
son,government),
Government B wants Person A. (want.1, want.2, government,person)}
p3 →{Government B is associated with Person A. (associate.2, associate.with.2,
government,person),
Person A identifies with Government B. (identify.1, identify.with.2, per-
son,government),
Government B awards Person A. (award.1, award.2, government,person),
Government B is drawn to Person A. (draw.2, draw.to.2, government,person),
Person A embodies Government B. (embody.1, embody.2, person,government),
Person A is associated with Government B. (associate.2, associate.with.2, per-
son,government),
Person A is connected with Government B. (connect.2, connect.with.2, per-
son,government),
Government B is enemy of Person B. (enemy.1, enemy.of.2, government,person)}

P1 p4 :(associate.2, associate.with.2, person,government)
p5 :(identify.1, identify.with.2, person,government)
p6 :(connect.2, connect.with.2, person,government)
p7 :(draw.2, draw.to.2, government,person)
p8 :(associate.2, associate.with.2, government,person)

Sg(P g) p4 →{Person A is identified with Government B. (identify.2, identify.with.2, per-
son,government),
Government B awards Person A. (award.1, award.2, government,person),
Person A practices Government B. (practice.1, practice.2, person,government),
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Government B is gravitate towards Person B. (be.1, be.gravitate.towards.2, govern-
ment,person),
Government B is sought after by Person A. (seek.2, seek.after.by.2, govern-
ment,person),}
p5 →{Government B issues call for Person A. (issue.1, issue.call.for.2, govern-
ment,person),
Person A declares Government B. (declare.1, declare.2, person,government),
Person A embodies Government B. (embody.1, embody.2, person,government),
Person A declares war on Government B. (declare.1, declare.war.on.2, per-
son,government)}
p6 → {Person A is identified with Government B. (identify.2, identify.with.2, per-
son,government),
Government B is after Person A. (be.1, be.after.2, government,person),
Government B issues call for Person A. (issue.1, issue.call.for.2, government,person),
Government B is identified with Person A. (identify.2, identify.with.2, govern-
ment,person),
Person A practices Government B. (practice.1, practice.2, person,government),
Person A embodies Government B. (embody.1, embody.2, person,government)}
p7 →{Person A submits Government B. (submit.1, submit.2, person,government),
Government B is attracted to Person A. (attract.2, attract.to.2, government,person),
Government B is magnet for Person A. (magnet.1, magnet.for.2, government,person),
Person A believes in Government B> (believe.1, believe.in.2, person,government),
Government B is magnet of Person A. (magnet.1, magnet.of.2, government,person)}
p8 →{Person A is identified with Government B. (identify.2, identify.with.2, per-
son,government),
Person A preaches Government B. (preach.1, preach.2, person,government),
Government B issues call for Person A. (issue.1, issue.call.for.2, government,person),
Person A practices Government B. (practice.1, practice.2, person,government),
Person A demands Government B. (demand.1, demand.2, person,government),
Government B is gravitate towards Person B. (be.1, be.gravitate.towards.2, govern-
ment,person),
Government B wants Person A. (want.1, want.2, government,person)}

P2 p9 :(identify.2, identify.with.2, person,government)
p10 :(magnet.1, magnet.for.2, government,person)
p11 :(issue.1, issue.call.for.2, government,person)
p12 :(award.1, award.2, government,person)
p13 :(practice.1, practice.2, person,government)
p14 :(embody.1, embody.2, person,government)
p15 :(be.1, be.gravitate.towards.2, government,person)
p16 :(want.1, want.2, government,person)
p17 :(magnet.1, magnet.of.2, government,person)

P ′
2 Return p1, ..., p17

Table 8: An example of generating predicates P ′
i from Pseed.
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