WeCheck: Strong Factual Consistency Checker via Weakly Supervised
Learning

Wenhao Wu'; Wei Li?, Xinyan Xiao?, Jiachen Liu?, Sujian Li'] Yajuan Lyu?
'Key Laboratory of Computational Linguistics, MOE, Peking University
?Baidu Inc., Beijing, China
{waynewu, lisujian}@pku.edu.cn
{liwei85, xiaoxinyan, liujiachen, lvyajuan}@baidu.com

Abstract

A crucial issue of current text generation mod-
els is that they often uncontrollably generate
text that is factually inconsistent with inputs.
Due to lack of annotated data, existing factual
consistency metrics usually train evaluation
models on synthetic texts or directly transfer
from other related tasks, such as question an-
swering (QA) and natural language inference
(NLI). Bias in synthetic text or upstream tasks
makes them perform poorly on text actually
generated by language models, especially for
general evaluation for various tasks. To allevi-
ate this problem, we propose a weakly super-
vised framework named WeCheck that is di-
rectly trained on actual generated samples from
language models with weakly annotated labels.
WeCheck first utilizes a generative model to
infer the factual labels of generated samples
by aggregating weak labels from multiple re-
sources. Next, we train a simple noise-aware
classification model as the target metric us-
ing the inferred weakly supervised informa-
tion. Comprehensive experiments on various
tasks demonstrate the strong performance of
WeCheck, achieving an average absolute im-
provement of 3.3% on the TRUE benchmark
over 11B state-of-the-art methods using only
435M parameters. Furthermore, it is up to 30x
faster than previous evaluation methods, greatly
improving the accuracy and efficiency of fac-
tual consistency evaluation. !

1 Introduction

The research of text generation has achieved signif-
icant progress in recent years, but it still suffers the
main issue of generating output which is factually
inconsistent with the given inputs (Maynez et al.,
2020). To tackle this issue, various metrics have
been designed to check the consistency between

*Work is done during an internship at Baidu Inc.
T Corresponding author.
'Our metric can be easily accessed from https://
huggingface.co/nightdessert/WeCheck
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Figure 1: Probability density of factual consistency
scores predicted by different metrics sampled from
BART on XSum and CNN/DM datasets. The horizontal
axis is the score ranged in [0, 1], and the vertical axis is
the probability density.

generated text and the given inputs (Kryscinski
etal., 2020; Scialom et al., 2021). As we know, how
to construct such a metric has attracted increasing
attention in a variety of fields (Wu et al., 2022b), in-
cluding text summarization (Kryscinski et al., 2020;
Wu et al., 2022a), dialogue generation (Welleck
et al., 2019), and text simplification (Devaraj et al.,
2022).

Existing factual metrics can be classified into
two types: one based on synthetic data and the
other based on task transfer. Synthetic-data based
metrics (Kryscinski et al., 2020; Mishra et al.,
2021) apply data augmentation techniques to con-
struct factual and non-factual texts as positive and
negative samples, respectively. Metrics trained
from these synthetic samples often perform poorly
due to the significant mismatch between features
of actual generated and synthetic text (e.g. distribu-
tion of factual errors) (Goyal and Durrett, 2021).
Task-transfer based metrics utilize the reasoning
ability of models trained on relevant upstream tasks,
such as natural language inference (NLI) (Falke
et al., 2019; Laban et al., 2022) and question an-
swering (QA) (Wang et al., 2020; Fabbri et al.,
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2022) and directly apply them to evaluate factual
consistency without any adaption.

As described above, previous metrics are learned
indirectly from other related resources but without
seeing the actual generated text. In such cases, they
may overfit to their upstream tasks and fail to gen-
eralize to actual generated samples that have signif-
icantly different data features. Figure 1 illustrates
the probability density of three metrics, where the
horizontal axis is metric scores and the vertical
axis is the score density. Though these metrics
are comparable in performance, they vary signifi-
cantly in probability distributions, especially in the
XSUM dataset, where sample features are greatly
different from upstream tasks of these metrics?,
NLI-warmup is extremely confident in predicting
both very high and low scores while SUMMAC
and QAFact are only confident in predicting low
scores>. Furthermore, during testing, ensembling
different metric scores by simply averaging will
further improve their performance (Honovich et al.,
2022). This also implies that the evaluation metrics
learned from different resources are also comple-
mentary.

To bridge the gap between training and testing
and mitigate the scarcity of labeled data, in this
paper, we propose WeCheck, a factual consistency
Checking framework based on Weakly supervised
learning. Specifically, WeCheck is based on a learn-
ing paradigm that provides weak supervision via
modeling multiple label sources without access
to ground truth. Different from previous metrics,
WeCheck directly utilizes the abundant actual gen-
erated samples bootstrapped from models trained
on target downstream tasks, e.g. BART on text
summarization. Then, WeCheck follows a two-step
pipeline consisting of weak annotation and noise-
aware fine-tuning to get the target metric model.

In the weak annotation step, by aggregating mul-
tiple weak supervision resources, we infer the un-
known ground truth label of a sample. To reach
this goal, we first provide each sample with a set of
weak supervision signals calculated from various
other metrics. These metrics are learned from var-
ious resources or tasks such as QA-based metrics
and NLI-based metrics. After unifying and filter-
ing these signals, we train a generative labeling
model that models agreements and disagreements

In XSum, the summary of each document is abstractive,
while existing NLI and QA datasets do not have this feature.

3For more details about these metrics please refer to § 2.3
and §3.2.

between them to infer the likelihood of their la-
tent ground truth label. The inferred ground truth
likelihood is then treated as a probabilistic label
to provide weak supervision. In the second step,
we apply noise-aware fine-tuning to train the target
metric model. It is noted here, the weak annota-
tion also brings noises to the supervision signal and
brings new challenges to the model optimization
process. As a solution, we first warmup our target
metric model with NLI data for a better initializa-
tion before weakly supervised training. Then, after
filtering out samples that are likely to be noisy, we
finetune our target metric model with weak anno-
tations. In summary, WeCheck could learn how
to utilize multiple resources for weak annotation
while recognizing and filtering the potential noises
accompanied by weak supervision.

Experimental results show that WeCheck not
only achieves state-of-the-art performance but also
is computationally efficient. On the TRUE bench-
mark (Honovich et al., 2022), which is the current
most comprehensive benchmark for factual con-
sistency evaluation, WeCheck obtains an average
ROC AUC of 84.8, 3.3% absolute improvement
over previous 11B pre-trained task transferred met-
rics with only a size of 435M parameters. More-
over, it’s much more stable for various generation
tasks, with much lower variance on different tasks.
Thus, WeCheck is a simple but more effective and
efficient metric for factual consistency evaluation.

We summarize our contributions as follows:

* We propose a novel factual consistency eval-
uation metric based on weakly supervised
learning, namely WeCheck, which is directly
trained on actual generated samples from lan-
guage models with weakly annotated labels.

* WeCheck is both effective and efficient achiev-
ing 3.3% absolute improvement and up to 30
times faster comparing with previous state-of-
art metrics.

* WeCheck is a general metric which is also
more stable on various generation tasks and
datasets than previous methods.

2  WeCheck Framework

Figure 2 illustrates the two-step pipeline of
WeCheck framework. In the upper part of the
figure, during the weak annotation step, we first
calculate a set of weak supervision signals for each
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Figure 2: The overall framework of WeCheck, including
weak annotation and noise-aware fine-tuning. Weak
annotation infers the likelihood of each sample’s true
label based on its weak supervision signal set A, and
noise-aware fine-tuning trains the target metric with the
inferred likelihood of ground-truth label.

sample bootstrapped from target generation tasks.
Then, we use a mapping function to unify the weak
supervision signals and infer the likelihood of the
ground truth label of each sample. After annotation,
we apply noise-aware fine-tuning to train our target
metric model, shown in the lower part of the figure.
Noise-aware fine-tuning first warmup target metric
model with NLI data and training it with filtered
probabilistic labels. In the following, we introduce
our problem definition and detailed method.

2.1 Problem Definition

Factual Consistency Evaluation Given a tex-
tual sequence as a premise, and another textual se-
quence as a hypothesis, which may be a generated
summary or dialogue, the goal of a factual consis-
tency metric fy is to predict whether the hypothesis
is factual consistent given the premise. For simplic-
ity, we follow the previous textual entailment based
framework (Kryscinski et al., 2019), which takes «,
the concatenation of hypothesis and premise, as the
input format and unifies the evaluation as a binary
classification problem: fy(x) € [0, 1], where the
predicted logit indicates the probability of x being
factually consistent. Another advantage of using
the entailment-based framework is that it is effec-
tive in terms of time complexity compared with
other methods (Laban et al., 2022). Taking fy as
the target metric model, the goal of WeCheck is to
train fy into an efficient factual consistency metric.

Weakly Supervised Training In our weakly su-
pervised settings, we first bootstrap a set of sam-

ples from the generation tasks, e.g. text summa-
rization, and dialogue generation. Using various
factual metrics trained from multiple resources, we
provide each sample x with a set of weak signals
A = (A1,..., ), where each )\; is a logit sepa-
rately calculated by a metric. We treat the ground
truth label i of « as a hidden variable that can be
estimated by aggregating \. To reach this goal, we
train a labeling model p, to model agreements and
disagreements relations between weak signals in
A and estimate the probability distribution of the
truth label, ps(y|A). Then, we apply pgs(y|A) to
supervise the metric model fy.

2.2 Weak Annotation

To provide weak supervision for training, we
follow data programming (Ratner et al., 2017;
Bach et al., 2017), a weakly supervised learning
paradigm based on modeling multiple label sources.
However, in data programming, weak supervision
signals are often produced by various checking
clauses, e.g. whether word “causes” appears in
the sentence ? and produce a discrete weak signal
Ai € {0,1,—1}, where 0/1 stands for a vote for
positive/negative label and —1 stands for a abstain
vote. However, in our scenario, due to the diversity
of metric frameworks, outputs of different met-
rics often do not share a unified output format and
are usually continuous. For example, QA-based
metrics often produce continuous logits in [0, 1],
and NLI-based metrics often produce discrete la-
bels of entailment or contradiction. Thus, the first
thing before training the labeling model is to unify
weak supervision signals by a mapping function,
m (X)) — {0,1,—1}. In this way, we can model
the transformed A by a data programming based
labeling model.

Weak Signal Unification We first unify all the
weak supervision signals from different metrics
into the same format, a logit \; € [0, 1]. For the
metric with single logit output, we directly use its
output as \;. For multi-label classification output,
we select the probability of predicting entailment.
Notice that all the signals predicted by imperfect
metrics will introduce a portion of noises. For a
more reliable signal, the core idea for designing
a mapping function m is to map signals that the
metric has high confidence into {0, 1} and abstain
low-confidence signals by mapping them to —1.
Generally, this can be achieved by setting thresh-
olds on signals. But another important issue to be
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noticed is that, as shown in Figure 1, signal distribu-
tions vary significantly across metrics and datasets,
which makes threshold selection difficult. Thus,
we instead dynamically determine thresholds by
setting constant probability mass that contains the
highest confidence. Specifically, we choose to map
the lowest p~ percent and the highest p* percent
of signal scores into label 0 and 1, separately, and
map the rest interval of low-confident scores into -1.
Given the inverse cumulative distribution function
of the i-th signal F;, we can calculate its positive
and negative threshold 'y;r and ~;” by:

v =E1-p"), v =FE@p). O
The mapping function is then defined by:

0 N<n
m(\;) = 1 N> ()
-1 i< N <At

For simplicity, we share p~ and p™ across different
resources and datasets. By applying the mapping
function, we unify each ); into a discrete label in

{0,1,-1}.

Labeling model We treat the true label 3 of « as
a hidden variable and train the labeling model py,
to estimate y by aggregating A*. The generative
model pg models the generation process of A and
y by their joint probability. Because all the weak
supervision signals are inferred from different re-
sources, we treat them as independent variables.
Then, given the prior p(7)°, the joint probability is
formulated by

PN ) = [ psi) = [I p il p @),

AEA XEA
3)

following Bayesian rule. Next, we need to model
the likelihood p (A;|y) that labels the sample with
A; based on the latent label 3. Following (Ratner
et al., 2017), we define the labeling process of \;
as a sequence of Bernoulli process. Concretely, the
i-th metric has a probability of 3; not to abstain
the sample and a probability «; to label it correctly.
Then, we calculate the likelihood by

Bici  NiF—1AXN =y
Po(Nily) =9 Bill—)  N#—-1ANFY

“)

“All the weak supervision signals in X have already been
converted into discrete labels by the mapping function m.

>p(7) usually depends on class distribution in a dataset.
For simplicity, we set it as a uniform distribution.

where o;, 3; are learnable hyper-parameters. Given
all samples, we train the labeling model by opti-
mizing:

Ly :m(gnz 2 log py(A, y). 5)

A ye{0,1}
2.3 Noise Aware Fine-tuning

NLI Warmup After we get the labeling model
D¢, the next step is to train our metric model fy with
the weak supervision inferred by it. But in practice,
we find direct training with weak supervision will
cause the model easily converges to the local min-
ima. This may because reasoning over a long range
of context is challenging and weak supervisions are
also potential to be noisy. These problems cause
great difficulties in optimization. Inspired by the
idea of curriculum learning (Bengio et al., 2009),
we first warmup our metric model on NLI, an easier
and closely related task. We use the mixture of four
NLI datasets, MultiNLI (Williams et al., 2018),
Fever-NLI (Thorne et al., 2018), LingNLI (Par-
rish et al., 2021) and Adversarial-NLI (Nie et al.,
2020). Based on the warmed-up checkpoint, our
metric model achieves much better results under
weak supervision, which we will later show in our
experiments.

Noise Filtering and Training After warming up,
we train our metric model with weak supervision.
Because the estimated latent labels 3 can still be
noisy due to the imperfect labeling model and weak
supervision signals, we apply the likelihood of y
that contains the certainty of the prediction as a soft
probabilistic label instead of the discrete label for
training. Based on the definition of joint probability
in Eq. 3, we predict the likelihood of each sample
by

p¢>()" 1)
p¢(}‘7 1) + qu()\, 0) ‘

With convenience, we abbreviate ps(y = 1|A) as
p(y™). Before training with p(y™), we first fil-
ter out estimated samples with low confidence, by
applying the similar procedure in weak signal uni-
fication. By reusing mapping function m, we filter
out the low confident probabilistic label and get the
final training set by

X ={(z.py"))|m (p(y")) # -1},

where p(y™) is the corresponding probabilistic la-
bel of . Then, given fy after warming up, we

oy =1A) =

(6)
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finetune it by

Lp=min ) [p(y")log (fo(x))
zeX ®)

+ (1—p(y™))log(1 — fo(x))]

where p(y™) is kept fixed without gradient back-
propagation to py during training.

During inference, the model only needs to take
the textual sequence x as input and output the logit
prediction fp().

3 Experimental Settings

In this section, we introduce the experimental set-
tings of WeCheck including the evaluation bench-
mark, baseline models, and implementation details.

3.1 TRUE Benchmark

Recent works point out that the performance of a
metric should be evaluated comprehensively across
multiple tasks and datasets to reduce variance.
Thus, we evaluate WeCheck on TRUE (Honovich
et al., 2022), a benchmark consisting of 11 datasets
of 4 tasks including text summarization, dialogue
generation, paraphrasing, and fact checking, where
each sample in datasets is annotated with a binary
label manually. We only test on the first three tasks
as fact checking is beyond our scope. Following
TRUE, we normalize each metric score into a logit
and report their Characteristic Area Under the
Curve (ROC AUC) w.r.t binary logits. Evalua-
tion with ROC AUC does not require metrics to set
specific decision thresholds. Details of tasks and
datasets of TRUE are introduce in the Appendix A.

3.2 Baseline

We evaluate WeCheck by comparing with recently
proposed metrics. We categorize these baselines
by types of their methods.

NLI-based Metrics FactCC (Kryscinski et al.,
2020) is a BERT-based metric with synthetic train-
ing samples constructed from rule-based data aug-
mentation. SUMMAC(SCZzS) (Laban et al., 2022)
aggregates sentence-level entailment scores for the
final factual consistency score. We only report
the zero-shot version SCZzS instead of the super-
vised version SCCONV because it is more effec-
tive on the TRUE benchmark. ANLI (Honovich
et al., 2022) directly apply a large 11B TS5 trained
on Adversarial-NLI (Nie et al., 2020) dataset for
fact checking and achieve SOTA performance on
TRUE.

QA-QG based Metrics QuestEval (Scialom
et al., 2021) is a QA-QG based metric that jointly
measures factual consistency and semantic rele-
vance, where the importance of generated ques-
tions are weighted by a trained model. QAFactE-
val (QAFact) (Fabbri et al., 2022) is a metric
designed by carefully optimizing each component
of the QG-QA framework. Q?, from the version of
Honovich et al. (2022), replace all the component
of QA-QG framework into TS 11B large models.

Other Types BERTScore (BERTS) (Zhang
et al., 2019a) measure the similarity of a gener-
ated text and its reference by aggregating token-
level similarities of their contextual representations.
BARTScore (BARTS) (Yuan et al., 2021) evaluate
the quality of generated text by its modeling per-
plexity of a fine-tuned BART (Lewis et al., 2020).

3.3 Implementation Details

All the baseline metrics are tested based on
their open-sourced codes. The metric model of
WeCheck is based on powerful pre-trained lan-
guage model DeBERTaV3 (He et al., 2021). Fol-
lowing the description in § 2, we first warm up
DeBERTaV3 on NLI datasets and apply it for weak
supervised training. As regards to training data, we
sample text summarization examples from BART
fine-tuned on CNN/DM and XSum datasets. We
sample dialogue generation examples from Mem-
Net (Dinan et al., 2018) and dodecaDialogue (Shus-
ter et al., 2020) trained on WoW dataset follow-
ing Honovich et al. (2021). For paraphrase, we
directly use samples in PAWS since it can be re-
gard as a consistency checking dataset itself. For
weak signals, we apply QAFact (Fabbri et al.,
2022), SUMMAC (Laban et al., 2022), and the
NLI warmed up DeBERTaV3 (NLI-warmup) as to
provide weak signals for each sample as default.
For weak signal unification, we set p™ and p~ in
mapping function m to 0.75 and 0.25 based on
validation. For labeling model py, we follow the
implementation of Snorkel (Ratner et al., 2017) for
efficiency and train it on CPUs with Adam opti-
mizer. For noise-aware fine-tuning, we finetune
the warmed up checkpoint with the learning rate of
1e~S, warmup steps of 500, and the total training
steps of 3 epoch. We train on 4 NVIDIA Tesla
V100 GPUs, and it takes around only 5000 steps to
reach the best performance.
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Summarization

Dialogue

Para.

5 . Ave Var]
Frank SumE MNBM Q-C QX Ave | BEGIN @Q® DialF Ave | PAWS |
BERTS 843 772 628 69.1 495 686 | 879 700 642 740| 775 | 714 140
BARTS 86.1 7135 609 809 538 710 | 863 649 656 723 | 715 | 722 132
FactCC 764 759 594 764 649 706 | 644 637 553 611 | 640 | 667 60.1
SCzs 889 813 711 809 78.1 80.1 | 820 774 841 812 | 882 |8l4 304
QuestEval 84.0  70.1 653 642 563 680 | 841 722 773 779 | 713 | 714 877
QAFact 878 774 687 833 769 788 | 763 804 845 804 | 850 |80.0 344
11B Large Models
Q? 878 788 687 835 709 779 | 797 809 861 822 | 897 |80.7 516
ANLI 89.4 805 779 821 838 825 | 826 727 777 7117 | 864 | 815 249
Our Models

NLI-warmup 857 737 735 732 80.1 772| 805 835 873 838 | 854 | 803 31.8
WeCheck 88.1 798 830 826 814 830 | 846 840 90.0 862 | 89.6 | 848 13.2

Table 1: ROC AUC scores of all baseline metrics on three evaluation tasks on TRUE benchmark, where Para.,
0-C, Q-X are the abbreviations of paraphrase, QAGS-CNN/DM and QAGS-XSUM, respectively. Ave in block and
penultimate column indicate the average performance on each task and the average performance on the overall
benchmark, respectively. Var indicates variance across datasets. Results in bold and in underline indicate the
best and second best performance (not including 11B baselines, as our model only have 435M parameters that

comparable with other baselines).

4 Results

The experimental results on TRUE are reported in
Table 1, where we report the performance of our
model after warmed up training with NLI as NLI-
warmup, and further trained with weak supervision
as WeCheck. Surprisingly, pre-trained language
model trained with only NLI-warmup can achieve
80.3 ROC AUC score, which is a comparable per-
formance with previous best metric. NLI-warmup
achieves the second best performance in 5 out of
9 datasets. After further training with weak super-
vision, WeCheck improves the evaluation perfor-
mance over NLI-warmup by 4.5 ROC AUC, which
not only largely surpasses all the baselines but also
outperforms previous SOTA metric SCZS by 3.4
ROC AUC. Separately on each dataset, WeCheck
achieves either the best (6 out of 9) or the sec-
ond best performance in each dataset. Specifi-
cally, WeCheck achieves 5.4%, 7.2%, and 1.6%
of relative improvements over previous best per-
forming methods on summarization, dialogue and
paraphrase, respectively. Furthermore, WeCheck
has the lowest variance of 13.2 across different
tasks. This demonstrates that the performance of
WeCheck is more comprehensive and general rather
than biased towards a certain type of data. On the
MNBM dataset where samples are very different
from NLI or QA data (samples in MNBM are sam-

pled from XSUM, where hypothesis are extremely
abstractive), WeCheck largely outperforms previ-
ous best metric QAFact by 14.3 point.

11B Baselines We also compare our models with
large-scale 11B models based on task transfer. We
compare with two models, Q? and ANLI based on
11B T5 reported by Honovich et al. (2022). As
shown in Table 1, they surpass the same type of
method with smaller parameter size, and can be re-
garded as approaching the best performance of task
transfer based methods can achieve. However, with
only 435M parameters, WeCheck significantly out-
performs them by 3-4 points. This further validates
the superiority of our weak supervision learning
framework.

5 Analysis

To analyse how each module and settings work, we
conduct analysis experiments on each module and
settings of WeCheck.

Training Mechanism We first study how the
mechanisms proposed in §2 affect the overall
framework by removing or replacing them. The
results are reported in Table 2. Most important
of all, by removing the NLI-warmup before weak
supervision training, the performance drops signifi-
cantly on each task and drops an average of 19.3%
on each dataset. This proves that NLI, as an easier
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Sum. Dial. Para. Ave

WeCheck 83.0 86.2 89.6 84.8
w/o NLI-warmup | 67.8 757  50.7 68.5
w/o Noise Filter 81.6 853 782 83.7

w/ Hard Label 82.8 86.0 89.5 84.6

Table 2: Ablation study of different settings of WeCheck
on summarization (Sum.), dialogue (Dial.) and para-
phrase (Para.).

Sum. Dial. Para. ‘ Sum. Dial. Para. Ave
77.2 854 854 80.3

v 83.4 852 892 84.6
v 72.7 842 842 77.8

v 772 86.7 921 81.8
v v v 83.0 862 89.6 84.8

Table 3: Analysis on the effects of different task data.
The left block indicates whether using a type of task data
while the right block is the corresponding performance.

and closely related task, provides a much better ini-
tialization for training with weak supervision. For
noise-aware finetuning, we study how filtering po-
tential noisy samples (Eq. 7) and the probabilistic
label (Eq. 6) affect the overall performance. After
removing noise filtering (w/o Noise Filter in Ta-
ble 2), the performance drops around 1-2 points
in each task and dataset in average. By replacing
the probabilistic labels into hard labels (w/ Hard
Label in Table 2), we observe around 0.1-0.2 drops
in performance. This implies how to filter potential
noisy samples is crucial in noise aware fine-tuning,
and probabilistic labels also slightly help.

Effects of Task We also analyse how each boot-
strapped task affect WeCheck. In Table 3, the left
block rows indicate whether a type of task samples
are used for training, and the right block rows are
the corresponding performance. The first row is
the results of NLI-warmup which does not use any
task data for training. The second to forth rows
separately train on summarization, dialogue, and
paraphrase examples. The last row reports the de-
fault settings of WeCheck, which jointly train with
all three task samples. From the results, we can con-
clude that, joint training on all tasks leads to a bet-
ter performance on the comprehensive evaluation
across tasks. For single task evaluation except dia-
logue, training using only the target task examples
leads to better performance on this task than joint
training. In horizontal comparisons of single task

performance, we observe that summarization ex-
amples contribute most to the overall performance,
improving the performance of checking summa-
rization and paraphrase by 6.2 and 3.8 points. Para-
phrase examples benefit evaluating paraphrase and
dialogue by 6.7 and 1.3 points. Dialogue samples
worsen the performance of WeCheck. We sup-
pose that is because these samples are boostrapped
from relative weak dialogue models, MemNet and
dodecaDialogue, which are not even pre-trained
models. Thus, dialogue samples have no contribu-
tions to NLI-warmup. By contrast, the summariza-
tion samples, which are the most difficult type for
checking, benefit most to the overall performance.

Computational Efficiency We analyze the com-
putational efficiency of WeCheck by comparing
with other metrics based on different architectures.
As reported in Table 4, we select three other rep-
resentative metrics: SCZS based on sentence-level
NLI, FactCC based on document-level NLI, and
QAFact based on QA-QG framework. All these
methods are tested on the TRUE benchmark with a
single NVIDIA 32G V100 GPU and we report the
relative time cost of each method comparing with
WeCheck®. Despite FactCC is the fastest method
reported from the results, its fact checking perfor-
mance (Table 1) is much worse than others. Among
the rest two methods with comparable performance,
WeCheck is 2.9 times faster than SCzS and 30
times faster than QAFact.

Abstractiveness As mentioned above, abstrac-
tive hypotheses are challenging for current met-
rics, e.g. XSUM summaries from MNBM. We
give an in-depth analysis of the effect of hypoth-
esis abstractiveness on the metrics performance.
Following See et al. (2017), we use the percent-
age of unique unigrams in a hypothesis w.r.t its
premise to measure abstractivenss. Then, we spilt
all the examples in TRUE into 10 bins according
to their abstractiveness. For each bin, we measure
the ROC AUC of WeCheck and the other three
representative baselines: QAFact, Summac, and
NLI-warmup. From the results in Figure 3, we
observe a significant drop in the performance for
all baselines as the hypothesis becomes more ab-
stractive, while, WeCheck keeps its performance
(around 0.85). Moreover, WeCheck consistently
outperforms baseline metrics in every bin of ab-

The batch size of each metric is set to the maximum size
that the GPU memory can hold.
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Abstractiveness

Figure 3: : ROC AUC when splitting TRUE’s data
according to abstractiveness.

#size ‘ Sum. Dial. Para. Ave

WeCheck 435M | 1.0x 1.0x 1.0x 1.0x
SCzs S9M | 3.5x  1.7x  34x  29x
FactCC 109M | 0.2x 03x 03x 0.2x
QAFact 1097TM 24 x 26 x 75% 30x

Table 4: Inference speed and parameter size (#size) of
different metrics. The right block reports the relative
time cost on TRUE comparing with WeCheck.

stractiveness. This further verifies the superiority
of directly training with real task data.

6 Labeling Model

We compare how different data programming based
labeling models affect the final metric performance.
In WeCheck, labeling model p, learns to aggre-
gate multi-resource labels to infer the hidden true
label. Comparing concretely, our method is similar
to Snorkel (Ratner et al., 2017). Because, in our
scenario, the number of weak supervision signals
is small and their relationships are relatively simple
as they are trained from different tasks, we prefer
this method over other recent more advanced ones.

In Table 5, we demonstrate the effectiveness
of our labeling model by replacing it with other
methods. In these baselines, simpler methods in-
clude: Average Signals, which simply averages all
the weak signals as the probabilistic label p(y™);
Major Vote, which select the most frequently ap-
peared label in a unified weak signal set as the
true label. More advanced methods include: Fly-
ing Squid (Fu et al., 2020), which applies an Ising
model (Parsons, 2011) to model more complex rela-
tions in a unified weak signal set; Weasel (Cachay
etal., 2021) is the current SOTA data programming

Labeling Model | Sum. Dial. Para. Ave
Ours 83.0 862 89.6 84.8
Average Signal | 81.7 86.0  88.7 83.9
Major Vote 815 856 843 83.8
Flying Squid 77.8 84.8 884 81.3
Weasel 740 844 877 79.0
EM 790 846 86.8 81.7
None 772 838 854 80.3

Table 5: Performance of WeCheck with different label-
ing models.

method, which uses a neural network as the label-
ing method and trains it end-to-end with the target
tasks model; DWS (Parker and Yu, 2021) treats the
true label of a sample as the hidden variable and ap-
plies Estimation-Maximization (EM) for inference
during training.

From the results in Table 5, our default labeling
model outperforms all others. Furthermore, more
complex methods (Flying Squid, Weasel, and EM)
perform worse than simpler methods (Ours, Aver-
age Signal, and Major Vote). This further verifies
that the relations between weak signals are sim-
ple, and complex modeling will not bring further
improvements. From another perspective, overly
simplistic approaches without any statistical model-
ing (Average Signal and Major Vote) also perform
worse than our methods.

7 Related Work

Factual Consistency Evaluation Recently, au-
tomatically checking factual consistency has be-
come an increasingly popular topic (Li et al., 2022).
Reasoning over a long range of context for fac-
tual evaluation is a challenging task that even hu-
man annotators may frequently disagree with each
other (Pagnoni et al., 2021). Thus, it is hard to
collect a large-scale high-quality dataset for train-
ing a fully supervised model, and previous works
search for indirect methods. One branch of them
leverage the reasoning ability of NLI. Based on
the model trained on NLI datasets, e.g. MNLI
(Williams et al., 2018), ANLI (Nie et al., 2020),
some works aggregate sentence-level entailment
score for checking (Falke et al., 2019; Laban
et al., 2022), while others adopt document-level
NLI which directly reasoning over the full con-
text (Maynez et al., 2020; Gehrmann et al., 2021).
Another branch of methods apply QA-QG based
pipeline for a more fine-grained checking. QAGS
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(Wang et al., 2020) and FEQA (Durmus et al.,
2020) are the earliest attempt on this method, and
QuestEval (Scialom et al., 2021) and QAFactEval
(Fabbri et al., 2022) further improve this type of
methods by applying NLI for answer matching.

Data Programming In this paper, we mainly fo-
cus on data programming (Ratner et al., 2016) (DP),
a weak supervision paradigm proposed to infer cor-
rect labels based on noisy labels from labeling func-
tions (LFs), which are rule-based decision-making
processes that generate discrete labels. Following
the DP paradigm, Snorkel (Ratner et al., 2017) is
proposed to for rapid training, more recent works
study how to adapt label model in DP (Ratner
etal., 2019; Awasthi et al., 2020) or modeling more
complex structure between LFs (Fu et al., 2020).
DP is also applied to several NLP tasks. DWS
(Parker and Yu, 2021) combine DP and CRF for
weakly supervised named entity recognition, Min
et al. (2019) apply DP for QA. Different from all
previous tasks, our weak supervision signals are
logits from other models, rather than discrete labels
generated from rules.

8 Conclusion

In this paper, we propose a weakly supervised
framework, WeCheck, which aggregates weakly
supervised signals from multiple resources and
trains a target metric model in a noise-aware man-
ner. Different from previous metrics that trains
from synthetic data or transferred from other tasks,
WeCheck directly trains with the real generated
text. WeCheck first annotates each sample with a
probabilistic label via a labeling function that aggre-
gates multiple resources. Then, in the noise-aware
finetuning stage, WeCheck applies probabilistic la-
bels to train the target metric model. Experimental
results show that, WeCheck not only surpass previ-
ous methods in performance but also time efficient.
Moreover, WeCheck is potential to be compatible
with future more stronger metrics, bring further
improvements to the overall performance.

Limitations

Hyper-parameters Selection Some hyper-
parameters still acquire careful selection for
WeCheck, e.g. pt, p~. Also, using different set of
hyper-parameters for different tasks and datasets
will further boost performance. Thus, we need to
train the model several time and select the best
performing parameters based on validation.

End-to-End Training WeCheck applies the
weak annotation and noise-aware fine-tuning two-
step pipeline, where the noises in the first step will
greatly affect the performance of the second step.
By modifying the overall framework into end-to-
end training will solve this problem.
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A True Benchmark

The TRUE benchmark is composed of the follow-
ing tasks and datasets.

Abstractive Summarization FRANK (Pagnoni
et al., 2021) collect annotations for model-
generated summaries on the CNN/DM (Hermann
et al., 2015) and XSum (Narayan et al., 2018)
datasets, resulting in 2250 annotated system out-
puts. SummEval (SumE) (Fabbri et al., 2021)
collect human judgments for 16 model outputs
on 100 articles taken from the CNN/DM dataset.
MNBD (Maynez et al., 2020) sample 500 articles
and annotate summaries generated by four different
systems on XSum, as well as the gold summaries.
QAGS (Wang et al., 2020) collect 474 generated
summaries for CNN/DM and XSum, where each
sample is annotated by three annotators.

Dialogue Generation BEGIN (Dziri et al.,
2021) is a dataset for evaluating the factual con-
sistency of knowledge-grounded dialogue systems.
Dialogue responses are generated by fine-tuning
two systems on Wizard of Wikipedia (WoW) (Di-
nan et al., 2018) dataset. Q2 (Honovich et al.,
2021) annotate 1,088 generated dialogue responses
from two dialogue models trained on WoW. Dial-
Fact (DialF) (Gupta et al., 2022) introduce a tasks
of dialogue fact-verification and propose a conver-
sation clams dataset grounded on Wikipedia. In
TRUE benchmark, one only need to verify weather
a conversation claim is correct given its grounding.

Paraphrase Detection PAWS (Zhang et al,
2019b) construct a paraphrase identification
with paraphrase and non-paraphrase pairs from
Wikipedia and the Quora Question Pairs (QQP).
In True benchmark, only samples from Wikipedia
are applied for verification.
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