
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 3171–3185

July 9-14, 2023 ©2023 Association for Computational Linguistics

InfoMetIC: An Informative Metric for
Reference-free Image Caption Evaluation

Anwen Hu1, Shizhe Chen2, LiangZhang1, Qin Jin1∗
1School of Information, Renmin University of China

2INRIA
{anwenhu,zhangliang00,qjin}@ruc.edu.cn

shizhe.chen@inria.fr

Abstract
Automatic image captioning evaluation is criti-
cal for benchmarking and promoting advances
in image captioning research. Existing metrics
only provide a single score to measure caption
qualities, which are less explainable and infor-
mative. Instead, we humans can easily iden-
tify the problems of captions in details, e.g.,
which words are inaccurate and which salient
objects are not described, and then rate the
caption quality. To support such informative
feedback, we propose an Informative Metric
for Reference-free Image Caption evaluation
(InfoMetIC). Given an image and a caption,
InfoMetIC is able to report incorrect words
and unmentioned image regions at fine-grained
level, and also provide a text precision score, a
vision recall score and an overall quality score
at coarse-grained level. The coarse-grained
score of InfoMetIC achieves significantly better
correlation with human judgements than exist-
ing metrics on multiple benchmarks. We also
construct a token-level evaluation dataset and
demonstrate the effectiveness of InfoMetIC in
fine-grained evaluation. Our code and datasets
are publicly available at https://github.
com/HAWLYQ/InfoMetIC.

1 Introduction

Image captioning aims to automatically gener-
ate natural language sentences to describe image
contents. Recently, there are significant break-
throughs in image captioning such as attention-
based model architectures (Anderson et al., 2018;
Pan et al., 2020; Hu et al., 2020, 2021) and vision-
and-language pretraining (VLP) (Zhou et al., 2020;
Xia et al., 2021; Li et al., 2022b; Xu et al., 2021;
Li et al., 2022a). However, as groundtruth image
descriptions are extremely diverse and subjective,
evaluating the image captioning performance re-
mains a considerable challenge.

The most widely used image captioning met-
rics such as METEOR (Banerjee and Lavie, 2005),
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1. A brown and white dog is running.
2. A dog runs on the snow with a package.
3. There is a hat buried in the snow.
Candidate 1(C1): A dog on the snow.
Candidate 1(C2): A dog with a hat is on the snow.
Candidate 2(C3): A dog with a bag is on the snow. 
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Figure 1: Comparison of existing metrics and our infor-
mative metric (InfoMetIC). ‘w/ ref’ and ‘w/o ref’ mean
using references or not.

CIDEr (Vedantam et al., 2015a) and SPICE (Ander-
son et al., 2016) utilize human-written descriptions
of images as references and measure similarities
between generated captions and references for eval-
uation. Such reference-based approaches suffer
from two major limitations. Firstly, these metrics
mainly evaluate caption quality by n-gram overlaps
which fail to measure genuine semantic similari-
ties. Secondly, references require time-consuming
annotations and thus there are only a few annotated
captions (typically 5) for each image. The limited
number of references cannot fully capture image
contents, resulting in incorrect penalties when gen-
erated captions describe correct novel things that
are not mentioned in the references.

To alleviate the above limitations, recent works
are more focusing on reference-free metrics, which
directly use images instead of reference captions in
evaluation. Benefited from the success of VLP on
large-scale web data, UMIC (Lee et al., 2021) and
CLIP-S (Hessel et al., 2021) leverage VLP mod-
els UNITER (Chen et al., 2020) and CLIP (Rad-
ford et al., 2021) respectively to calculate relevance
scores between generated captions and images. Al-
though they have achieved promising correlations
with human judgments, they can only produce an
overall score as quality measurement. We humans
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instead tend to evaluate captions considering two
aspects: 1) whether the caption correctly describes
the image content (named text precision); and 2)
whether the image content is comprehensively de-
scribed in the caption (named vision recall). For
example, as shown Figure 1, we can easily tell
the “hat” in the second candidate is incorrect, and
some salient contents such as “the bag” are not
mentioned, and thus form our final evaluation to
the caption.

For the purpose of providing explainable and de-
tailed feedbacks, we propose a Informative Metric
for Reference-free Image Caption evaluation (In-
foMetIC). It is built on top of pretrained VLP mod-
els to measure fine-grained cross-modal similari-
ties. InfoMetIC is able to point out incorrect seman-
tic words in the caption and unmentioned regions
in the image. Based on fine-grained evaluation, it
derives text precision and vision recall scores to
measure captioning accuracy and completeness re-
spectively. We take a summation of the two scores
to rate overall quality of the caption.

Our contributions in this work are three-fold:
• We propose a reference-free informative im-

age captioning metric InfoMetIC. It can pro-
vide both coarse-grained scores and detailed
token-level scores.

• We automatically construct training exam-
ples based on annotations in image caption
datasets and design coarse- and fine-grained
tasks to train the evaluation model.

• InfoMetIC achieves better correlation with hu-
man judgements on multiple benchmarks, as
well as on our newly constructed fine-grained
caption evaluation benchmark CapTokenEval.

2 Related Work

Reference-only caption evaluation. This type
of evaluation only employs human-written cap-
tions as references and measures text similarity
as the evaluation score. Most widely used met-
rics such as BLEU-4 (Papineni et al., 2002), ROUGE-

L (Lin, 2004), METEOR (Banerjee and Lavie, 2005),
CIDEr (Vedantam et al., 2015a) and SPICE (An-
derson et al., 2016) all fall into this category.
BLEU-4 calculates the precision of n-gram matches;
ROUGE-L measures the recall of the longest com-
mon subsequence; METEOR utilizes wordnet-based
synonym matching to relieve the shortage of exact
word matching; CIDEr introduces tf-idf to re-weight
the importance of different n-grams; SPICE converts

captions into scene graphs for similarity compari-
son. One major limitation of the above metrics is
that they cannot properly count synonym matches.
To overcome this deficiency, BERT-S (Zhang et al.,
2020) leverages learned embeddings from a pre-
trained language model BERT (Devlin et al., 2019)
to better measure semantic similarities. BERT-S++

(Yi et al., 2020) further improves BERT-S by taking
into account the variance of multiple references.
Reference+image caption evaluation. As an im-
age is worth a thousands of words, a limited num-
ber of references cannot fully cover image con-
tents, making the reference-only caption evaluation
less reliable. Therefore, some works combine both
references and images to evaluate generated cap-
tions. REO (Jiang et al., 2019a) uses a pretrained
image-text retrieval model SCAN (Lee et al., 2018)
to extract image contextualized caption features
for computing relevance, extraness and omission
scores. TIGER (Jiang et al., 2019b) calculates
grounding vectors for captions via SCAN to mea-
sure similarity, which represent how much captions
are grounded in an image. ViLBERTScore (Lee
et al., 2020) is similar to BERT-S except that it gen-
erates visually-grounded features for each caption
token by ViLBERT (Lu et al., 2019). FAIEr (Wang
et al., 2021) fuses scene graphs of the image and
references as a union scene graph and compares it
with the scene graph of generated captions.
Reference-free caption evaluation. To alleviate
the annotation burden of obtaining references, a
few works propose to evaluate image captions with-
out references. UMIC (Lee et al., 2021) fine-tunes a
pretrained multimodal transformer UNITER (Chen
et al., 2020) by contrastive learning to compute an
image-text matching score. CLIP-S (Hessel et al.,
2021) directly utilizes image-text similarity from
CLIP (Radford et al., 2021) - an image-text match-
ing model trained on large-scale open-domain data.
CLIP-S has achieved state-of-the-art evaluation per-
formance. However, these methods only provide
single scores which are less informative to evaluate
image captions. In this work, we aim to provide
more fine-grained feedbacks, not only indicating
the captioning quality from precision and recall as-
pects, but also pointing out detailed mistakes such
as incorrect words and unmentioned regions.

3 Method

We first introduce our model architecture in Sec 3.1
and then describe the training and inference ap-
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Figure 2: Left: the overall architecture of Informative Metric for Reference-free Image Caption evaluation
(InfoMetIC). Right: the detailed structure of the Fine-grained Scoring Module.

proaches in Sec 3.2 and Sec 3.3 respectively.

3.1 Model Architecture

Figure 2 illustrates the overall framework of our
informative evaluation model, which consists of
three modules: Token-level Encoding, Intra&Inter
Modality Fusion and Fine-grained Scoring. Given
an image I and a caption C as inputs, the Token-
level Encoding module firstly generates a sequence
of token-level features to represent the image and
caption respectively. Then the Intra&Inter Modal-
ity Fusion module captures the intra- and inter-
modality relationships. Finally, the Fine-grained
Scoring module produces token-level scores for
each visual and textual token and derives vision
recall, text precision, and overall scores based on
the token-level scores.

3.1.1 Token-level Encoding

VLP models have shown superior performance and
generalization ability in many vision-and-language
tasks (Chen et al., 2020). Therefore, we utilize a
state-of-the-art VLP model CLIP to extract token-
level image and caption features. To be noted, our
method can be adapted to different VLP models.
Image Token Features. In order to obtain semanti-
cally meaningful image tokens, we use a pretrained
object detector to detect region bounding boxes
in image I . We encode each cropped region via
CLIP vision encoder to get fine-grained token-level
features (v1, ..., vm), where m is the number of de-
tected regions. The whole image is encoded as a
global vision feature vg. We further utilize a zero
vector to represent a vision null token vnull, which
aims to align with any texts irrelevant to the image.
Caption Token Features. For a caption C, CLIP

text encoder can generate a global feature tg to
capture overall semantics of the whole sentence.
Although it could also generate a sequence of text
token features, these features can overuse the sen-
tence context, which harms fine-grained evaluation.
An illustration about the context overuse can be
found in Appendix A. Therefore, we encode each
token in C separately as shown in Figure 2 to ob-
tain independent token-level features (t1, ..., tn),
where n is the number of text tokens.

3.1.2 Intra&Inter Modality Fusion

In order to learn intra-modal relationships, we uti-
lize two multi-layer transformers (Vaswani et al.,
2017) to encode image and text tokens separately.
As spatial information is essential to infer relation-
ships across image regions, we apply a linear layer
to convert normalized bounding boxes as position
features and add them to the initial image token fea-
tures before fed into the intra-modal transformer.
Likewise, we add learnable position features for the
text tokens. For visual intra-modal encoding, we
concatenate vg with (v1, · · · , vm, vnull) to alleviate
possible vision context loss in fine-grained image
tokens due to imperfect detection. For textual intra-
modal encoding, we directly utilize (t1, · · · , tn)
tokens as inputs.

We concatenate the image and text token-level
features after intra-modal encoding and utilize an
inter-modal encoder to learn correlation between
vision and text modalities. The inter-modal encoder
is implemented as a multi-layer cross-modal trans-
former (Chen et al., 2020). We denote the output
features for image tokens as V̂ = (v̂1..., v̂m, v̂null),
output features for text tokens as T̂ = (t̂1, ..., t̂n).
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3.1.3 Fine-grained Scoring
The Fine-grained Scoring module aims to predict
which text tokens are incorrect and which image
tokens are not mentioned. It consists of two cross-
modal attention layers, namely Text-filterd Vision
Encoder and Vision-filterd Text Encoder as shown
in the right of Figure 2. To identify which image
tokens are mentioned, we use global text feature tg
as query and token-level vision features V̂ as key
in the cross-modality attention layer to calculate
visual token-level scores αv:

svi = (tgW
v
q )

Tv̂iW
v
k , (1)

αv = Softmax([sv1, ..., s
v
m, svnull]). (2)

Similarly, to identify which text tokens are in-
correct, we use global vision feature vg as query
and token-level text features T̂ as key to calcu-
late textual token-level scores αt by another cross-
modality attention layer.

Based on token-level scores, we derive vision
recall score and text precision scores to measure
the comprehensiveness and accuracy of generated
captions respectively. We take visual token-level
scores αv and token-level vision features V̂ to ob-
tain a text-conditioned vision feature v̂g by weighed
average as follows:

v̂g =
∑

k∈{1,...,m,null}
αv
kv̂k. (3)

The more image regions are mentioned in a cap-
tion, the closer its text-conditioned vision feature
should be to the global vision feature vg. Thus,
we compute the vision recall score as the co-
sine similarity between v̂g and vg, represented as
fR(I, C) = cos(v̂g, vg)/τ , where τ is a learnable
temperature parameter. Taking the untrained global
vision feature vg as the comparison object, our vi-
sion recall score implicitly considers the salience of
visual information, as illustrated in Appendix B. In
a similar way, we can obtain a vision-conditioned
text feature t̂g and compute a text precision score
fP (I, C) = cos(t̂g, tg)/τ . Our overall score is the
summation of precision score and recall score:

fO(I, C) = fR(I, C) + fP (I, C). (4)

3.2 Multi-task Learning

To learn fine-grained token-level predictions as
well as coarse-grained text precision and vision
recall scores, we propose multiple training tasks to
jointly optimize our evaluation model.

3.2.1 Coarse-grained Score Learning
Given an aligned image-caption pair (I, C), we
construct negative samples by pairing I with other
captions in the training batch or pairing C with
other images in the batch. Then, we calculate Noisy
Contrastive Learning (NCE) loss lr based on vision
recall scores and lp based on text precision scores.
The NCE loss lr is calculated as follows:

lr = (lir + lcr)/2, (5)

lir = −E(I,C)∼B log
ef

R(I,C)

∑
C′∈NI∪{C} e

fR(I,C′)
, (6)

lcr = −E(I,C)∼B log
ef

R(I,C)

∑
I′∈NC∪{I} e

fR(I′,C)
, (7)

where NI means a set of negative captions for im-
age I within the batch B, NC means negative im-
ages for caption C. The NCE loss lp is similar to
Eq (5) but utilizes fP (I, C) scores in computation.

Hard Textual Negatives. In the above coarse-
grained score learning, negative captions for an im-
age are randomly selected from the dataset and usu-
ally contains many irrelevant contents with the im-
age. These textual negatives are not hard enough to
learn a good vision recall score. Because the model
could compute a high recall score for positive pairs
by putting high weight to only one rather than all
mentioned regions. To address this problem, we
further design Hard Textual Negatives (HTN) dur-
ing coarse-grained score learning. For multiple
annotated captions of an image, we consider the
one with more semantic words (nouns, verbs, adjec-
tives and adverbs) should get higher vision recall
score than the others. Therefore, we treat the other
ones as hard textual negatives. The HTN loss lhr is
calculated as follows:

lhr = −E(I,C)∼B log
ef

R(I,C)

efR(I,C) + efR(I,Ch)
, (8)

where Ch is a hard textual negative for caption C.

3.2.2 Fine-grained Score Learning
To improve fine-grained evaluation, we design a
sequence labeling task called Fine-grained Score
learning. We automatically generate supervision
signals to learn token-level predictions. For the text
part, we prepare labels in a self-supervised manner.
Given an image I and its groundtruth caption C,
we generate a polluted caption C

′
by randomly

replacing a semantic word with a frequent word
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of the same part-of-speech tag. The text sequence
label Y t for (I, C

′
) is constructed by setting the

polluted word as 0 (incorrect) and other semantic
words as 1 (correct). Non-semantic words such as
adpositions, conjunctions are excluded in training.
For the image part, we make use of existing phrase
grounding annotations which align each phrase in
a caption with its corresponding bounding boxes in
the image. The vision sequence label Y v for (I, C)
is constructed by setting all regions mentioned by
the caption as 1 and otherwise 0.

We use cross-entropy losses for both textual and
visual fine-grained score learning tasks:

ltokent = − 1

ns

∑
Y t log(αt), (9)

ltokenv = − 1

m

∑
Y v log(αv), (10)

where ltokent and ltokenv refer to the text-part and
vision-part loss respectively, αt and αv are textual
token-level scores and visual token-level scores in
Eq (2), ns is the number of semantic words.

3.3 Inference

Given input pair (I, C), we first compute token-
level scores αv and αt for fine-grained prediction
with a threshold β. Considering that a caption
hardly contains more than 10 semantic words, we
set β as 0.1. For the text part, semantic tokens with
a score greater than β are judged as correct ones.
For the image part, regions with a score greater
than β are identified as mentioned ones.

Then we calculate the vision recall, text preci-
sion, and overall scores as in Eq (4). We denote our
vision recall score fR(I, C) as InfoMetICR, text
precision score fP (I, C) as InfoMetICP , and over-
all score fO(I, C) as InfoMetIC. Furthermore, we
combine our overall score with the CLIP similarity:

InfoMetIC+ = InfoMetIC +
cos(vg, tg)

τ clip
(11)

where τ clip is the temperature of CLIP.

4 Experiment

4.1 Experimental Setting

Training Datasets. With the training splits of
Flickr30k (Young et al., 2014) and MSCOCO (Lin
et al., 2014) datasets, we construct 715,662 image-
caption pairs for general coarse-grained score learn-
ing, and 611,105 triplets with hard textual nega-
tives. For fine-grained score leaning, we construct

512,000 samples from MSOCO and Flick30k for
the text part training and 178,689 samples from
Flickr30k for the vision part training.
Implementation Details. We use CLIP(ViT-B/32)
for token-level encoding. The image regions are
detected by the bottom-up model (Anderson et al.,
2018). To remove redundant bounding boxes,
we use k-means algorithm to generate 20 clusters
among 100 detected regions and select one region
per cluster. The details can be found in Appendix
C. The maximum length for textual tokens is set as
32. In the intra&inter modality fusion, intra- and
inter-modal encoders contain 4 and 2 transformer
layers respectively. During training, the batch size
is set as 32 and the initial learning rate is set as
1e-4. We iteratively train our model on multiple
tasks for 32,000 iterations. The training ratio of
coarse- and fine-grained tasks is 3:1. The training
takes 5 hours on 4 V100 GPUs.

4.2 Coarse-grained Score Evaluation

4.2.1 Evaluation Datasets
Flickr8k-Expert (Hodosh et al., 2013a) contains
5,644 pairs of images and machine-generated cap-
tions. Each pair is scored from 1 (irrelevant) to 4
(well related) by 3 expert annotators.
Flickr8k-CF (Hodosh et al., 2013a) consists of
47,830 image-captions pairs. Each pair is judged
"yes" or "no" by at least 3 annotators, where "yes"
is for good captions. The final score of each pair is
determined by the proportion of "yes".
Composite (Aditya et al., 2018) contains 3,995
images from MSCOCO, Flickr30K and Flickr8k
(Hodosh et al., 2013b). For each image, there are
two machine-generated captions and one human-
written caption. Every image-caption pair is scored
from 1 (irrelevant) to 5 (perfectly related).
Pascal-50S (Vedantam et al., 2015b) contains
4,000 triplets, each of which contains an image
and two captions. Annotators are asked to judge
which caption is better. According to caption
types, Pascal-50S is evenly split into 4 subsets:
‘HC’ means two correct human-written captions;
‘HI’ means two human-written captions but one is
wrong; ‘HM’ means one human-written caption
and one machine-generated caption; ‘MM’ means
two machine-generated captions.
THumB 1.0 (Kasai et al., 2022) contains 500
images from MSCOCO. Each image is paired
with one human-written caption and four machine-
generated captions. For each image-caption pair,
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Table 1: Overall score comparison on Flickr8k-Expert (F-Ex), Flickr8k-CF (F-CF), Composite (Com) and Pascal-
50S. ‘w/ ref’ means using 4-5 ground-truth references. ‘w/o ref’ means using no reference.

Type Metric Pascal-50S (accuracy)F-Ex(τc) F-CF(τb) Com(τc) HC HI HM MM Mean

w/ ref

BLEU-4 30.8 16.9 30.6 52.5 90.4 63.0 42.3 55.8
ROUGE-L 32.3 19.9 32.4 55.0 95.3 93.1 58.7 75.5
METEOR 41.8 22.2 38.9 59.0 97.7 93.9 62.0 78.2
CIDEr 43.9 24.6 37.7 53.7 98.1 90.8 63.7 76.6
SPICE 44.9 24.4 40.3 56.9 96.3 87.1 66.4 76.7
BERT-S 39.2 22.8 30.1 54.4 96.1 94.3 56.4 75.3
BERT-S++ 46.7 - 44.9 65.4 98.1 96.4 60.3 80.1
TIGEr 49.3 - 45.4 56.0 99.8 92.8 74.2 80.7
ViLBERTScore-F 50.1 - 52.4 49.9 99.6 93.1 75.8 79.6
FAIEr-4 52.6 35.4 57.7 59.7 99.9 92.7 73.4 81.4
RefCLIP-S 53.0 36.4 55.4 57.9 99.5 96.1 80.8 83.6

w/o ref

UMIC 46.8 - 56.1 66.1 99.8 98.1 76.2 85.1
FAIEr-r 50.1 32.4 50.5 - - - - -
CLIP-S 51.5 34.4 53.8 60.4 99.4 97.8 77.1 83.7
CLIP-Stune 54.3 36.6 57.3 61.0 99.5 95.9 82.0 84.6
InfoCLIP 32.6 23.5 15.3 37.3 87.3 58.9 72.9 64.1
InfoCLIPtune 37.7 27.7 24.6 37.3 92.5 62.7 74.7 66.8
InfoMetIC 54.2 36.3 59.2 69.0 99.8 94.0 78.3 85.3
InfoMetIC+ 55.5 36.6 59.3 69.9 99.7 96.8 79.6 86.5

there are a precision score measuring the accuracy
of the caption, a recall score assessing how much
of the salient information is covered, and a total
score measuring the overall quality.

4.2.2 Evaluation Metrics
We follow previous works (Hessel et al., 2021;
Vedantam et al., 2015b; Kasai et al., 2022) to eval-
uate captioning metrics. We use kendall-c correla-
tion (τc) on Flickr8k-Expert, kendall-b correlation
(τb) on Flickr8k-CF, kendall-c correlation (τc) on
Composite, classification accuracy on Pascal-50s
and Pearson correlation (ρ) on THumB 1.0.

4.2.3 Comparison with State of the Arts
We compare InfoMetIC with SOTA methods as
well as three strong baselines: CLIP-Stune, Info-
CLIP and InfoCLIPtune. CLIP-Stune calculates an
overall score as CLIP-S (Hessel et al., 2021) but is
fine-tuned on MSCOCO and Flickr30k. InfoCLIP
directly uses CLIP to perform fine-grained scoring
like InfoMetIC but removes the Intra&Inter Modal-
ity Fusion and parameters in Fine-grained Scoring.
InfoCLIPtune is a fine-tuned version of InfoCLIP.
More details can be found in the Appendix D.

Table 1 shows the overall score compari-
son on Flickr8k-Expert, Flickr8k-CF, Compos-
ite and Pascal-50S. Our reference-free metric In-
foMetIC achieves state-of-the-art correlation with
human judgements on Composite and Pascal-5OS.
It is on par with the strong baseline CLIP-Stune

on Flickr8k-Expert and Flickr8k-CF. To be noted,
InfoMetIC performs much better than InfoCLIP,
which proves the necessity of our model architec-
ture upon CLIP backbones. After combined with
CLIP similarity, InfoMetIC+ further improves per-
formances on all benchmarks.

To separately evaluate the performance of our
vision recall score InfoMetICR and text precision
score InfoMetICP , we further conduct experiments
on THumB 1.0 in Table 3. First, by compar-
ing InfoMetICP and InfoMetICR, InfoMetICR

achieves better correlation with human-labeled re-
call score and InfoMetICP achieves better corre-
lation with human-labeled precision score. This
indicates that our InfoMetICR and InfoMetICP in-
deed evaluates the recall of image contents and the
precision of caption respectively. Besides, both
InfoMetICP and InfoMetICR surpass the state-
of-the-art reference-free metric CLIP-S on total
score correlation. Second, our overall score In-
foMetIC achieves significant boost on total score,
which demonstrates that precision and recall are
complementary in human’s final evaluation for cap-
tions. InfoMetIC+ slightly improves the total score
performance. Third, compared with the state-of-
the-art reference-based metric RefCLIP-S (Hessel
et al., 2021), our InfoMetIC+ achieves much better
recall correlation but lower precision correlation
with humans. This is because text-text semantic
comparison is much easier than cross-modal seman-
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Table 2: Ablation Study on Flickr8k-Expert (F-Ex), Flickr8k-CF (F-CF), Composite (Com), Pascal-50S and THumB
1.0. HTN denotes using hard text negatives in coarse-grained score learning, and FS refers to the fine-grained score
leaning. ‘vg’ means incorporating the vision global feature in the Intra&Inter Modality Fusion Module.

Id Architecture Training Pascal-50S THumB w/o h THumB w/ h
Intra Inter vg HTN FS F-Ex F-CF Com HC HI HM MM Mean P R Total P R Total

r1 ✓ ✓ 51.7 36.8 57.8 58.0 99.5 95.0 76.3 82.2 0.23 0.26 0.35 0.20 0.26 0.32
r2 ✓ ✓ 55.1 37.1 59.0 59.5 99.8 95.4 78.1 83.2 0.23 0.26 0.35 0.20 0.26 0.32
r3 ✓ ✓ 55.1 36.9 59.4 58.6 99.9 95.7 79.6 83.5 0.21 0.26 0.34 0.19 0.26 0.32
r4 ✓ ✓ ✓ 55.2 36.9 59.3 58.0 99.7 96.1 80.8 83.7 0.22 0.26 0.35 0.20 0.26 0.33
r5 ✓ ✓ ✓ ✓ 54.5 36.2 58.8 69.3 99.6 93.7 75.2 84.5 0.23 0.28 0.37 0.22 0.30 0.37
r6 ✓ ✓ ✓ ✓ 55.2 37.0 59.3 60.2 99.7 96.8 79.6 84.1 0.22 0.26 0.34 0.20 0.26 0.32
r7 ✓ ✓ ✓ ✓ ✓ 54.2 36.3 59.2 69.0 99.8 94.0 78.3 85.3 0.22 0.30 0.37 0.21 0.32 0.38

Table 3: Experiments on THumB 1.0. ‘w/o Human’
means discarding human annotated image-caption pairs.

Ref Metric w/o Human w/ Human
P R Total P R Total

w/

BLEU .21 .13 .25 .15 .04 .13
ROUGE-L .26 .17 .31 .18 .07 .18
CIDEr .27 .18 .33 .21 .11 .23
SPICE .26 .15 .30 .20 .09 .21
BERT-S .27 .18 .33 .20 .10 .21
RefCLIP-S .34 .27 .44 .31 .26 .41

w/o

InfoCLIPR .05 .19 .17 .05 .19 .17
InfoCLIPP .11 -.22 -.08 .09 -.20 -.08
InfoCLIP .13 -.06 .04 .11 .06 .03
InfoCLIPtune .15 -.15 .00 .11 -.15 -.03
CLIP-S .18 .27 .32 .17 .28 .32
CLIP-Stune .15 .26 .29 .13 .26 .28
InfoMetICR .18 .29 .34 .19 .32 .36
InfoMetICP .23 .27 .36 .20 .27 .33
InfoMetIC .22 .30 .37 .21 .32 .38
InfoMetIC+ .22 .33 .39 .21 .34 .39

tic comparison, making the precision correlation of
reference-based metrics higher. However, limited
textual references cannot fully capture image con-
tents, which is harmful for vision recall. Finally,
InfoMetIC achieves much better performance than
InfoCLIP, which shows the effectiveness of our
proposed modules on top of CLIP.

4.2.4 Ablation Study

We first validate the effectiveness of our model
architecture. As shown in Table 2, removing Intra-
modal encoders (r2 vs r4) or Inter-modal encoder
(r1 vs r4) results in performance drop on Flickr8k-
Expert, Composite and Pascal-50S. Besides, re-
moving global vision feature vg from Intra&Inter
encoding (r3 vs r4) leads to slight performance drop
on Flickr8k-Expert, Pascal-50S and THumB1.0.

We then carry out ablation study to verify the ef-
fectiveness of our training strategy in Table 2. Our
proposed hard textual negatives (r4 vs r5) achieves

Table 4: Cross-modal retrieval performances on Nocaps.

Method image to text text to image
R@1 R@5 R@10 R@1 R@5 R@10

TIGER 63.8 87.0 92.4 22.5 66.5 81.9
CLIP-S 88.2 98.3 99.7 67.5 91.5 95.8
InfoMetIC 76.6 96.5 99.1 71.6 94.4 97.7
InfoMetIC+ 90.9 98.8 99.7 76.2 95.9 98.4

significant improvements on HC subset of Pas-
cal50s and THumB 1.0 Recall. This shows that
constructing hard negatives indeed helps model
better evaluate the vision content recall. Adding
fine-grained score learning task (r4 vs r6) is also
beneficial to the performance of coarse-grained
score, which performs better on Pascal-50S and is
comparable on other datasets. When trained with
all tasks together (r7), InfoMetIC further improves
on Pascal-50S and THumB 1.0, and achieves state-
of-the-art performance on all datasets.

4.3 Generalization Ability

InfoMetIC are trained with image-captions of
Flick30k and MSCOCO. To evaluate its gener-
alization ability, we further conduct experiments
on NoCaps (Agrawal et al., 2019), whose objects
are greatly different from Flick30k and MSCOCO.
Since there are no human-labeled scores for image-
caption pairs, we perform text-image cross-modal
retrieval to validate the effectiveness of our metric.
As shown in Table 4, InfoMetIC performs worse
than CLIP-S on image-to-text retrieval but better
on text-to-image retrieval. After combining with
CLIP similarity, InfoMetIC+ achieves the state-of-
the-art performance on both two retrieval tasks. It
indicates our overall score can also perform well
on instances with unseen objects.
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Mentioned Unmentioned

A   couple of     bikes parked

next   to   a    train .
0 0.06✘ 0.0  0.49✔ 0.18 ✔

0.01   0 0 0.26 ✔ 0

Text tokens Evaluation: 

Mentioned Unmentioned

A   baseball player running to

a    base during   a    game .
0 0.29✔ 0.21 ✔ 0.09 ✘ 0

0    0.24 ✔ 0.01     0 0.16 ✔ 0

Text Tokens Evaluation: 

A       man riding a     skateboard

up  the  side of    a    ramp .
0.01 0.29✔ 0.16✔ 0.01 0.22✔

0.07 0   0.15✔ 0.02 0   0.04✘ 0

Text Tokens Evaluation: 

0.97
A       white truck travels down 

a    residential street past some 

trash cans .

0.14 0.04✘ 0.01✘ 0.05 ✘ 0.14 

0.14   0.04✘ 0.07✘ 0.05✘ 0.14   

0.01✘ 0.01✘ 0.15

Text tokens Evaluation: 

(a)

(b)

(c)

(d)

Mentioned Unmentioned
Mentioned Unmentioned

0.11
0.12

0.13

0.02

0.01

0.21

0.12

0.03

0.01

0.02

0.00.0

0.0

0.02

0.02
0.020.03

0.01

0.17

0.11
0.16

0.15

Image Regions Evaluation: 

Image Regions Evaluation: 

Image Regions Evaluation: 

Image Regions Evaluation: 

Figure 3: Fine-grained evaluation examples using InfoMetIC. Semantic words in captions are underlined. Semantic
words and image regions with a score lower than 0.1 are considered as incorrect words and unmentioned regions
respectively. We show all mentioned regions but only the top unmentioned image regions for better visualization.

4.4 Fine-grained Score Evaluation

Dataset. To validate the token-level evaluation
performance of InfoMetIC, we collect a fine-
grained caption evaluation benchmark called Cap-
TokenEval. CapTokenEval is built upon a subset
of THumB 1.0. We select 700 image-caption pairs
whose precision scores are not perfect (< 5.0). For
the text part, annotators are asked to judge which
words are irrelevant with the image. For the image
part, we collect 20 bounding boxes and ask anno-
tators to identify mentioned regions. More details
about the annotation can be found in Appendix E.
Quantitative Results. Given each image-caption
pair, InfoMetIC produces sequence of prediction
for both image regions and caption tokens. To quan-
tify token-level evaluation performance, for the text
part, we only calculate the accuracy of semantic
tokens (nouns, verbs, adjectives and numbers). As
shown in Table 5, without extra parameters, In-
foCLIP achieves promising performance for fine-
grained visual evaluation but poor performance in
the text part. Consistent with the result shown in
Table 3 that InfoCLIPR ourperforms InfoCLIPP , it
further shows the importance of context fusion for
text precision evaluation. With multi-task learning,
InfoMetIC achieves promising prediction accuracy
on both vision and text sequence. Both hard tex-
tual negatives and fine-grained score learning task
contribute to token-level evaluation performance.
Notably, fine-grained score learning task greatly
boosts the text-part accuracy. Coarse-grained con-
trastive learning for text precision score within a
batch can result in the model only putting relatively
higher weights on a few correct text tokens. Our
fine-grained score learning task could effectively

Table 5: Token-level evaluation on CapTokenEval. CS:
coarse-grained score learning; HTN: adding hard textual
negatives in CS; FS: fine-grained score leaning.

Method Training Accuracy
CS HTN FS Vision Text

InfoCLIP - - - 0.73 0.33
InfoCLIPtune - - - 0.74 0.37

Ours

✓ × × 0.74 0.36
✓ ✓ × 0.75 0.37
✓ × ✓ 0.75 0.79
✓ ✓ ✓ 0.75 0.80

alleviate this lazy behavior by teaching the model
to put high weights on all correct tokens.
Qualitative Results. We show some qualita-
tive results of token-level evaluation in Figure 3.
Firstly, InfoMetIC is able to identify various mis-
takes made in captions, including wrong actions
(e.g.“running” in case a), wrong objects (e.g.“ramp”
in case b), and wrong modifiers (e.g.“couple” in
case c). Secondly, InfoMetIC could report men-
tioned image regions (e.g. the “skateboard” region
in case b) and unmentioned regions (e.g. the “build-
ing” region in case b). Especially, when the caption
is totally irrelevant with the image, as shown in case
d, InfoMetIC could not only judge the wrong se-
mantic words but also inform that all image regions
are not mentioned by putting a very high score to
the vision null token. One limitation of current
metric is that although we perform region filtering
by clustering, we still find some similar regions as
shown in Figure 3(c). Better ways to de-duplicate
image regions could bring further improvement.
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5 Conclusion

To provide feedbacks on detailed mistakes of image
captions, we propose a reference-free informative
metric InfoMetIC based on a state-of-the-art vision-
language model. InfoMetIC not only points out in-
correct descriptions, but also tells which regions are
not mentioned. Based on these fine-grained evalu-
ation, InfoMetIC derives a text precision score, a
vision recall score, and an overall score. We de-
sign both coarse- and fine-grained training tasks
to optimize our metric. The overall score given
by our metric achieves state-of-the-art correlation
with human judgement on multiple benchmarks.
We further build a token-level caption evaluation
benchmark CapTokenEval to prove the effective-
ness of our fine-grained evaluation.

Limitations

This work focuses on informative image captioning
evaluation, including an overall score, vision recall,
text precision and token-level scores. The effective-
ness of our metric is validated on standard image
captioning benchmarks. InfoMetIC in this work
may not perform well in other captioning tasks
due to domain gap, but we contend that our general
framework can be adapted to other domains such as
text-aware image captioning. For example, for text-
aware image captioning which focuses more on
scene texts in images, we could further encode text
regions besides the existing object regions for bet-
ter comparison with captions. In the future, we will
comprehensively explore how to adapt our metric
to other captioning tasks, such as text-aware image
captioning and video captioning.
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A Context Overuse Issue

CLIP (Radford et al., 2021) is trained to well align
global image representations and sentence repre-
sentation. Thus it applies a triangle masking dur-
ing text encoding and treats the representation of
the last text token [e] as the sentence representa-
tion. Due to the training objective and text masking
mechanism, the text context information is accumu-
lated with the sequence order, which is unfavorable
for text-part fine-grained evaluation. As shown in
Figure 4, the third ‘a’ is a meaningless indefinite
article but gets a higher relevance score than the
correct noun ‘man’.

B Salience of Visual Information

Our vision recall score is calculated by compar-
ing the text-conditioned vision features (the CLIP’s
global vision feature) rather than the sum or aver-
age of all regions features. CLIP is trained with
massive image-caption pairs and achieves promis-
ing performance on multiple Vision-Language
tasks. Thus it’s convincing that the global vision
feature produced by CLIP could well represent the
salient information in an image. As illustrated in
Figure 5, both ‘cloud’ and ‘grass’ are objects in
the image, but InfoMetIC gives the second caption
higher vision recall score because ‘grass’ is more
salient than ‘clouds’ in the image.

C Cluster Number Setting Details

Similar image regions can cause confusion dur-
ing fine-grained evaluation. In this work, redun-
dant regions are removed by K-means clustering
algorithm. Concretely, with 100 bounding boxes
given by the object detection model, we perform

Table 6: Performance of InfoMetIC with different clus-
ter numbers on Flickr8k-Expert (F-Ex), Flickr8k-CF
(F-CF), Composite (Com), Pascal-50S and THumB w/
Human.

cluster F-Ex F-CF Com Pascal50S Thumb

10 54.2 36.1 58.3 84.8 0.36
20 54.2 36.3 59.2 85.3 0.38
30 54.4 36.3 59.5 85.2 0.36
40 54.7 36.2 59.2 85.3 0.39
50 54.8 36.3 59.5 85.3 0.37

K-means to generate N clusters. For each cluster,
the region with highest confidence score given by
the object detection model is maintained. The eval-
uation performance of InfoMetIC with different N
settings is shown in Table 6. With the cluster num-
ber ranging from 10 to 50, the overall evaluation
performance of InfoMetIC shows minor difference
on these benchmarks. Taking into account both
performance and complexity, we finally set N as
20.

D Baseline Details

To verify the effectiveness of InfoMetIC, besides
state-of-the-art caption metrics, we set extra three
baselines CLIP-Stune, InfoCLIP and InfoCLIPtune.
As shown in Figure 6(a), CLIP-S (Hessel et al.,
2021) directly uses the global representations given
by CLIP(Radford et al., 2021) to calculate a co-
sine similarity as the overall score. CLIP-Stune

follows the same calculation manner but uses a
CLIP fine-tuned on MSCOCO and Flickr30k as the
backbone. Previous metrics can’t do fine-grained
caption evaluation. Therefore, we set a fine-grained
evaluation baseline InfoCLIP, as shown in Figure
6(b). InfoCLIP performs fine-grained scoring as
InfoMetIC without Intra&Inter Modality Fusion
and parameters in Fine-grained Scoring, e.g.W v

q

and W v
k in Eq (1). InfoCLIPtune means using a

fine-tuned CLIP as the backbone.

E CapTokenEval Annotation Details

To quantify caption evaluation performance at to-
ken level, we collect a fine-grained caption evalua-
tion benchmark called CapTokenEval. The details
of our annotation are introduced in following sub-
sections.

E.1 Data Preparation

We prepare image-caption pairs for annotation
based on the publicly released dataset THumB 1.0
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Token [s] a man with a red helmet on a small mo ped on a dirt road . [e]
CLIP-S 18.6 9.96 13.45 17.08 12.4 17.95 16.02 19.3 18.3 17.72 21.2 22.77 19.38 21.25 18.53 23.75 26.1 32.62

Caption: A man with a red helmet on a small moped on a dirt road.

Figure 4: An illustration about the context overuse during text encoding of CLIP. The CLIP-S of each token are
calculated with global vision feature and token-level text feature got by original CLIP encoding way rather than
individually encoding.

Caption 𝑰𝒏𝒇𝒐𝑴𝒆𝒕𝑰𝑪𝑹

A very large sheep is standing. 1.66

A very large sheep is standing 
in the grass.

3.80

A very large sheep is standing 
under clouds. 

2.60

Figure 5: An illustration about the influence of object
salience to our vision recall score InfoMetICR.

(Kasai et al., 2022). THumB 1.0 collects 500 im-
ages from MSCOCO (Lin et al., 2014) and pairs
each image with 4 captions generated by state-of-
the-art image captioning models, including UP-
Down (Anderson et al., 2018), Unified-VLP (Zhou
et al., 2020), VinVL-base and VinVL-large (Zhang
et al., 2021). There are a precision score, a re-
call score and a total score for each image-caption
pair. To ensure that textual token-level evaluation
in our benchmark is hard enough, we select image-
caption pairs whose precision score is not perfect
(<5.0). We finally collect 700 image-captions pairs
from ThumB 1.0. As the data used in our annota-
tion all come from publicly released datasets, there
are no ethic issues.

For each image, we extract 100 bounding boxes
with pre-trained object detection model Bottom-
Up (Anderson et al., 2018). To filter similar im-
age regions, we apply K-means clustering on these
bounding boxes. We generate 20 clusters for each
image and choose a bounding box with highest con-
fidence score of object classification from each clus-
ter. Thus, for each image-caption pair, we provide
20 image regions to annotators, who will choose
which regions are mentioned by the caption. For
the text part, we tokenize the caption with Spacy1.

1https://spacy.io/usage

E.2 Annotation Platform

We build a platform to support the fine-grained
annotation. Figure 7 presents the annotation inter-
face on our platform, which consists of three major
parts. The middle part contains an image-caption
pair to be annotated. The left part is the textual
token-level annotation area, which lists all tokens
in the caption. The right part is the visual token-
level annotation area, which places 20 images with
bounding boxes indicating different image regions.

E.3 Annotation Instruction

Given an image-caption pair, we ask annotators to
identify which tokens in the caption are incorrect
and which regions are mentioned by the caption.
Besides, we require that if the caption mentions
an object without descriptions about details, the
image regions of detailed components shouldn’t
be classified as ‘Mentioned’. For example, for the
caption ‘a group of people riding on the back of
an elephant’, the image region of the elephant nose
shouldn’t be judged as ‘Mentioned’.

We invite 20 college students as annotators.
They all have sufficient English proficiency to un-
derstand image captions in English. We provide
a document to inform annotators the goal of our
annotation and detailed instructions about the us-
age of the annotation platform. Each annotator is
assigned 35 image-caption pairs for annotation.
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CLIP Vision Encoder CLIP Text Encoder

[s] A man riding on 
the a motorcycle. [e]

Score

𝑣! 𝑡!

(a) CLIP-S

CLIP Vision Encoder CLIP Text Encoder

… [s] A man 
riding on the a 
motorcycle. [e]

[s] A [e] [s] man [e] [s] . [e]…

… …

Vision Recall Score Text Precision Score

𝑡!𝑣!

�̂�!$𝑣!

𝑣"#$$

Fine-grained Scoring Module （parameter-free）

(b) InfoCLIP

Figure 6: Overall architectures of baselines CLIP-S and InfoCLIP

Figure 7: An overview of the annotation platform.
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