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Abstract
We propose using automatically generated
natural language definitions of contextualised
word usages as interpretable word and word
sense representations. Given a collection of
usage examples for a target word, and the corre-
sponding data-driven usage clusters (i.e., word
senses), a definition is generated for each usage
with a specialised Flan-T5 language model,
and the most prototypical definition in a usage
cluster is chosen as the sense label. We demon-
strate how the resulting sense labels can make
existing approaches to semantic change analy-
sis more interpretable, and how they can allow
users—historical linguists, lexicographers, or
social scientists—to explore and intuitively
explain diachronic trajectories of word mean-
ing. Semantic change analysis is only one of
many possible applications of the ‘definitions
as representations’ paradigm. Beyond being
human-readable, contextualised definitions
also outperform token or usage sentence embed-
dings in word-in-context semantic similarity
judgements, making them a new promising
type of lexical representation for NLP.

1 Introduction

Accurate semantic understanding in language tech-
nologies is typically powered by distributional
word representations and pre-trained language mod-
els (LMs). Due to their subsymbolic nature, how-
ever, such methods lack in explainability and in-
terpretability, leading to insufficient trust in end
users. An example application which requires
capturing word meaning with its nuanced context-
determined modulations is lexical semantic change
analysis, a task which consists in detecting whether
a word’s meaning has changed over time, for
example by acquiring or losing a sense. Mod-
ern semantic change detection systems rely on
static and contextualised word representations, LM-
based lexical replacement, grammatical profiles,
supervised word sense and word-in-context disam-
biguation (Kutuzov et al., 2018; Tahmasebi et al.,

2021). But the main potential end users of these
technologies—historical linguists, lexicographers,
and social scientists—are still somewhat reluctant
to adopt them precisely because of their lack of ex-
planatory power. Lexicographers, for instance, are
not satisfied with detecting that a word has or hasn’t
changed its meaning over the last ten years; they
want descriptions of old and new senses in human-
readable form, possibly accompanied by additional
layers of explanation, e.g., specifying the type of
semantic change (such as broadening, narrowing,
and metaphorisation) the word has undergone.

Our work is an attempt to bridge the gap be-
tween computational tools for semantic understand-
ing and their users. We propose to replace black-
box contextualised token embeddings produced by
large LMs with a new type of interpretable lex-
ical semantic representation: automatically gen-
erated contextualised word definitions (Gardner
et al., 2022). In this paradigm, the usage of the
word ‘apple’ in the sentence ‘She tasted a fresh
green apple’ is represented not with a dense high-
dimensional vector but with the context-dependent
natural language definition ‘EDIBLE FRUIT’. With
an extended case study on lexical semantic change
analysis, we show that moving to the more abstract
meaning space of definitions allows practitioners to
obtain explainable predictions from computational
systems, while leading to superior performance on
semantic change benchmarks compared to state-of-
the-art token-based approaches.

This paper makes the following contributions.1

1. We show that word definitions automatically
generated with a specialised language model,
fine-tuned for this purpose, can serve as in-
terpretable representations for polysemous
words (§5). Pairwise usage similarities be-
tween contextualised definitions approximate
human semantic similarity judgements better

1All the code we used can be found at https://
github.com/ltgoslo/definition_modeling.
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Usage example Target word Generated definition

‘about half of the soldiers in our rifle platoons were
draftees whom we had trained for about six weeks’

draftee ‘A PERSON WHO IS BEING ENLISTED IN

THE ARMED FORCES’

Table 1: An example of a definition generated by our fine-tuned Flan-T5 XL. The model is prompted with the usage
example, post-fixed with the phrase ‘What is the definition of draftee?’

than similarities between usage-based word
and sentence embeddings.

2. We present a method to obtain word sense rep-
resentations by labelling data-driven clusters
of word usages with sense definitions, and col-
lect human judgements of definition quality to
evaluate these representations (§6). We find
that sense labels produced by retrieving the
most prototypical contextualised word defi-
nition within a group of usages consistently
outperform labels produced by selecting the
most prototypical token embedding.

3. Using sense labels obtained via definition
generation, we create maps that describe di-
achronic relations between the senses of a tar-
get word. We then demonstrate how these
diachronic maps can be used to explain mean-
ing changes observed in text corpora and to
find inconsistencies in data-driven groupings
of word usages within existing lexical seman-
tic resources (§7).

2 Related Work

2.1 Definition Modelling
The task of generating human-readable word
definitions, as found in dictionaries, is commonly
referred to as definition modelling or definition
generation (for a review, see Gardner et al., 2022).
The original motivation for this task has been the
interpretation, analysis, and evaluation of word
embedding spaces. Definition generation systems,
however, also have practical applications in lex-
icography, language acquisition, sociolinguistics,
and within NLP (Bevilacqua et al., 2020). The
task was initially formulated as the generation of a
natural language definition given an embedding—a
single distributional representation—of the target
word, or definiendum (Noraset et al., 2017). Word
meaning, however, varies according to the context
in which a word is used. This is particularly true
for polysemous words, which can be defined in
multiple, potentially very different ways depending
on their context. The first formulation of definition

modelling was therefore soon replaced by by the
task of generating a contextually appropriate word
definition given a target word embedding and an
example usage (Gadetsky et al., 2018; Mickus
et al., 2022). When the end goal is not the evalu-
ation of embedding spaces, generating definitions
from vector representations is still not the most
natural formulation of definition modelling. Ni
and Wang (2017) and Mickus et al. (2019) treat the
task as a sequence-to-sequence problem: given an
input sequence with a highlighted word, generate a
contextually appropriate definition. In the current
work, we follow this approach. Table 1 shows an
example of a contextualised definition generated by
our model (see §4) for the English word ‘draftee’.

Methods Methods that address this last formula-
tion of the task are typically based on a pre-trained
language model deployed on the definienda of
interest in a natural language generation (NLG)
setup (Bevilacqua et al., 2020). Generated
definitions can be further improved by regulating
their degree of specificity via specialised LM
modules (Huang et al., 2021), by adjusting their
level of complexity using contrastive learning
training objectives (August et al., 2022), or by
supplementing them with definitional sentences
extracted directly from a domain-specific cor-
pus (Huang et al., 2022). We will compare our
results to the specificity-tuned T5-based text
generator proposed by Huang et al. (2021).

Evaluation Generated definitions are typically
evaluated with standard NLG metrics such as
BLEU, NIST, ROUGE-L, METEOR or Mover-
Score (e.g., Huang et al., 2021; Mickus et al.,
2022), using precision@k on a definition retrieval
task (Bevilacqua et al., 2020), or measuring
semantic similarity between sentence embeddings
obtained for the reference and the generated defini-
tion (Kong et al., 2022). Because reference-based
methods are inherently flawed (for a discussion,
see Mickus et al., 2022), qualitative evaluation is
almost always presented in combination with these
quantitative metrics. In this paper, we evaluate
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generated definitions with automatic metrics and
by collecting human judgements.

2.2 Semantic Change Detection

Words in natural language change their meaning
over time; these diachronic processes are of
interest both for linguists and NLP practitioners.
Lexical semantic change detection (LSCD) is
nowadays a well represented NLP task, with
workshops (Tahmasebi et al., 2022) and several
shared tasks (e.g., Schlechtweg et al., 2020;
Kurtyigit et al., 2021). LSCD is usually cast either
as binary classification (whether the target word
changed its meaning or not) or as a ranking task
(ordering target words according to the degree of
their change). To evaluate existing approaches,
manually annotated datasets are used: so-called
DWUGs are described below in §3.

An important issue with current LSCD methods
is that they rarely describe change in terms of word
senses, which are extremely important for linguists
to understand diachronic meaning trajectories. In-
stead, systems provide (and are evaluated by) per-
word numerical ‘change scores’ which are hardly
interpretable; at best, a binary ‘sense gain’ or ‘sense
loss’ classification is used. Even approaches that
do operate on the level of senses (e.g., Mitra et al.,
2015; Homskiy and Arefyev, 2022) do not label
them in a linguistically meaningful way, making
it difficult to understand the relations between the
resulting ‘anonymous’ types of word usage.

3 Data

3.1 Definitions Datasets

To train an NLG system that produces definitions
(§4), we use three datasets containing a human-
written definition for each lexicographic sense of
a target word, paired with a usage example. The
WordNet dataset is a collection of word defini-
tions and word usages extracted by Ishiwatari et al.
(2019) from the WordNet lexical database (Miller,
1995). The Oxford dataset (also known as CHA
in prior work) consists of definitions and usage ex-

Dataset Entries Lemmas Ratio Usage length Definition length

WordNet 15,657 8,938 1.75 4.80 ± 3.43 6.64 ± 3.77
Oxford 122,318 36,767 3.33 16.73 ± 9.53 11.01 ± 6.96
CoDWoE 63,596 36,068 2.44 24.04 ± 21.05 11.78 ± 8.03

Table 2: Main statistics of the datasets of definitions.
Ratio is the sense-lemma ratio: the number of entries
over the number of lemmas.

Figure 1: Diachronic word usage graph for the English
word ‘lass’ (Schlechtweg et al., 2021).

amples collected by Gadetsky et al. (2018) from
the Oxford Dictionary. Definitions are written by
experts and usage examples are in British English.
The CoDWoE dataset (Mickus et al., 2022) is based
on definitions and examples extracted from Wik-
tionary.2 It is a multilingual corpus, of which we
use the English portion. Table 2 reports the main
statistics of these datasets. Further statistics, e.g.
on the size of the different splits, are provided by
Huang et al. (2021) as well as in Appendix A.3

3.2 Diachronic Word Usage Graphs

We showcase interpretable word usage (§5)
and sense representations (§6 and 7) using a
dataset where target lemmas are represented
with diachronic word usage graphs (DWUGs,
Schlechtweg et al., 2021). A DWUG is a weighted,
undirected graph, where nodes represent target
usages (word occurrences within a sentence or
discourse context) and edge weights represent the
semantic proximity of a pair of usages. DWUGs
are the result of a multi-round incremental human
annotation process, with annotators asked to judge
the semantic relatedness of pairs of word usages on
a 4-point scale. Based on these pairwise relatedness
judgements, word usages are then grouped into us-
age clusters (a data-driven approximation of word
senses) using a variation of correlation clustering
(Bansal et al., 2004; Schlechtweg et al., 2020).

DWUGs are currently available in seven

2https://www.wiktionary.org
3Note that in theory, a definition dataset could be also be

extracted from the SemCor corpus (Miller et al., 1993). How-
ever, we do not anticipate it will contribute much to training or
evaluation since SemCor does not contain any new definitions
with respect to WordNet: only more examples for the same
word-definition pairs. This can be investigated in future work.
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languages.4 In this paper, we use the English
graphs, which consist of usage sentences sampled
from the Clean Corpus of Historical American
English (Davies, 2012; Alatrash et al., 2020) and
belonging to two time periods: 1810-1860 and
1960-2010. There are 46 usage graphs for English,
corresponding to 40 nouns and 6 verbs annotated
by a total of 9 annotators. Each target lemma
has received on average 189 judgements, 2 for
each usage pair. Figure 1 shows an example of
a DWUG, with colours denoting usage clusters
(i.e., data-driven senses): the ‘blue’ and ‘orange’
clusters belong almost entirely to different time
periods: a new sense of the word has emerged. We
show how our approach helps explain such cases
of semantic change in §7.

4 Definition Generation

Our formulation of the definition generation task is
as follows: given a target word w and an example
usage s (i.e., a sentence containing an occurrence
of w), generate a natural language definition d that
is grammatical, fluent, and faithful to the mean-
ing of the target word w as used in the example
usage s. A definition generator is a language pro-
cess that maps words and example usages to nat-
ural language definitions. As a generator, we use
Flan-T5 (Chung et al., 2022), a version of the T5
encoder-decoder Transformer (Raffel et al., 2020)
fine-tuned on 1.8K tasks phrased as instructions
and collected from almost 500 NLP datasets. Flan-
T5 is not trained specifically on definition genera-
tion but thanks to its massive multi-task instruction
fine-tuning, the model exhibits strong generalisa-
tion to unseen tasks. Therefore, we expect it to
produce high-quality definitions. We extensively
test three variants of Flan-T5 of different size and
compare them to vanilla T5 models (Table 4 and
Table 12, Appendix C.2); based on our results, we
recommend using the largest fine-tuned Flan-T5
model whenever possible.

To obtain definitions from Flan-T5, we use
natural language prompts consisting of an exam-
ple usage preceded or followed by a question or
instruction. For example: ‘s What is the
definition of w?’ The concatenated usage
example and prompt are provided as input to Flan-
T5, which conditionally generates definitions (Ta-

4https://www.ims.uni-stuttgart.de/en/
research/resources/experiment-data/wugs/

ble 1 shows an example instance).5 We choose
greedy search with target word filtering as a simple,
parameter-free decoding strategy. Stochastic decod-
ing algorithms can be investigated in future work.

Prompt selection In preliminary experiments,
we used the pre-trained Flan-T5 Base model (250M
parameters) to select a definition generation prompt
among 8 alternative verbalisations. Appending the
question ‘What is the definition of w?’ to the usage
example consistently yielded the best scores.6 We
use this prompt for all further experiments.

4.1 Evaluating Generated Definitions

Before using its definitions to construct an
interpretable semantic space—the main goal of
this paper—we perform a series of experiments to
validate Flan-T5 as a definition generator. We use
the target lemmas and usage examples from the
corpora of definitions presented in §3, condition-
ally generate definitions with Flan-T5, and then
compare them to the gold definitions in the corpora
using reference-based NLG evaluation metrics.
We report SacreBLEU and ROUGE-L, which
measure surface form overlap, as well as BERT-F1,
which is sensitive to the reference and candidate’s
semantics. As mentioned in §2.1, reference-based
metrics are not flawless, yet designing and
validating a reference-free metric for the definition
generation task is beyond the scope of this paper.
We will later resort to correlations with human
judgements and expert human evaluation to assess
the quality of generated definitions.

We evaluate the Flan-T5 XL (3B parameters) in
three generalisation tests: 1) in distribution, 2) hard
domain shift, and 3) soft domain shift.7 We use
these tests to choose a model to be deployed in
further experiments. For reference, we report the
BLEU score of the definition generator by Huang
et al. (2021); ROUGE-L and BERT-F1 are not re-
ported in their paper.

In distribution We fine-tune Flan-T5 XL on
one corpus of definitions at a time, and test it
on a held-out set from that same corpus (except

5This is a simpler workflow in comparison to prior work
(Bevilacqua et al., 2020; Almeman and Espinosa Anke, 2022)
where inputs are encoded as ‘target word - context’ pairs.

6Further details in Appendix B.
7Tests defined following the GenBench generalisation tax-

onomy (Hupkes et al., 2022). We also include a fourth setup,
zero shot (task shift), where we directly evaluate the pretrained
Flan-T5 XL. Results (including other models) are presented in
Appendix C.1-C.2, and an evaluation card in Appendix C.3.
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WordNet Oxford

Model Test BLEU ROUGE-L BERT-F1 BLEU ROUGE-L BERT-F1

Huang et al. (2021) Unknown 32.72 - - 26.52 - -
Flan-T5 XL Zero-shot (task shift) 2.70 12.72 86.72 2.88 16.20 86.52
Flan-T5 XL In-distribution 11.49 28.96 88.90 16.61 36.27 89.40
Flan-T5 XL Hard domain shift 29.55 48.17 91.39 8.37 25.06 87.56
Flan-T5 XL Soft domain shift 32.81 52.21 92.16 18.69 38.72 89.75

Table 3: Results of the definition generation experiments.

CoDWoE which does not provide train-test
split). The quality of the definitions increases
substantially with fine-tuning, in terms of both their
lexical and semantic overlap with gold definitions
(Table 3). We find significantly higher scores on
Oxford, which may be due to the larger size of
its training split and to the quality of the WordNet
examples, which sometimes are not sufficiently
informative (Almeman and Espinosa Anke, 2022).

Hard domain shift We fine-tune Flan-T5 XL
on WordNet and test it on Oxford, and vice versa.
These tests allow us to assess the model’s sensi-
tivity to the peculiarities of the training dataset. A
model that has properly learned to generate defini-
tions should be robust to this kind of domain shift.
The quality of the definitions of Oxford lemmas
generated with the model fine-tuned on WordNet
(see the Oxford column in Table 3) is lower than
for the model fine-tuned on Oxford itself (same
column, see row ‘In-distribution’). Instead, for out-
of-domain WordNet definitions, all metrics surpris-
ingly indicate higher quality than for in-distribution
tests (WordNet column). Taken together, our
results so far suggest that the quality of a fine-tuned
model depends more on the amount (and perhaps
quality) of the training data than on whether the
test data is drawn from the same dataset.

Soft domain shift We finally fine-tune Flan-T5
XL on a collection of all three definition datasets:
WordNet, Oxford, and CoDWoE. Our previous
results hint towards the model’s preference for
more training examples, so we expect this setup
to achieve the highest scores regardless of the soft
shift between training and test data. Indeed, on
WordNet, our fine-tuned model marginally sur-
passes the state-of-the-art upper bound in terms of
BLEU score (Table 3), and it achieves the highest
scores on the other metrics. Oxford definitions
generated with this model are instead still below
Huang et al.’s upper bound; this may be due to
Oxford being generally more difficult to model

than WordNet, perhaps because of longer defini-
tions and usages (see Figures 4-5 in Appendix A).
We consider the observed model performance
sufficient for the purposes of our experiments, in
particular in view of the higher efficiency of fine-
tuned Flan-T5 with respect to the three-module
system of Huang et al. (2021). We therefore use
this model throughout the rest of our study.

The Flan-T5 models fine-tuned for definition
generation are publicly available through the Hug-
ging Face model hub.8

5 Definitions are Interpretable Word
Representations

We propose considering the abstract meaning space
of definitions as a representational space for lexical
meaning. Definitions fulfil important general
desiderata for word representations: they are
human-interpretable and they can be used for quan-
titative comparisons between word usages (i.e., by
judging the distance between pairs of definition
strings). We put the definition space to test by
applying it to the task of semantic change analysis,
which requires capturing word meaning at a fine-
grained level, distinguishing word senses based
on usage contexts. We use our fine-tuned Flan-T5
models (XL and other sizes) to generate definitions
for all usages of the 46 target words annotated in
the English DWUGs (ca. 200 usages per word; see
§3.2).9 These definitions (an example is provided
in Table 1) specify a diachronic semantic space.

5.1 Correlation with Human Judgements

We construct word usage graphs for each lemma in
the English DWUGs: we take usages as nodes and
assign weights to edges by measuring pairwise sim-
ilarity between usage-dependent definitions. We

8Model names: ltg/flan-t5-definition-en-base, ltg/flan-t5-
definition-en-large, ltg/flan-t5-definition-en-xl.

9The training datasets used in §4 contain nouns, verbs,
adjectives and adverbs. The English DWUGs contain only
nouns and verbs.
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Method Cosine SacreBLEU METEOR

Token embeddings 0.141 - -
Sentence embeddings 0.114 - -

Generated definitions

FLAN-T5 XL Zero-shot 0.188 0.041 0.083
FLAN-T5 XXL Zero-shot 0.206 0.045 0.092
FLAN-T5 base FT 0.221 0.078 0.077
FLAN-T5 XL FT 0.264 0.108 0.117

Table 4: Correlations with pairwise similarity judge-
ments by humans. ‘FT’ stands for ‘fine-tuned model’.

compute the similarity between pairs of definitions
using two overlap-based metrics, SacreBLEU and
METEOR, as well as the cosine similarity between
sentence-embedded definitions. We then compare
our graphs against the gold DWUGs, where edges
between usage pairs are weighted with human
judgements of semantic similarity, by computing
the Spearman’s correlation between human simi-
larity judgements and similarity scores obtained
for pairs of generated definitions. We compare our
results to DWUGs constructed based on two addi-
tional types of usage-based representations: sen-
tence embeddings obtained directly for usage ex-
amples, and contextualised token embeddings. Sen-
tence embeddings (for both definitions and usage
examples) are SBERT representations (Reimers
and Gurevych, 2019) extracted with mean-pooling
from the last layer of a DistilRoBERTa LM fine-
tuned for semantic similarity comparisons.10 For
tokens, we extract the last-layer representations of a
RoBERTa-large model (Liu et al., 2019) which cor-
respond to subtokens of the target word (following
Giulianelli et al., 2020) and use mean-pooling to ob-
tain a single vector. While we report string-overlap
similarities for definitions, these are not defined for
numerical vectors, and thus similarities for example
sentences and tokens are obtained with cosine only.

Pairwise similarities between definitions approx-
imate human similarity judgements far better than
similarities between example sentence and word
embeddings (Table 4). This indicates that defini-
tions are a more accurate approximation of con-
textualised lexical meaning. The results also show
that similarity between definitions is best captured
by their embeddings, rather than by overlap-based

10DistilRoBERTa (sentence-transformers/all-
distilRoBERTa-v1) is the second best model as re-
ported in the official S-BERT documentation at the
time of publication (https://www.sbert.net/docs/
pretrained_models.html). For a negligible accuracy
reduction, it captures longer context sizes and is ca. 50%
smaller and faster than the model that ranks first.

metrics like SacreBLEU and METEOR.

5.2 Definition Embedding Space

We now examine the definition embedding space
(the high-dimensional semantic space defined
by sentence-embedded definitions), to identify
properties that make it more expressive than
usage-based spaces. Figure 2 shows the T-SNE
projections of the DistilRoBERTa embeddings of
all lemmas in the English DWUGs, for the three
types of representation presented earlier: generated
definitions, tokens, and example sentences.11 The
definition spaces exhibit characteristics that are
more similar to a token embedding space than an
example sentence embedding space, with defini-
tions of the same lemma represented by relatively
close-knit clusters of definition embeddings. This
suggests that definition embeddings, as expected,
represent the meaning of a word in context (similar
to token embeddings), rather than the meaning of
the whole usage example sentence in which the
target word occurs.

For each target word, we also measure (i) the
variability in each embedding space and (ii) the
inter-cluster and intra-cluster dispersion (Caliński
and Harabasz, 1974) obtained when clustering each
space using k-means. This allows us to quanti-
tatively appreciate properties exhibited by data-
driven usage clusters that are obtained from differ-
ent representation types. To cluster the embedding
spaces, we experiment with values of k ∈ [2, 25],
and select the k which maximises the Silhouette
score. Our results are summarised in Table 5. We
observe that the clusters in the definition spaces
have on average the lowest intra-cluster dispersion,
indicating that they are more cohesive than the
clusters in the token and example sentence spaces.
While, on average, token spaces exhibit higher
inter-cluster dispersion (indicating better cluster
separation), the ratio between average separation
and cohesion is highest for the definition spaces.
These findings persist for the gold clusters deter-
mined by the English DWUGs (Table 14).

In sum, this analysis shows that definition em-
bedding spaces are generally suitable to distinguish
different types of word usage. In the next section,
we will show how they can indeed be used to char-
acterise word senses.

11T-SNE projections for RoBERTa-large are in Appendix G.
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Figure 2: T-SNE projection of each embedding space,
DistilRoBERTa model.

Model Representation Variance Std K Silh. Sep. Coh. Ratio

RoBERTa-large Sentence 0.014 0.117 2.0 0.111 0.285 0.012 23.2
Token 0.034 0.183 3.8 0.173 0.868 0.027 32.4
Definitions 0.006 0.080 20.6 0.335 0.057 0.003 22.3

DistilRoBERTa Sentence 0.597 0.772 2.1 0.046 4.907 0.578 8.5
Token 0.477 0.687 2.5 0.121 8.599 0.427 20.1
Definitions 0.509 0.756 19.7 0.355 5.559 0.228 24.4

Table 5: Variance, standard deviation, optimal K, sil-
houette score, separation score, cohesion score, and the
separation-cohesion ratio for each embedding space;
average over all target words.

6 Labelling Word Senses With Definitions

For generated definitions to be useful in practice,
they need to be able to distinguish word senses.
For example (ignoring diachronic differences and
singleton clusters), there are three main senses of
the word ‘word’ in its DWUG, which we manually
label as: (1) ‘WORDS OF LANGUAGE’, (2) ‘A

RUMOUR’, and (3) ‘AN OATH’. Manual inspection
of the generated definitions indicates that they are
indeed sense-aware:

1. ‘A communication, a message’, ‘The text of a
book, play, movie’, etc.

2. ‘Information passed on, usually by one per-
son to another’, ‘communication by spoken or
written communication’, etc.

3. ‘An oath’, ‘a pronouncement’, etc.

But let’s again put ourselves in the shoes of a
historical linguist. Sense clusters are now impracti-
cally represented with multitudes of contextualised
definitions. Cluster (1) for ‘word’, e.g., features
190 usages, and one must read through all of
them (otherwise there will be a chance of missing
something) and generalise – all to formulate a
definition that covers the whole sense cluster (a
sense label). We now show how DWUGs can be
automatically augmented with generated sense
labels, vastly improving their usability.

Selecting sense labels From n definitions, gen-
erated for n word usages belonging to the same
DWUG cluster, we use the most prototypical one

as the sense label—with the aim of reflecting the
meaning of the majority of usages in the cluster.
We represent all definitions with their sentence em-
beddings (cf. §5.1) and select as prototypical the
definition whose embedding is most similar to the
average of all embeddings in the cluster. Clusters
with less than 3 usages are ignored as, for these,
prototypicality is ill-defined. As a sanity check,
these are the sense labels obtained by this method
for the DWUG clusters of ‘word’; they correspond
well to the sense descriptions provided earlier.

1. ‘A SINGLE SPOKEN OR WRITTEN UTTER-
ANCE’

2. ‘INFORMATION; NEWS; REPORTS’

3. ‘A PROMISE, VOW OR STATEMENT’

We compare these sense labels to labels obtained
by generating a definition for the most prototypical
usage (as judged by its token embedding), rather
than taking the most prototypical definition, and we
evaluate both types of senses labels using human
judgements. Examples of labels can be found in
Appendix D.

Human evaluation Five human annotators (flu-
ent English speakers) were asked to evaluate the
quality of sense labels for each cluster in the En-
glish DWUGs, 136 in total. Each cluster was ac-
companied by the target word, two labels (from def-
initions and from usages) and five example usages
randomly sampled from the DWUG. The annota-
tors could select one of six judgements to indicate
overall quality of the labels and their relative rank-
ing. After a reconciliation round, the categorical
judgements were aggregated via majority voting.
Krippendorff’s α inter-rater agreement is 0.35 on
the original data and 0.45 when the categories are
reduced to four. Full guidelines and results are
reported in Appendix E.12

We find that our prototypicality-based sense
labelling strategy is overall reliable. Only for 15%
of the clusters, annotators indicate that neither

12There exist no established procedures for the collection
of human quality judgements of automatically generated word
sense labels. The closest efforts we are aware of are those in
Noraset et al. (2017), who ask annotators to rank definitions
generated by two systems, providing as reference the gold
dictionary definitions. In our case, (1) generations are for
word senses rather than lemmas, (2) we are interested not
only in rankings but also in judgements of ‘sufficient quality’,
(3) dictionary definitions are not available for the DWUG
senses; instead (4) we provide annotators with usage examples,
which are crucial for informed judgements of sense definitions.
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of the labels is satisfactory (Figure 9). When
comparing definition-based and usage-based labels,
the former were found to be better in 31% of the
cases, while the latter in only 7% (in the rest of
the cases, the two methods are judged as equal).
We also analysed how often the labels produced
by each method were found to be acceptable.
Definition-based labels were of sufficient quality
in 80% of the instances, , while for usage-based
labels this is only true for 68% of the cases.

In sum, prototypical definitions reflect sense
meanings better than definitions of prototypical
usage examples. We believe this is because defi-
nitions are more abstract and robust to contextual
noise (the same definition can be assigned to very
different usages, if the underlying sense is similar).
This approach takes the best of both worlds: the
produced representations are data-driven, but at the
same time they are human-readable and naturally
explanatory. After all, ‘senses are abstractions from
clusters of corpus citations’ (Kilgarriff, 1997). In
the next section, we demonstrate how automatically
generated definition-based sense labels can be used
to explain semantic change observed in diachronic
text corpora.

7 Explaining Semantic Change with
Sense Labels

Word senses in DWUGs are collections of example
usages and they are only labelled with numerical
identifiers. This does not allow users to easily grasp
the meaning trajectories of the words they are in-
terested in studying. Using sense labels extracted
from generated definitions, we can produce a fully
human-readable sense dynamics map—i.e., an au-
tomatically annotated version of a DWUG which
displays synchronic and diachronic relations be-
tween senses (e.g, senses transitioning one into
another, splitting from another sense, or two senses
merging into one). One can look at sense dynamics
maps as reproducing the work of Mitra et al. (2015)
on the modern technological level and, importantly,
with human-readable sense definitions.

Given a target word, its original DWUG, and its
semi-automatic sense clusters, we start by assign-
ing a definition label to each cluster, as described
in §6. Then, we divide each cluster into two sub-
clusters, corresponding to time periods 1 and 2
(for example, sub-cluster c21 contains all usages
from cluster 1 occurring in time period 2).13 We

13Note that the labels are still time-agnostic: that is, sub-

compute pairwise cosine similarities between the
sentence embeddings of the labels (their ‘definition
embeddings’), thereby producing a fully connected
graph where nodes are sub-clusters and edges are
weighted with sense label similarities. Most edges
have very low weight, but some sub-cluster pairs
are unusually similar, hinting at a possible relation
between the corresponding senses. We detect these
outlier pairs by inspecting the distribution of pair-
wise similarities for values with z-score higher than
1 (similarities more than 1 standard deviation away
from the mean similarity). Sub-cluster pairs con-
nected with such edges form a sense dynamics map.

As an example, the noun ‘record’ has only one
sense in time period 1 but it acquires two new
senses in time period 2 (Figure 3; as before, we
ignore clusters with less than 3 usages). The sense
clusters defined by the DWUG are anonymous col-
lection of usages, but with the assigned sense labels
(also shown in Figure 3) they can be turned into a
proto-explanation of the observed semantic shift:

• A novel sense 2 of ‘record’ in time period 2
(‘A PHONOGRAPH OR GRAMOPHONE CYLIN-
DER CONTAINING AN AUDIO RECORDING.’)
is probably an offshoot of a stable sense 0
present in both time periods (‘A DOCUMENT

OR OTHER MEANS OF PROVIDING INFORMA-
TION ABOUT PAST EVENTS.’).

It becomes now clear that sense 2 stems from the
older general sense 0 of ‘record’—arguably repre-
senting a case of narrowing (Bloomfield, 1933)—
while the second new sense (1: ‘THE HIGHEST

SCORE OR OTHER ACHIEVEMENT IN THE GAME’)
is not related to the others and is thus independent.

Sense dynamics maps can also help in tracing
potentially incorrect or inconsistent clustering in
DWUGs. For instance, if different sense clusters
are assigned identical definition labels, then it is
likely that both clusters correspond to the same
sense and that the clustering is thus erroneous.
Using our automatically produced sense dynam-
ics maps, DWUGs can be improved and enriched
(semi-)automatically.

An interesting case is ‘ball’ (see Appendix F
for another example regarding the word ‘chef ’).

clusters c11 and c21 have the same label. This is done for sim-
plicity and because of data scarcity, but in the future we plan
to experiment with time-dependent labels as well. We use two
time periods as only two periods are available in Schlechtweg
et al.’s English DWUGs (2021), but the same procedure can
be executed on multi-period datasets.
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Figure 3: Diachronic word usage graphs for ‘record’ (Schlechtweg et al., 2021) with sense definitions generated
using our proposed procedure (§6). Left: time period 1 (1810-1860); right: time period 2 (1960-2010). Colours
correspond to data-driven senses, as annotated in the original DWUGs.

Although none of its sense labels are identical, its
sense cluster c0 is very close to cluster c2 (simi-
larity of 0.70), while c2 is close to c3 (similarity
of 0.53); all three senses persist throughout both
time periods, with sense 3 declining in frequency.
The generated definitions for the ‘ball’ clusters
are: 0: ‘A SPHERE OR OTHER OBJECT USED AS

THE OBJECT OF A HIT’ (the largest cluster), 2: ‘A
ROUND SOLID PROJECTILE, SUCH AS IS USED

IN SHOOTING’, and 3: ‘A BULLET’. This case
demonstrates that similarity relations are not transi-
tive: the similarity between c0 and c3 is only 0.50,
below our outlier threshold value. This is in part
caused by inconsistent DWUG clustering: while
the majority of usages in c12 are about firearm pro-
jectiles, c22 contains mentions of golf balls and ball
point pens. This shifts sense 2 from ‘BULLET’ to
‘ROUND SOLID PROJECTILE’, making it closer to
sense 0 (general spheres) than it should be. Ideally,
all the ‘BULLET’ usages from c2 should have ended
up in c3, with the rest joining the general sense 0.

Besides suggesting fixes to the DWUG cluster-
ing, the observed non-transitivity also describes
a potential (not necessarily diachronic) meaning
trajectory of ‘ball’: from any spherical object, to
spherical objects used as projectiles, and then to
any projectiles (like bullets), independent of their
form. Our generated sense labels and their simi-
larities help users analyse this phenomenon in a
considerably faster and easier way than by manu-
ally inspecting all examples for these senses.

8 Conclusion and Future Work

In this paper, we propose to consider automatically
generated contextualised word definitions as a
type of lexical representation, similar to traditional

word embeddings. While generated definitions
have been already shown to be effective for word
sense disambiguation (Bevilacqua et al., 2020),
our study puts this into a broader perspective
and demonstrates that modern language models
like Flan-T5 (Chung et al., 2022) are sufficiently
mature to produce robust and accurate definitions
in a simple prompting setup. The generated defi-
nitions outperform traditional token embeddings in
word-in-context similarity judgements while being
naturally interpretable.

We apply definition-based lexical representa-
tions to semantic change analysis and show that
our approach can be used to trace word sense dy-
namics over time. Operating in the space of human-
readable definitions makes such analyses much
more interesting and actionable for linguists and
lexicographers—who look for explanations, not
numbers. At the same time, we believe the ‘defini-
tions as representations’ paradigm can also be used
for other NLP tasks in the area of lexical semantics,
such as word sense induction, idiom detection, and
metaphor interpretation.

Our experiments with diachronic sense mod-
elling are still preliminary and mostly qualitative.
It is important to evaluate systematically how well
our predictions correspond to the judgements of
(expert) humans. Once further evidence is gath-
ered, other promising applications include tracing
cases of semantic narrowing or widening over time
(Bloomfield, 1933) by analysing the variability of
contextualised definitions in different time periods
and by making cluster labels time-dependent. Both
directions will require extensive human annotation,
and we leave them for future work.
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Limitations

Data in this work is limited to the English di-
achronic word usage graphs (DWUGs). Our meth-
ods themselves are language-agnostic and we do
not anticipate serious problems with adapting them
to DWUGs in other languages (which already ex-
ist). At the same time, although Flan-T5 is a mul-
tilingual LM, we did not thoroughly evaluate its
ability to generate definitions in languages other
than English. Again, definition datasets in other
languages do exist and technically it is trivial to
fine-tune Flan-T5 on some or all of them.

Generated definitions and mappings between
definitions and word senses can contain all sorts
of biases and stereotypes, stemming from the un-
derlying language model. Filtering inappropriate
character strings from the definitions can only help
as much, and further research is needed to estimate
possible threats.

In our experiments with Flan-T5, the aim was
to investigate the principal possibility of using this
LM for definition modelling. Although we did eval-
uate several different Flan-T5 variants, we leave
it for the future work to investigate the impact of
model size and other experimental variables (such
as decoding algorithms).

The cases shown in §7 are hand-picked exam-
ples, demonstrating the potential of using generated
definitions for explainable semantic change detec-
tion and improving LSCD datasets. In the future,
we plan to conduct a more rigorous evaluation of
different ways to build sense dynamics map.
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Appendix

A Preliminary Analysis of Usage
Examples

In Section 3.1 of the main paper, we present three
corpora of human-written definitions and report
their main statistics in Table 2, including mean and
standard deviation of usage example length. Be-
cause the length of usage examples has been shown
to affect the quality of generated definitions (Alme-
man and Espinosa Anke, 2022), in a preliminary
analysis, we compare the length distributions of
usage examples in the corpora of definitions as
well as in the English DWUGs (Schlechtweg et al.,
2021). Figures 4-7 show the length distributions
of the four datasets. We also measure the correla-
tion between definition quality (BertScore, BLEU,
NIST) and (i) the length of usage examples, (ii) the
absolute position of the target word in the exam-
ples, and (iii) the target word’s relative position in
the examples. Tables 6 and 7 show the correlation
coefficients.

Length Relative Position Absolute Position BertScore Bleu Nist

Length 1.000000 -0.121793 0.575304 0.067180 0.076133 0.044873
Relative Position -0.121793 1.000000 0.626032 0.052725 0.074697 0.062041
Absolute Position 0.575304 0.626032 1.000000 0.128785 0.159078 0.110559
BertScore 0.067180 0.052725 0.128785 1.000000 0.121067 0.095343
Bleu 0.076133 0.074697 0.159078 0.121067 1.000000 0.821956
Nist 0.044873 0.062041 0.110559 0.095343 0.821956 1.000000

Table 6: Correlations between properties of the usage
examples and the quality (BertScore, BLEU, NIST) of
the definitions generated by Flan-T5 Base for WordNet.
The prompt used is ‘What is the definition of w?’ (post).
The maximum context size is set to 512.

Length Relative Position Absolute Position BertScore Bleu Nist

Length 1.000000 -0.040948 0.615536 0.019844 0.039525 0.017253
Relative Position -0.040948 1.000000 0.674509 0.046071 0.019940 0.023542
Absolute Position 0.615536 0.674509 1.000000 0.029413 0.016901 0.006764
BertScore 0.019844 0.046071 0.029413 1.000000 0.283203 0.276626
Bleu 0.039525 0.019940 0.016901 0.283203 1.000000 0.687382
Nist 0.017253 0.023542 0.006764 0.276626 0.687382 1.000000

Table 7: Correlations between properties of the usage
examples and the quality (BertScore, BLEU, NIST) of
the definitions generated by Flan-T5 Base for Oxford.
The prompt used is ‘What is the definition of w?’ (post).
The maximum context size is set to 512.

Figure 4: Length distribution of usage examples in
WordNet.

Figure 5: Length distribution of usage examples in Ox-
ford.

Figure 6: Length distribution of usage examples in CoD-
WoE.
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Figure 7: Length distribution of usage examples in the
English DWUGs.

Configuration BLEU NIST BERTScore

what is the definition of <trg>? post 256 0.0985 0.1281 0.8700
what is the definition of <trg>? post 512 0.0985 0.1281 0.8700
give the definition of <trg> post filter 0.0719 0.1520 0.8560
give the definition of <trg> post 256 0.0629 0.1563 0.8522
give the definition of <trg> post 512 0.0629 0.1563 0.8522
define the word <trg> post 512 0.0462 0.0972 0.8512
define the word <trg> post 256 0.0462 0.0972 0.8512
give the definition of <trg>: pre 256 0.0446 0.1123 0.8495
what is the definition of <trg>? pre 512 0.0403 0.0705 0.8495
give the definition of <trg>: pre 512 0.0446 0.1123 0.8495
what is the definition of <trg>? pre 256 0.0403 0.0703 0.8494
define the word <trg>: pre 512 0.0313 0.0615 0.8481
define the word <trg>: pre 256 0.0313 0.0618 0.8480
define <trg> post 512 0.0275 0.0583 0.8475
define <trg> post 256 0.0275 0.0583 0.8475
define <trg>: pre 512 0.0195 0.0411 0.8453
define <trg>: pre 256 0.0195 0.0409 0.8453

Table 8: Prompt selection results on WordNet (see de-
scription in Appendix B).

B Prompt Selection

As briefly discussed in Section 4, in preliminary
experiments, we use the pretrained Flan-T5 Base
model (250M parameters; Chung et al., 2022) to
select a definition generation prompt among 8 al-
ternative verbalisations. These are a combination
of four different instruction strings (‘Define w’,
‘Define the word w’, ‘Give the definition of w’,
‘What is the definition of w?) and two ways of
concatenating instructions to usage examples – i.e.,
either prepending them or appending them. Ta-
bles 8-11 show the results of our experiments. In
the tables, the strings ‘pre’ and ‘post’ refer to the
concatenation method (prepending or appending
the instruction), the numbers 128, 256, and 512
refer to the maximum length of the usage exam-
ples provided to Flan-T5 (in sub-words), and ‘filter’
refers to the decoding strategy of always avoiding
the target word (definiendum).

Configuration BLEU NIST BERTScore

what is the definition of <trg>? post 512 0.1232 0.1488 0.8648
what is the definition of <trg>? post 128 0.1232 0.1488 0.8648
what is the definition of <trg>? post 256 0.1232 0.1488 0.8648
what is the definition of <trg>? post oxford filter 128 0.1219 0.1398 0.8644
give the definition of <trg> post 128 0.0823 0.1793 0.8531
give the definition of <trg> post 256 0.0823 0.1793 0.8531
give the definition of <trg> post 512 0.0823 0.1793 0.8531
give the definition of <trg> post oxford filter 128 0.0763 0.1415 0.8526
what is the definition of <trg>? pre 256 0.0801 0.0966 0.8501
what is the definition of <trg>? pre 512 0.0801 0.0966 0.8501
what is the definition of <trg>? pre 128 0.0801 0.0966 0.8501
give the definition of <trg>: pre 128 0.0695 0.1313 0.8493
give the definition of <trg>: pre 256 0.0695 0.1313 0.8493
give the definition of <trg>: pre 512 0.0695 0.1313 0.8492
define the word <trg> post 128 0.0614 0.1112 0.8442
define the word <trg> post 512 0.0614 0.1112 0.8442
define the word <trg> post 256 0.0614 0.1112 0.8442
define the word <trg>: pre 256 0.0408 0.0602 0.8352
define the word <trg>: pre 512 0.0408 0.0602 0.8352
define the word <trg>: pre 128 0.0408 0.0602 0.8352
define <trg> post 256 0.0279 0.0581 0.8319
define <trg> post 128 0.0279 0.0581 0.8319
define <trg> post 512 0.0279 0.0581 0.8319
define <trg>: pre 512 0.0161 0.0237 0.8305
define <trg>: pre 256 0.0160 0.0237 0.8305
define <trg>: pre 128 0.0160 0.0237 0.8305

Table 9: Prompt selection results on Oxford (see de-
scription in Appendix B).

Configuration BLEU NIST BERTScore

what is the definition of <trg>? post 128 0.1138 0.2137 0.8702
give the definition of <trg> post 128 0.0826 0.2389 0.8615
what is the definition of <trg>? post 64 0.1033 0.1990 0.8595
give the definition of <trg> post 64 0.0785 0.2194 0.8520

Table 10: Prompt selection results on CoDWoE Com-
plete (see description in Appendix B).

Configuration BLEU NIST BERTScore

give the definition of <trg>: pre 64 0.0680 0.1513 0.8461
what is the definition of <trg>? post 64 0.1068 0.1464 0.8458
give the definition of <trg> post 64 0.0654 0.1602 0.8374

Table 11: Prompt selection results on CoDWoE Trial
(see description in Appendix B).
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WordNet Oxford

Model Test BLEU ROUGE-L BERT-F1 BLEU ROUGE-L BERT-F1

Huang et al. (2021) Unknown 32.72 - - 26.52 - -
T5 base Zero-shot (task shift) 2.01 8.24 82.98 1.72 7.48 78.79
T5 base Soft domain shift 9.21 25.71 86.44 7.28 24.13 86.03
Flan-T5 base Zero-shot (task shift) 4.08 15.32 87.00 3.71 17.25 86.44
Flan-T5 base In-distribution 8.80 23.19 87.49 6.15 20.84 86.48
Flan-T5 base Hard domain shift 6.89 20.53 87.16 4.32 17.00 85.88
Flan-T5 base Soft domain shift 10.38 27.17 88.22 7.18 23.04 86.90
Flan-T5 large Soft domain shift 14.37 33.74 88.21 10.90 30.05 87.44
T5 XL Zero-shot (task shift) 2.05 8.28 81.90 2.28 9.73 80.37
T5 XL Soft domain shift 34.14 53.55 91.40 18.82 38.26 88.81
Flan-T5 XL Zero-shot (task shift) 2.70 12.72 86.72 2.88 16.20 86.52
Flan-T5 XL In-distribution 11.49 28.96 88.90 16.61 36.27 89.40
Flan-T5 XL Hard domain shift 29.55 48.17 91.39 8.37 25.06 87.56
Flan-T5 XL Soft domain shift 32.81 52.21 92.16 18.69 38.72 89.75

Table 12: Results of the definition generation experiments.

C Additional Results

C.1 Zero-Shot Evaluation of Flan-T5 (Task
Shift)

Here we directly evaluate Flan-T5 XL on the Word-
Net and Oxford test sets, without any fine-tuning
nor in-context learning.14 Table 3 in the main pa-
per shows low BLEU and ROUGE-L scores but
rather high BERT-F1. Overall, the model does not
exhibit consistent task understanding (e.g. it gen-
erates ‘SKEPTICISM’ as a definition for ‘healthy’
as exemplified in the phrase ‘healthy skepticism’).
A qualitative inspection, however, reveals that the
generated definitions can still be often informa-
tive (e.g., ‘A WORKWEEK THAT IS LONGER THAN

THE REGULAR WORKWEEK’ is informative with
respect to the meaning of ‘overtime’ although the
ground truth definition is ‘BEYOND THE REGULAR

TIME’). The two surface-overlap metrics cannot
capture this, but the relatively high BERT-F1 con-
firms that the semantic content of generations is
largely appropriate. There are indeed also many
good zero-shot definitions. For example ‘INTENSE’
for ‘fervent’ as in ‘the fervent heat’, or ‘A CON-
VERSATION’ for ‘discussion’ in ‘we had a good
discussion’.

C.2 Other Models and Model Variants

We evaluate T5 (base and XL) and Flan-T5 (base,
large, and XL) under the same generalisation con-
ditions presented for Flan T5 XL in the main paper

14We only condition generation on the usage examples and
the task prompt. We do not provide full instances (i.e., usage
examples, task prompts, and definitions) in the context, as one
would do in a few-shot setup.

(Section 4.1) and above in Appendix C.1. Results
for FlanT5-XL are reported in the main paper (Ta-
ble 3); here, in Table 12, we report results for all
models and model variants.

C.3 Evaluation Cards

In Table 13, we provide an evaluation card to clarify
the nature of the generalisation tests performed on
definition generators.15 In-distribution tests are not
included as they do not include any shift between
the training and test data distributions (Hupkes
et al., 2022). We also register our work in the Gen-
Bench evolving survey of generalisation in NLP.16

D Additional Examples of Generated
Definitions and Sense Labels

Some definitions generated by Flan-T5 XL manage
to capture very subtle aspects of the contextual
lexical meaning. In the following list, we give the
usage and then the contextual definition of ‘word’:

1. ‘There are people out there who have never
heard of the Father, Son and Holy Spirit, let
alone the Word of God.’: ‘THE BIBLE’

2. ‘Good News Bible Before the world was cre-
ated, the Word already existed; he was with
God, and he was the same as God.’: ‘( CHRIS-
TIANITY ) THE SECOND PERSON OF THE

TRINITY ; JE’

3. ‘It was in that basement that I learned the
skills necessary to succeed in the difficult thes-
pian world-specifically, get up on stage, say

15https://genbench.org/eval_cards
16https://genbench.org/references
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Motivation
Practical Cognitive Intrinsic Fairness
□ △ ⃝

Generalisation type
Compo-
sitional Structural Cross

Task
Cross

Language
Cross

Domain
Robust-

ness
□ △ ⃝

Shift type
Covariate Label Full Assumed
△ ⃝ □

Shift source
Naturally
occurring

Partitioned
natural

Generated shift Fully
generated

□ △ ⃝
Shift locus

Train–test Finetune
train–test

Pretrain–train Pretrain–test

△ ⃝ □

Table 13: Evaluation card for the generalisation tests
performed on definition generators. The setups are:
zero-shot (□), hard domain shift (△), and soft domain
shift (⃝). In-distribution tests are not included as they
do not include any shift between the training and test
data distributions.

my words, get off the stage-skills...’: ‘THE

DIALOGUE OF A PLAY.’

Interesting insights can be drawn from how the
embeddings of the generated definitions are located
in the vector space. Figure 8 shows PCA projec-
tions of definition embeddings for usages of the
words ‘chef ’ and ‘lass’ from the English DWUG.
Colours represent sense clusters provided in the
DWUG, and the legend shows most prototypical
definitions for each sense generated by our best
system (singleton clusters are ignored). The large
star for each sense corresponds to its sense label
(as opposed to smaller stars corresponding to other
definitions not chosen as the label).

For the word ‘chef ’, there are two sense clus-
ters, for which an identical definition is chosen (‘A
COMMANDER’). This most probably means that
these clusters should in fact be merged together, or
that they are in the process of splitting (see also
Section 7). These two senses are (not surprisingly)
much closer to each other than to the definitions
from the ‘PROFESSIONAL COOK’ sense. For the
word ‘lass’, it is interesting how separate is a small
bluish group of definitions in the bottom right cor-
ner of the plot, where the target form is actually
‘lassi’. The fine-tuned Flan-T5-XL model defined
this group as ‘A COLD DRINK MADE FROM MILK

CURDLED BY YOGURT’, which is indeed what
‘lassi’ is (ignoring minor details).

E Human Evaluation Guidelines

Figures 9 and 10 show the results of the human
evaluation.

‘You are given a spreadsheet with four columns:
Targets, Examples, System1 and System2. In
every row, we have one target English word in the
Targets column and five (or less) example usages
of this word in the Examples column. Usages are
simply sentences with at least one occurrence of
the target word: one usage per line.

Every row is supposed to contain usages where
the target word is used in the same sense: this
means that for ambiguous words, there will be mul-
tiple rows, each corresponding to a particular sense.
This division into senses is not always 100% cor-
rect, but for the purposes of this annotation effort,
we take it for granted. Note that the five example
usages in each row are sampled randomly from a
larger set of usages belonging to this sense.

System1 and System2 are computational models
which produce human-readable labels or defini-
tions for each sense of a target word. They employ
different approaches, and your task is to compare
and evaluate the labels generated by these two sys-
tems. Note that in each row, the names ‘System1’
and ‘System2’ are randomly assigned to the actual
generation systems.

The generated sense labels are supposed to be
useful for historical linguists and lexicographers.
Thus, they must be:

1. Truthful: i.e., should reflect exactly the sense
in which the target word is occurring in the
example usages. Ideally, the label should be
general enough to encompass all the usages
from the current row, but also specific enough
so as not to mix with other senses (for poly-
semantic target words).

2. Fluent: i.e., feeling like natural English sen-
tence or sentences, without grammar errors,
utterances broken mid-word, etc

You have to fill in the Judgements column with
one of six integer values:

• 0: both systems are equally bad for this sense

• 1: System 1 is better, but System 2 is also OK

• 11: System 1 is better, and System 2 is bad
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Figure 8: PCA projections of definition embeddings for two target words from English DWUG.

Figure 9: General quality of generated sense labels

Figure 10: Human comparison of sense labels produced
from definitions and from usages

• 2: System 2 is better, but System 1 is also OK

• 22: System 2 is better, and System 1 is bad

• 3: both systems are equally good for this sense

Some rows are already pre-populated with the 3
judgement, because the sense labels generated by
both systems are identical. We hypothesise that this
most probably means that both labels are equally
good. Please still have a look at these identical
labels and change 3 to 0 in case you feel that in fact
they are equally bad.’

F Sense Dynamics Maps

It is easy to find different sense clusters which are
assigned identical definition labels. Usage exam-
ples from sense clusters c2 and c3 for the word
‘chef ’, to which our system assigned the same la-
bel: ‘A COMMANDER’:

• c2: ‘He boasted of having been a chef de
brigade in the republican armies of France’,
‘Morrel has received a regiment, and Joliette
is Chef d’Escadron of Spahis’, ‘as major-
general and chef d’escadron, during the plea-
sure of our glorious monarch Louis le Grand’

• c3: ‘That brave general added to his rank of
chef de brigade that of adjutant general’, ‘I
frequently saw Mehevi and several other chefs
and warriors of note take part’

Thus, a user can safely accept the suggestion of our
system to consider these two clusters as one sense.

Note that ‘A COMMANDER’ practically disap-
peared as a word sense in the 20th century, re-
placed by ‘A PROFESSIONAL COOK, USUALLY IN

A RESTAURANT’.
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G Clustering Embedding Spaces

We constructed three types of embedding spaces;
(i) contextualised token embeddings, (ii) sentence
embeddings, and (ii) definition embeddings. We
did so for two language models: RoBERTa-large
and DistilRoBERTa. Since we cluster the embed-
ding spaces for each target word individually, we
obtain different optimal number of clusters for each
target word. Table 5 displays the average results
over all target words.

We observe that the optimal number of clusters
K is substantially higher for the definition embed-
ding spaces for both RoBERTa-large and Distil-
RoBERTa. However, this is an artefact of the data:
since some distinct usages yield identical defini-
tions for a target word, the definition space often-
times consist of less distinct data points, which
greatly impacts the average silhouette scores. Fu-
ture work should point out what clustering methods
are most applicable to definition embedding spaces.
Still, this decrease in data points confirms how the
definition embedding space could represent usages
at a higher level of abstraction, collapsing distinct
usages into identical representations.

Figure 11 displays the T-SNE projections of each
of the three embedding spaces of RoBERTA-large.
As for Distil-RoBERTa, the definition embedding
space appears to have spacial properties that are
more similar to contextualised token embedding
spaces than to sentence embedding spaces: the
definition embeddings are more separated than the
sentence embeddings, and are cluttered in a similar
manner as the token embeddings.

Figure 11: T-SNE projection of each embedding space,
RoBERTa-Large model.

Model Representation Inter-cluster Intra-cluster Ratio

RoBERTa-large Sentence 0.017 0.013 1.248
Token 0.042 0.034 1.272
Definitions 0.008 0.006 1.349

DistilRoBERTa Sentence 0.665 0.592 1.126
Token 0.591 0.477 1.258
Definitions 0.705 0.509 1.397

Table 14: Average Separation and Cohesion scores
of each cluster for each target word from the English
DWUG
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