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Abstract

Recent studies have shown the effectiveness
of retrieval augmentation in many generative
NLP tasks. These retrieval-augmented meth-
ods allow models to explicitly acquire prior
external knowledge in a non-parametric man-
ner and regard the retrieved reference instances
as cues to augment text generation. These
methods use similarity-based retrieval, which
is based on a simple hypothesis: the more the
retrieved demonstration resembles the original
input, the more likely the demonstration label
resembles the input label. However, due to
the complexity of event labels and sparsity of
event arguments, this hypothesis does not al-
ways hold in document-level EAE. This raises
an interesting question: How do we design the
retrieval strategy for document-level EAE? We
investigate various retrieval settings from the
input and label distribution views in this paper.
We further augment document-level EAE with
pseudo demonstrations sampled from event se-
mantic regions that can cover adequate alter-
natives in the same context and event schema.
Through extensive experiments on RAMS and
WikiEvents, we demonstrate the validity of our
newly introduced retrieval-augmented methods
and analyze why they work.

1 Introduction

Transforming the large amounts of unstructured
text on the Internet into structured event knowledge
is a critical, yet unsolved goal of NLP, especially
when addressing document-level text. Document-
level Event Argument Extraction (document-level
EAE) is the process of extracting informative
event kernels from a document, which benefits
many downstream applications, e.g., information
retrieval, question answering, and event graph
reasoning. Figure 1 presents an illustration of
document-level EAE task. Given a TransportPer-
son event, document-level EAE aims to extract
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Event type: movement.transportperson.preventexit

Inside the house, the FSB special forces detained 53 young men,
at least one of whem was promoting the Islainic State terror group
online. 50 + detained , explosives found in illegal prayer hall in
southern Russia. April 29, 2016 According to an FSB source, the
<tgr> arrests <tg£)>r£mildc at the illegal prayer hall triggered a
series of house Taids, which helped uncover more explosives,
handgpins, grenades and ammo. The same source said other known
Destination
membpers of that particular Salafi community are currently fighting

in Syria for the jihadists.

Figure 1: An illustration of document-level EAE task.
Special tokens <tgr> incorporate trigger words. Argu-
ments are denoted by underlined words, and roles are
denoted by arcs.

event arguments and identify the roles they take:
the FSB (Preventer), 53 young men (Transporter),
the illegal prayer hall (Origin), Syria (Destination).

Retrieval-augmented methods have recently
been successfully applied to many NLP tasks, e.g.,
dialogue response generation (Weston et al., 2018;
Wu et al., 2019; Cai et al., 2019a,b), machine trans-
lation (Zhang et al., 2018; Xu et al., 2020; He
et al., 2021) and information extraction (Lee et al.,
2022; Zhang et al., 2022; Chen et al., 2022). These
methods retrieve additional knowledge from var-
ious corpora to augment text generation, which
allows models to (a) explicitly acquire prior exter-
nal knowledge in a non-parametric manner, leading
to great flexibility. (b) regard the retrieved refer-
ence instances as cues to generate text and learn
by analogy. These retrieval-augmented methods
use similarity-based retrieval, which is based on a
simple hypothesis (Li et al., 2022): the more x,. (re-
trieved demonstration) resembles x (original input),
the more likely y, (demonstration label) resembles
y (input label), so it will help the generation.

This hypothesis is intuitive: similar input results
in similar output for most tasks (Khandelwal et al.,
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2020, 2021). For example, in language modeling,
Dickens is the author of and Dickens wrote will
have essentially the same distribution over the next
word. However, in document-level EAE, x,. resem-
bles x cannot guarantee the equivalent distribution
of y, and y in label space. In a document, only a
few words are event arguments, while other distract-
ing context can mislead similarity-based retrieval
and cause demonstration label y, deviate from in-
put label y. Furthermore, document-level EAE
should predict not only the argument entity but
also the correspondence between arguments and
roles, which makes it challenging to find a demon-
stration with an identical event label to the original
input. According to our statistics on RAMS dataset
(Ebner et al., 2020), only 16.51% of instances can
recall a sample with the same event schema through
similarity-based retrieval.

This raises an interesting question: since
document-level EAE doesn’t satisfy the hypothesis
of similarity-based retrieval, how do we design the
retrieval strategy for document-level EAE? In this
paper, we explore various retrieval settings. First,
if similar documents cannot guarantee the same
distribution of event labels, does it make sense to
pursue X, to be similar to x in retrieval process? To
answer this, we first retrieve x,., close to x in input
space, as discrete demonstration to keep contextual
semantic consistency (Setting 1); Then, since the
essence of the above hypothesis is to pursue y,
resembles y, why don’t we directly retrieve y, sim-
ilar with y as the reference? So we recall y,., close
to y in label space, as discrete demonstration to al-
leviate the difficulty of learning the complex event
pattern of y (Setting 2); To find depth cues to guide
the model, we want a demonstration that has equal
distribution with input document in both input and
label space. Intuitively, it is impossible to retrieve
the ideal demonstration in discrete space, so we
try to sample a cluster of pseudo demonstrations in
continuous space instead. Recent works (Wei et al.,
2020) have shown that the vectors in an adjacency
region can easily cover adequate alternatives of
the same meaning. Inspired by this intriguing ob-
servation, we sample pseudo demonstrations from
the intersection of the adjacent regions of x and
y, thus preserving both context and event schema
consistency with the input (Setting 3).

We present a systematic evaluation for ana-
lyzing various retrieval settings and observe that
given a document, (1) context-consistency retrieval

(Setting 1) helps the model identify the argument
span more accurately than Setting 2. This sug-
gests that in-distribution demonstration contexts
can contribute to performance gains by improv-
ing the ability to recognize argument spans; (2)
schema-consistency retrieval (Setting 2) makes the
generated role labels more accurate than Setting
1, which indicates that conditioning on the label
space contributes to better performance by allevi-
ating the difficulty of learning the complex event
pattern; and (3) adaptive hybrid retrieval (Setting 3)
has achieved state-of-the-art (SOTA) performance
among all generation-based baselines, indicating
that this setting can generate diverse and faithful
pseudo demonstrations with consistency in both
input space and label space.

Overall, the contributions can be summarized as
follows:

* We are the first to explore how to design the re-
trieval strategy for document-level EAE from
the input and label distribution views. And
our introduced retrieval strategies can recall
demonstrations that can be helpful to demon-
strate how the model should solve the task.

* We further propose a novel adaptive hybrid re-
trieval augmentation paradigm that adaptively
samples pseudo demonstrations from contin-
uous space for each training instance to im-
prove the analogical capability of the model.

* Through extensive experiments on RAMS
and WikiEvents, we demonstrate the validity
of our newly introduced retrieval-augmented
methods. We also conducted additional ana-
lytical experiments to discuss the reasons why
different settings affect performance.

2 Methodology

Problem Definition. We formulate document-
level EAE in the manner of Ebner et al. (2020):
given a document x = {wy, w2, ..., W)/}, it con-
tains a set of described events £. Each evente € £
has its event type ¢ and designated by a trigger (a
text span in x). Each event type ¢ specifies a role
set R;. The event schema e is made up of event
type and its associated role set. The task aims to
extract all (a, r) pairs for each e € &£, where a € x
is an argument—a text span in x and r € R is the
role that a takes.
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Figure 2: An illustration of our proposed three retrieval-augmented methods. Sub-figures (a), (b), and (c) refer
to the three retrieval-augmented methods, respectively. x,. denotes the retrieved document, while y,. means the
retrieved event label. hq is the representation of the retrieved k discrete demonstrations, v is the sampled & pseudo
demonstrations. The gray dashed lines in (a) and (b) denote that two encoders share parameters, as does (c).

For retrieval-augmented document-level EAE,
we first retrieve the top-k potentially helpful
demonstrations (discrete or continuous), then fuse
them into the decoder to generate role records (a
sequence of (a, ) pairs). In the following, we first
introduce how to reformulate document-level EAE
as Retrieval-Augmented Generation (RAG), then
describe various retrieval settings.

2.1 Basic RAG Architecture

We adopt the T5 model (Raffel et al., 2022), an
encoder-decoder pre-trained model, as a backbone.
The encoder-decoder LM models the conditional
probability of selecting a new token y(*) given the
previous tokens y(<%) and the encoder input [e; x|
during the generation process. As a result, the total
probability p(y|x,e) of generating the output y
given the input [e; x| is calculated as:

lyl

p(yIx.e)=[]» (y(i)!y(“’,x, e) .M
=1

where the input sequence is the concatenation of
the document context and its event schema, con-
structed as <s> event schema [SEP] document con-
text </s>. The output y is the role record, present-
ing by the concatenation of each argument and its
event role, i.e., <s> arg; role;... arg,, role, </s>.

In this paper, we decompose the modeling of
p(y|x, e) into two steps: retrieval and prediction.
Given a query document x, we first retrieve top-k
potentially helpful demonstrations d from training
corpus Dyqin. We model this as sampling from a
distribution p(d|x). Then we use siamese network
structures to obtain meaningful embeddings for
input sequence [e; x| and demonstration d:

he, hx = T5-Encoder([e; x]),

2
hgq = T5-Encoder(d). @

Then, we condition on both the retrieved d
and the original input [e;x] to generate the out-
put y—modeled as p(y|d,x,e). Specifically,
we integrate k£ demonstration embeddings hq
{hd(l), ha?, ..., hd(k)} into cross-attention mod-
ule in all decoder layers by concatenating them to
the encoder outputs and feed them all to decoder:

y = T5-Decoder(<bos>; [hq; he; hy]),  (3)

where <bos> is the beginning token of decoder,
[hq; he; hy] denotes the encoder outputs we con-
structed for decoder input. In Setting 3, we use
[v; he; hy]| instead.

To obtain the overall likelihood of generating y,
we treat d as a latent variable, yielding:

p(ylx,e) = p(yld,x, e) p(d|x). )
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Figure 3: The geometric diagram of the proposed Gaus-

sian sampling. he, by and hy'" are the representations
of the event schema, the document and the ¢-th dis-
crete demonstrations, h, = mean-pooling(h,), hy, =
mean-pooling(hx),h_dm = mean-pooling(hq”). To
sample pseudo demonstrations from event seman-
tic region (the light blue intersection), we formalize
v() = he + w® © b (i.e., the blue dashed arrow)
as a pseudo demonstration, in which the bias vector
b = hy — h,, scale vector w? ¢ (1 — r®/R,1),
P = |lbx — ha||. R = || — Bl

2.2 Demonstration Retrieval Design

The main challenge of demonstration retrieval is
to design an appropriate retrieval strategy to re-
call demonstrations that can be helpful to demon-
strate how the model should solve the task. In
this part, we explore various retrieval settings. As
shown in Figure 2, we categorize the retrieval set-
ting into three categories: (1) Context-Consistency
Retrieval; (2) Schema-Consistency Retrieval; and
(3) Adaptive Hybrid Retrieval. The goal of all
retrieval settings in this part is to find k demon-
strations (whether discrete or continuous).

Setting 1: Context-Consistency Retrieval

Since similar documents cannot guarantee the same
distribution of event labels, Setting 1 aims to an-
swer whether it makes sense to pursue x, to be
similar to x in the retrieval process. Given a query
document x, we retrieve the instance document x,.
from the training corpus Dyi, that is the top-k rel-
evant to the original input document, as discrete
demonstrations d. For retrieval, we use S-BERT
(Reimers and Gurevych, 2019) to retrieve semanti-
cally similar documents X, € Diin -

Setting 2: Schema-Consistency Retrieval

To explore whether conditioning on the label space
contributes to performance gains, Setting 2 satisfies
event schema consistency and aims to alleviate the
difficulty of learning the complex event pattern of
y. Given the event label y of input as query, we

Algorithm 1: Gaussian Sampling

Input: The embeddings of schema, document and
discrete demonstrations, i.e. he, hy and
ha = {haV B, . ha™y

Output: A set of pseudo demonstrations

v = {v(l),v<2), v
1 Normalizing the importance of each element in

N T T _ |b|—min(|b|)
b = hx he: W, = max(|b|)—min(|b|)

2 Initialize ¢ < 0
3 while: < (k— 1) do

4 1+ i+1
s | r =l —ha||, R =[x — he|
6 Use reparametrizetion to calculate the current

scale vector: o
i 1—r'Y /R+1 ;. 2
w® ~ N (f/,dlag (Wr))

7 First sample a noise variable ¢ from N (0, 1)
8 Then transform it to w® = W+ € - o, where
n=1-— %, oc=W,.
9 Calculate the current sample:
v =he +w® ob
10 vevuv®
1 end

retrieve (also via S-BERT) the instance label y,
that is the top-k relevant to the input label from the
training corpus Dy,in. During the inference, the
query is the event schema e of test sample.

Setting 3: Adaptive Hybrid Retrieval

To find the ideal demonstration that has equal dis-
tribution with input document in both input and
label space to guide the model, we propose a novel
adaptive hybrid retrieval strategy to sample pseudo
demonstrations from continuous space as depth
cues to improve the analogical capability of model.

Given an instance document x, we first retrieve
top-k helpful documents from the training corpus
Dirain- Conditioning on retrieved k discrete demon-
strations, we adaptively determine k event seman-
tic regions in continuous space for each training
instance. Then we sample k& pseudo demonstrations
from k event semantic regions.

Event Semantic Region. We treat points in the
event semantic region as the critical states of event-
semantic equivalence. Specifically, in order to con-
sider both context and event schema consistency,
we first determine the adjacent region of document
and event schema by setting their adjacent radii (the
orange circle and purple circle in Figure 3). Fur-
thermore, we define the intersection of their adja-
cent regions as an event semantic region A (he, hy)
(the light blue region in Figure 3), which describes
accurate alternatives in consistency with original
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context and event semantic meaning. Here we have
k discrete demonstration embeddings hq for k ad-
jacent radii r, which determines k event semantic
regions. For each event semantic region, we per-
form the following Gaussian sampling.

Gaussian Sampling. To obtain diverse and faith-
ful pseudo demonstrations from the event semantic
region for the training instance x, we apply a Gaus-
sian sampling strategy k times to sample a cluster
of vectors from k event semantic regions.

As shown in Figure 3, we first use scale vector
w9 to transform the bias vector b = hy — he
as w(® © b, where ® is the element-wise prod-
uct operation. Then, we construct a novel sam-
ple v —he+w® ©basa pseudo demonstra-
tion. As a result, the goal of the sampling strat-
egy turns into finding a set of scale vectors, i.e.
w={wW, w® . w®} Intuitively, we can as-
sume that w(® follows a distribution with Gaussian
forms, formally:

) _ (3
w® N (%,diag (Wf)) 7 5)

where W, = % normalizes the im-
portance of each dimension in b, the operation | - |
takes the absolute value of each element in vector,
which indicates the larger the value is, the more
informative it is. u = % constrains the
sampling range to event semantic region.

Since sampling is a non-differentiable oper-
ation that truncates the gradient, here we use
a reparametrization trick to construct N (1 —
T(Z;/ R diag(W?)). We first sample a noise vari-
able € from standard normal distribution N (0, 1).
Then, instead of writing w(® ~ N(p, 0?):

w(i):,u+e-a, (6)

where e ~ N(0,1),u=1— T<Z)2/R,O' =W,.

Now the gradient is inside the expectation. We
finally sample k pseudo demonstrations v from k
event semantic regions to augment the text gen-
eration, that is v = {v(D) v . v} where
v() ~ A (he, hy). k is the hyperparameter of the
number of sampled vectors, which is determined
by the number of discrete demonstrations. For a
clearer presentation, Algorithm 1 summarizes the
sampling process.

Algorithm 2: Decoding the output

Input: role record
Y : <s>arg, roley... arg, role, </s>.
Output: (arg, role) pairs.
1 Initialize arg list < []

2 fory' € ydo

3 /* Here consider multi-event scenario,
separated by [SEP] */

4 if y* # [SEP] then

5 if y* ¢ role list then

6 append y* to arg list

7 else

8 role < y*

9 argument < arg list

10 geta (arg, role) pair

1 arg list < []

12 end

13 else

14 event index < event index + 1

15 arg list <[]

16 end
17 end

2.3 Training and Inference

The trainable parameters of the model are
only the encoder-decoder LM, which is de-
noted as 6. Given a training dataset Diin

{(xl,yl) s ens (XIDu-am 1 Y [ Deain ‘) }, where each in-
stance is a (document, role records) pair, the learn-
ing objective is a negative log-likelihood function:

logp(ylx,d,e,0). (7)

c-- ¥

(X7Y) €Drrain

After generating role records, we need to de-
code it back into (argument, role) pairs to calculate
specific evaluation metrics. The detailed decoding
process is in Algorithm 2.

3 Experiments

We evaluate our model’s performance on two com-
monly used document-level EAE benchmarks and
compare it to prior works. Then we conduct addi-
tional analytical experiments on how the demon-
stration retrieval design affects performance.

3.1 Experimental Setup

Datasets. We conduct our experiments on two
widely used document-level EAE datasets: RAMS
(Ebner et al., 2020) and WikiEvents (Li et al.,
2021). RAMS provides 9,124 annotated exam-
ples from news based on 139 event types and 65
roles. WikiEvents provides 246 annotated docu-
ments based on 50 event types and 59 roles.
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Models | RAMS | WikiEvents | PLM
| Arg-I  Arg-C | Arg-I Arg-C  Head-C |
Multi-label classification-based Models
BERT-CRF (Shi and Lin, 2019)* - 40.3 - 323 43.3 BERT-base
PAIE (Ma et al., 2022)* 54.7 49.5 68.9 63.4 66.5 BART-base
56.8 52.2 70.5 65.3 68.4 BART-large
QA-based Models
EEQA (Du and Cardie, 2020)* 46.4 44.0 54.3 53.2 56.9 BERT-base
48.7 46.7 56.9 54.5 59.3 BERT-large
DocMRC (Liu et al., 2021)* - 45.7 - 43.3 - BERT-base
Generation-based Models
BART-Gen (Li et al., 2021)* 50.9 44.9 47.5 41.7 44.2 BART-base
51.2 47.1 66.8 62.4 65.4 BART-large
T5-baseline* 45.1 37.3 44.8 39.1 39.3 T5-base
45.9 40.3 62.7 41.0 53.7 T5-large
Our Models using Retrieval-augmented Generation
Setting 1: Context-Consistency Retrieval | 52.2 449 59.8 40.4 58.7 T5-base
53.9 479 66.8 50.9 63.4 T5-large
Setting 2: Schema-Consistency Retrieval | 45.9 38.6 534 39.7 43.0 T5-base
49.1 41.0 64.4 53.8 61.8 T5-large
Setting 3: Adaptive Hybrid Retrieval 533 46.3 61.4 46.1 62.5 T5-base
54.6 48.4 69.6 63.4 68.4 T5-large

Table 1: Experimental results on RAMS and WikiEvents. * means the results from (Ma et al., 2022), and t denotes
the results from our implemented models for a fairer comparison. We highlight the SOTA results (classification-
based method) with underlines. The best results among generation-based methods are marked in bold font.

Evaluation Metrics. Our results are reported as
F-1 score of argument identification (Arg-I) and
argument classification (Arg-C). For WikiEvents
dataset, we follow Li et al. (2021) to additionally
evaluate argument head F1 score (Head-C).

* Arg-I: an event argument is correctly identi-
fied if its offsets match those of any of the
argument mentions.

* Arg-C: an event argument is correctly classi-
fied if its offset and role type both match the
ground truth.

* Head-C: only considers the matching of the
headword of an argument.

For the predicted argument, we find the nearest
matched string to the golden trigger as the predicted
offset. As an event type often includes multiple
roles, we use micro-averaged role-level scores as
the final metric.

Baselines. For strictly consistent comparison, we
divide several state-of-the-art models into three cat-
egories: (1) Multi-label classification-based model:

BERT-CRF (Shi and Lin, 2019), PAIE (Ma et al.,
2022); (2) QA-based model: EEQA (Du and
Cardie, 2020) and DocMRC (Liu et al., 2021); and
(3) Generation-based model: BART-Gen (Li et al.,
2021) and T5-baseline. T5-baseline is our own
baseline without the retrieval component: directly
encodes input context to generate role records.

Experimental Settings. We initialize our models
with the pre-trained T5 model, available in the Hug-
gingFace Transformers library!. We consider two
model sizes, base and large, containing respectively
220M and 770M parameters. We fine-tune the mod-
els on each dataset independently using AdamW
(Loshchilov and Hutter, 2019) and conducted ex-
periments on 4 NVIDIA-V100-32GB. Due to GPU
memory limitation, we used different batch sizes
for different models: 8 for T5-large and 16 for T5-
base; In each experiment, we train the model with
5 fixed seeds (42, 66, 88, 99, 101) and 4 learning
rates (2e-5, 3e-5, 4e-5, 5e-5), and vote for the best
learning rate for each seed with the best dev-set
Arg-C performance. We report the averaged Arg-

1https: //github.com/huggingface/transformers
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Figure 4: Impact of the input space and label space. Evaluated by Arg-C F1. More discussion is in Section 3.3.

C performance on the test set for selected check-
points. We list other important hyperparameters in
Appendix A.3.

3.2 Main Results

Table 1 presents the performance of all baselines
and our models on RAMS and WikiEvents. From
the results, we can conclude that:

(1) By retrieving reference demonstrations to
augment text generation, our retrieval-augmented
models can significantly outperform generation-
based models. Our Setting 3 improves Arg-C F1 by
1.6%~10.6% and 17.9%~54.6% over the SOTA
generation baseline BART-Gen and vanilla TS on
both datasets. Compared with sequence generation
BART-Gen, our models do not require manually
constructing the event template and can directly
generate informative role records rather than irrel-
evant information. This verifies that the retrieval
augmentation paradigm can improve the perfor-
mance of generative document-level EAE.

(2) By reformulating document-level EAE as
retrieval-augmented generation, our models can
achieve competitive performance without manu-
ally designing specific questions. Our methods
surpass most of the QA-based and classification-
based baselines and achieve competitive perfor-
mance with SOTA. Furthermore, compared to the
QA-based models, our Setting 3 also demonstrates
superior performance (up to 2.3 Arg-C F1 gains on
RAMS), which reveals that retrieving demonstra-
tions as cues works better than asking questions.

(3) By generating pseudo-demonstrations in con-
tinuous space as depth cues to guide the model,
our Setting 3 inspires the analogical capability of
the model more than Setting 1 and 2. As in Ta-
ble 1, continuous augmentation (Setting 3) signifi-
cantly outperform the discrete augmentation meth-
ods (Setting 1 and 2) on both datasets, whether in
base-model or large-model (1.3%~16.1% for Arg-

Models RAMS

Arg-span acc  Arg-role acc
T5-baseline 45.5 45.6
Setting 1: Context-Consistency Retrieval 53.1 452
Setting 2: Schema-Consistency Retrieval 423 51.8
Setting 3: Adaptive Hybrid Retrieval 523 50.9

Table 2: Argument span/role prediction accuracy on
RAMS.

I F1, 1.0%~24.6% for Arg-C F1). These results
demonstrate the stronger ability of adaptive hy-
brid augmentations than traditional augmentations
for generalizing event-semantic-preserved demon-
strations. And event semantic regions can gen-
erate diverse and faithful pseudo demonstrations
to effectively improve the analogical capability of
document-level EAE model.

3.3 Analysis

Impact of the input space. To explore the rea-
son why context-consistency affects performance,
we additionally experiment with two variants of
the document (random documents and out-of-
distribution documents) on RAMS and WikiEvents.
Specifically, “random documents” means that we
randomly choose a set of k£ documents from their
own training set as the demonstrations. “Out-of-
distribution documents” means that we randomly
choose a set of k documents from each other’s
training set as the demonstrations. Figure 4 shows
that using out-of-distribution documents as refer-
ences significantly drops the performance, and us-
ing random documents is better than no demonstra-
tions. Setting 1 improves Arg-C F1 by about 6.0%
and 11.8% over the “random documents” and no
demonstrations. This is likely because using the
in-distribution text as the context makes the task
closer to language modeling since the LM always
conditions on the in-distribution text during train-
ing. Furthermore, using in-distribution with similar
text as context can further improve performance.
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Figure 5: Performance of Setting 3 on both datasets as
a function of the number of demonstrations.

Impact of the label space. To explore the reason
why schema consistency affects performance, we
experiment with two variants of Setting 2 (random
labels and random English words) on RAMS and
WikiEvents. Specifically, “random labels” means
that we randomly choose a set of k labels from their
own training set as the demonstrations. “Random
English words” means that we randomly choose
a set of English words from https://pypi.org/
project/english-words/ (consists of 61,569
words) as the demonstrations. From Figure 4 we
can see that the performance gap between using
random/top-k labels (within the label space) and
using random English words is significant. Setting
2 improves Arg-C F1 by about 0.65% and 2.5%
over “random labels” and no demonstrations. This
indicates that conditioning on the label space can al-
leviate the difficulty of learning the complex event
pattern, which is why performance improves.

Argument span prediction accuracy. Argument
span prediction accuracy in Table 2 illustrates the
Arg-I precision of both datasets. As expected,
Setting 1 identifies the argument span more ac-
curately than Setting 2, and the gap in prediction
accuracy is as large as 25.5%. This indicates that
in-distribution demonstration contexts can improve
the ability to recognize argument spans and con-
tribute to performance gains.

Argument role prediction accuracy. We also
evaluate the capability to generate golden argument
role in target sequence. From Table 2 we can see
that Setting 2 generates role labels more accurately
than Setting 1, and the gap in prediction accuracy is
14.6%. This suggests that schema-consistency re-
trieval alleviates the difficulty of learning the com-
plex event pattern, and conditioning on the label
space contributes to better performance.

Impact of the number of demonstrations k.
Figure 5 illustrates how the hyper-parameters &
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Figure 6: Arg-C F1 scores with different training data
ratios on both benchmarks.

affect the extraction performance. We observe that
gradually increasing the number of demonstrations
significantly improves Arg-C F1 in RAMS, but not
in WikiEvents. We conjecture that the reason is that
the averaged context length (about 900 words) in
WikiEvents is too long, which affects the original
input representation in the cross-attention module.

3.4 Few-shot Setting

To conduct detailed comparisons between different
augmentation methods, we asymptotically increase
the training data to analyze the performance of
them on both datasets. Figure 6 shows the per-
formance of them and T5-baseline with partial
training samples. It demonstrates our approach
achieves comparable performance with the T5-
baseline model with only ~20% of training data,
which indicates that our approach has great poten-
tial to achieve good results with very few data.

4 Related Work

Document-level Event Argument Extraction
The goal of document-level EAE is to extract argu-
ments from the whole document and assign them
to right roles. On the task level, most of these
works fall into three categories: (1) multi-label
classification-based models (2) QA-based models
(3) generation-based models. Specifically, Zhang
et al. (2020); Xu et al. (2021); Huang and Jia
(2021); Ren et al. (2022); Ma et al. (2022); Xu et al.
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(2022) first identified argument spans and then fill
each with a specific role via multi-label classifica-
tion; Du and Cardie (2020); Liu et al. (2021); Wei
et al. (2021) formulated document-level EAE as
an question answering (QA) or machine reading
comprehension (MRC) problem; Li et al. (2021)
designed specific templates for each event type
and frames EAE as conditional generation. Above
methods conduct experiments on WikiEvents (Li
et al., 2021), RAMS (Ebner et al., 2020), and Chi-
nese financial dataset (Zheng et al., 2019).

Retrieval-Augmented Text Generation RAG
has recently been successfully applied to many
NLP tasks, e.g., dialogue response generation,
machine translation, and information extraction.
These methods retrieve additional knowledge from
various corpora to augment text generation, which
includes three major components: the retrieval
source, retrieval strategy, and integration methods.
Meanwhile, leveraging additional knowledge as
the augmentation signal is a natural way to resolve
the information insufficiency issue for information
extraction. For example, Lee et al. (2022) proposed
two demonstration retrieval methods for named
entity recognition. Zhang et al. (2021) used the
open-domain knowledge in Wikipedia as retrieval
source for distantly supervised relation extraction.
Du and Ji (2022) applied S-BERT (Reimers and
Gurevych, 2019) to retrieve the most relevant ex-
ample for event extraction.

5 Conclusion

In this paper, we explore how to design retrieval-
augmented strategy for document-level EAE from
the input and label distribution views. And our
introduced retrieval strategies can recall demon-
strations that can be helpful to demonstrate how
the model should solve the task. We further pro-
pose a novel adaptive hybrid retrieval augmenta-
tion paradigm to generate the reference vectors as
depth cues to improve the analogical capability of
model. Through extensive experiments on RAMS
and WikiEvents datasets, we demonstrate the va-
lidity of our newly introduced retrieval-augmented
models. In the future, we plan to adapt our method
to other document-level extraction tasks, such as
document-level relation extraction.

Limitations

‘We discuss the limitations of our research as fol-
lows:
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* Firstly, since the T5-large model has many
parameters and our task is document level,
one training process will occupy four NVIDIA
V100 32GB GPUs;

e Our paper mainly studies document-level
EAE task. Although we believe our approach
is compatible with all document-level extrac-
tion tasks, how to adapt it to those tasks still
remains an open question.
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A Dataset and Model

A.1 Dataset Statistics

RAMS is a document-level dataset of 9,124 an-
notated events from news based on an ontology
of 139 event types and 65 roles. Each sample is a
5-sentence document, with the trigger word indicat-
ing a pre-defined event type and its argument scat-
tered throughout the whole document. WikiEvents
is another document-level dataset, providing 246
annotated documents from English Wikipedia arti-
cles based on 50 event types and 59 roles. Table 3
presents their detailed statistics.

Dataset #Split #Doc #Event #Argument
Train 3,194 7,329 17,026

RAMS Dev 399 924 2,188
Test 400 871 2,023
Train 206 3,241 4,542

WikiEvents  Dev 20 345 428
Test 20 365 566

Table 3: Statistics of RAMS and WikiEvents datasets.

A.2 Details of Baselines

We compare our model with the following previous
models.

¢ BERT-CRF (Shi and Lin, 2019): a multi-label
classification-based method that uses a BERT-
based BIO-styled sequence labeling model.
We report the results from Liu et al. (2021).

¢ PAIE (Ma et al., 2022): another multi-label
classification-based method that defines a new
prompt tuning paradigm for event argument
extraction. We report the results from original

paper.

¢ EEQA (Du and Cardie, 2020): the first Ques-
tion Answering (QA) based model designed
for sentence-level EAE task. We report the
results from Ma et al. (2022).

303



e DocMRC (Liu et al., 2021): another QA-
based method with implicit knowledge trans-
fer and explicit data augmentation. We report
the results from original paper.

e BART-Gen (Li et al., 2021): formulate the
task as a sequence-to-sequence task and uses
BART-large to generate corresponding argu-
ments in a predefined format. For BART-large
model, we report the results from origin paper.
For BART-base model, we report the results
from Ma et al. (2022).

A.3 Implementation Details

We list other important hyperparameters in Table 4.

Hyperparameter RAMS WikiEvents

T5-base T5-large | T5-base T5-large
Batch size 16 8 16 8
Training epochs 50 50 20 40
Optimizer AdamW AdamW | AdamW AdamW
Max input length 512 512 512 512
Max target length 64 64 512 512
Max demo length 150 100 200 100
k 20 20 5 5

Table 4: Hyperparameters
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