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Abstract

Methods to generate text from structured data
have advanced significantly in recent years, pri-
marily due to fine-tuning of pre-trained lan-
guage models on large datasets. However, such
models can fail to produce output faithful to
the input data, particularly on out-of-domain
data. Sufficient annotated data is often not avail-
able for specific domains, leading us to seek
an unsupervised approach to improve the faith-
fulness of output text. Since the problem is
fundamentally one of consistency between the
representations of the structured data and text,
we evaluate the effectiveness of cycle training
in this work. Cycle training uses two models
which are inverses of each other: one that gen-
erates text from structured data, and one which
generates the structured data from natural lan-
guage text. We show that cycle training, when
initialized with a small amount of supervised
data (100 samples in our case), achieves nearly
the same performance as fully supervised ap-
proaches for the data-to-text generation task on
the WebNLG, E2E, WTQ, and WSQL datasets.
We perform extensive empirical analysis with
automated evaluation metrics and a newly de-
signed human evaluation schema to reveal dif-
ferent cycle training strategies’ effectiveness
of reducing various types of generation errors.
Our code is publicly available at https://
github.com/Edillower/CycleNLG.

1 Introduction

A wealth of information exists in the form of
structured knowledge, such as movie information
databases or product catalogs, which we may want
to verbalize for a variety of purposes, such as com-
paring two items, or presenting detailed descrip-
tions in a natural language form suitable for con-
versational assistants. Recent work has tackled this
data-to-text generation task using freely available
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public datasets, most notably WebNLG (Castro Fer-
reira et al., 2020) and ToTTo (Parikh et al., 2020).
However, there remain two major challenges. First,
the volume of training data required for good per-
formance, especially if it is not in a domain rep-
resented by one of the existing corpora, is very
large. Second, multiple recent papers (Yang et al.,
2022; Parikh et al., 2020), inter alia, point out that
neural natural language generation (NLG) from
structured data tends to produce multiple kinds of
errors which limit the utility of these models in
customer-facing applications. Hallucinations oc-
cur when NLG models inject nonsensical words
or information not related to the input structured
data, into the generated output text. For instance,
an NLG model may claim a shirt’s color is “three”.
Simple factual errors occur when an NLG model
produces coherent but factually wrong output.

There are two threads of research to consider as
we attempt to tackle these problems in the data-
to-text setting. The first is designing models that
directly produce output more faithful to the input
data. The second is designing models to detect
and correct factual errors or hallucinations after
the output text is generated. In both cases, prior
research has generally assumed sufficient pairs of
structured data and text as training data to achieve
human-level performance on the task. While fact
verification models can achieve very high perfor-
mance, they generally do so when trained on large
corpora of 100,000 examples or more. Since perfor-
mance appears to degrade when evaluated on out-
of-domain data (Estes et al., 2022), this presents a
significant limitation of fact-verification models.
Similarly, corpora like WebNLG contain about
20,000 examples; this is probably too small to
achieve human performance even under full su-
pervision (Guo et al., 2020) but is large enough
to make it prohibitive to generate domain-specific
corpora of the size of WebNLG.

In spite of the above mentioned limitations, very
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few of the models developed for data-to-text and
table-to-text tasks take advantage of the fact that
the task of faithful text generation is fundamentally
one of consistency between the data and the corre-
sponding text. In fact, despite the WebNLG 2020
challenge being explicitly bi-directional, only three
models competing in the challenge leveraged this
idea of consistency.

To overcome the aforementioned limitations
related to the lack of training data (especially
out-of-domain data) and the consistency between
structured data and text, we adopt a Cycle Train-
ing (Iovine et al., 2022a) approach. We assume
unpaired data D, in the form of subject-predicate-
object triples, and text T , which may or may not
be from the same domain. We also make use of
a small (100 samples) set of paired data and text,
Dpr, Tpr. Cycle training makes use of two itera-
tively trained models, a forward model F : D → T
and a reverse model R : T → D. Training is unsu-
pervised, namely, we freeze one model and use it
to transform one set of inputs, and train the other
by using it to predict the original input from the
output of the first model. Concretely, in one cycle,
we freeze F , and train R by reconstructing the in-
put D as R(F(D)). After one training epoch, we
reverse the roles of the two models. Remarkably,
even though the models are initially quite poor, this
can converge to models with near-supervised per-
formance, as we will show. Moreover, we show
that this process ensures the faithfulness of the out-
put text with respect to the input data, and vice
versa, even with very little or no paired data.

We note that a previous data-to-text system, Cy-
cleGT, has used cycle training (Guo et al., 2020).
We will discuss in detail the differences between
CycleGT and our proposed approach in Section
2. Moreover, we examine in detail the conditions
under which cycle training works well, with an em-
phasis on domains and the nature of the training
text and structured data. We find that unsupervised
cycle training outperforms low-resource fine-tuned
models and can achieve near fully-supervised per-
formance when initialized and post-tuned with a
small amount of annotated data. We detail the re-
sults and findings in Section 5. Thus, to build on
past research in self-consistent data-to-text genera-
tion, we make these novel contributions:

(i) We successfully apply cycle training to both
the data-to-text and text-to-data models using only
a pre-trained language model, T5, without recourse

to graph methods or other auxiliary models.
(ii) We show that cycle training achieves nearly

the same performance as supervised models for
some domains.

(iii) We present an extensive empirical analysis
on the conditions under which cycle training works
well, and on the data-to-text faithfulness with re-
spect to different types of generation errors.

(iv) We design a novel counting and ranking
based annotation schema to more comprehensively
evaluate the faithfulness of the generated text from
the standpoints of correctness, faithfulness, data
coverage, and fluency. Our schema improves upon
the rating-based schema used for the WebNLG
2020 Challenge, in terms of objectiveness, con-
sistency, precision and ease of evaluation.

2 Related Work

Multiple data-to-text and table-to-text tasks have
been presented in the literature, such as WebNLG
(Gardent et al., 2017a; Colin et al., 2016; Gar-
dent et al., 2017b), DART (Nan et al., 2020),
ToTTo (Parikh et al., 2020), and WikiTableT (Chen
et al., 2021), which primarily consist of data from
general-purpose sources like Wikipedia. Several
large language models (Herzig et al., 2020; Liu
et al., 2021; Yang et al., 2022) have been trained
on large scale table-to-text corpora (Chen et al.,
2019) to perform fact verification. However, these
models may not perform well on specific do-
mains they have not been trained on, such as e-
commerce (Estes et al., 2022; Vedula et al., 2022).
Therefore, we must either find a way to easily gen-
erate new data to train large data-to-text models, or
use unsupervised methods. Recently, Xiang et al.
(2022) attempted to augment training data using
GPT-3 (Brown et al., 2020), and Su et al. (2021)
employed an information retrieval system to build
prototypes for the generation. Our work makes
orthogonal contributions to these studies, as we di-
rectly utilize the underlying unpaired data and text
of a target corpus without recourse to any additional
information retrieval or generation systems. Fur-
ther, the above-mentioned data-to-text tasks have
been evaluated primarily on automatic word- or n-
gram-level metrics such as BLEU (Papineni et al.,
2002) or METEOR (Banerjee and Lavie, 2005),
with minimal (and mostly subjective) evaluation of
faithfulness. In this work, we design a novel anno-
tation schema to perform a more comprehensive
evaluation of the faithfulness of the generated text
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to the input data.

Cycle training (Zhu et al., 2017; Zhou et al.,
2016) relies on two models which are essentially
inverse transforms of each other that are used to
create “cycles”, which should return identical out-
put to the input given. There are two distinct forms
of cycle training. The first form (Zhou et al., 2016)
aims to learn to transform from one input form to
another, e.g., to learn rotations of a car in one im-
age to another. The second is the use of a “cycle
consistency loss” as an auxiliary loss to some other
task, e.g., in generative adversarial networks per-
forming style transfer on images (Zhu et al., 2017).
NLG typically relies on models which are auto-
regressive and non-differentiable. This precludes
the direct use of cycle consistency losses (Guo et al.,
2020; Pang and Gimpel, 2019; Iovine et al., 2022a).
Nonetheless, we can still use cycle training via an
alternating training strategy where we freeze one
model and train the other, and vice versa (Lample
et al., 2017; Pang and Gimpel, 2019). In this work,
we train solely using cycle consistency. Cycle train-
ing has been recently applied to language process-
ing tasks. In one text-to-text application, Iovine
et al. (2022b) use a similar unsupervised methodol-
ogy to perform bidirectional text transformations
for converting keyword search queries to natural
language questions, and vice versa. It has also been
used for Named Entity Recognition in the absence
of large annotated text (Iovine et al., 2022a). In
this case, one model extracts entities, and the in-
verse model creates text from those entities. The
approach is limited by the fact that there are many
ways to realize sentences with the same entities.
Put differently, there is no strong requirement of
cycle consistency, and this will become even more
apparent as we analyze the conditions under which
cycle training works well in data-to-text tasks.

To the best of our knowledge, the only work to
explicitly call out the self-consistency requirement
of data-to-text generation tasks is the CycleGT
model (Guo et al., 2020) developed for data-to-
text generation on the WebNLG dataset. One key
advantage of cycle training is that it need not rely
on any supervision, and instead relies primarily or
solely on the self-consistency of inputs and outputs.
However, CycleGT relies on a pre-existing NER
model to extract entities from the output text. The
authors then train an inverse model to predict the
links between entities and predicates. Should the
entities not be recognized by their NER system, the

model will fail overall; this is not an uncommon
situation in applications such as online shopping
(Estes et al., 2022; Vedula et al., 2023), where en-
tities are complex or change frequently (Malmasi
et al., 2022). In principle, a separate NER model
could be built using cycle training, as in CycleNER
(Iovine et al., 2022a), but the CycleGT authors did
not do so. In this work, we design a simple ap-
proach using pre-trained language generation mod-
els, fine-tuned for both data-to-text and text-to-data
generation cycles.

3 Methodology

3.1 Backbone Models

The pre-requisite of cycle training is having two
mutually inverse models. We adopt T5, an evi-
dently strong-performing model according to the
WebNLG 2020 challenge (Castro Ferreira et al.,
2020; Agarwal et al., 2020; Guo et al., 2020), as
our backbone model for both forward generation,
(F : D → T that performs RDF-to-text genera-
tion) and reverse generation, (R : T → D that
performs text-to-RDF generation). T5 is a large
sequence-to-sequence model pre-trained with the
unsupervised span-mask denoising objective and
several supervised text generation tasks like sum-
marization and translation (Raffel et al., 2020). We
linearize the RDF triples of each sample into a se-
quence d that denotes the subject, predicate, and
object of each triple by the [S], [P], and [O]
tags respectively. Therefore, both RDF-to-text and
text-to-RDF can be treated and trained as sequence-
to-sequence generation tasks. We further train
or optionally fine-tune the T5 backbone models,
as detailed in Section 4, with the teacher forcing
(Williams and Zipser, 1989; Lamb et al., 2016)
learning objective for task-specific generation. This
means that for the training of the auto-regressive
decoder, we do not propagate the model decoded
next token but force each input to be the correct
gold token for training.

3.2 Cycle Training of the Backbone Models

Iterative Back-Translation (IBT) (Hoang et al.,
2018) has been reported as an effective training
schema that enforces cycle consistency for various
NLP tasks (Guo et al., 2020; Iovine et al., 2022a).
We apply this idea to iteratively cycle train our
models. This consists of the Data-Text-Data (DTD)
cycle that enforces the self-consistency of data, and
the Text-Data-Text (TDT) cycle that similarly en-
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Figure 1: Cycle Training of the Data-to-Text model and Text-to-Data model. For each cycle, the upper-level models
are frozen to generate the intermediate text for the training of the lower-level models, that attempt to reconstruct the
initial inputs (d, t denote initial inputs of the upper-level models; t̂, d̂ denote the upper-level models’ generations
that serve as inputs to the lower-level models; d’, t’ denote the generations of the lower-level models).

forces the self-consistency of text. As shown in Fig-
ure 1, for the DTD cycle, the Data-to-Text model
takes the linearized triples d as input and generates
the associated intermediate text t̂. Sequentially, the
Text-to-Data model is trained with the objective
of reconstructing d with the supplied t̂. The re-
construction loss Ld′ is the averaged negative log
likelihood shown below where di denotes the i-th
token of sequence t and |d| is the sequence length:

Ld′ = − 1
|d|

∑|d|
i=0 log p(di|d0, ..., di−1, t̂)

In a reverse manner, for the TDT cycle, the Text-to-
Data model first takes text t as input and generates
the associated linearized triples d̂. Sequentially,
the Text-to-Data model is trained with the objec-
tive of reconstructing t with the supplied d̂. The
reconstruction loss Lt′ is the averaged negative log
likelihood shown below where ti denotes the i-th
token of sequence t and |t| is the sequence length:

Lt′ = − 1
|t|

∑|t|
i=0 log p(ti|t0, ..., ti−1, d̂)

Due to the non-differentiable procedure of gen-
erating discrete intermediate outputs of tokens, the
reconstruction loss can only propagate through the
second model of each cycle, namely the Text-to-
Data model of the DTD cycle and the Data-to-Text
model of the TDT cycle. Therefore, the training of
the two models can only proceed with the alterna-
tion of the TDT cycle and the DTD cycle so that
both models’ performance may gradually improve.

4 Experimental Setup

4.1 Data and Baselines

We experiment on existing data sources that have
annotated pairs of data triples and reference texts.

WebNLG (Colin et al., 2016; Gardent et al., 2017b;
Castro Ferreira et al., 2020) is a well-established
dataset that has supported multiple challenges
on four tasks: RDF-to-English (Text), RDF-to-
Russian (Text), English (Text)-to-RDF, and Rus-
sian (Text)-to-RDF. Each WebNLG sample consists
of a set of subject-predicate-object triples and up to
three associated human-written reference texts that
faithfully express and verbalize the information
contained in the triple set. We use the English data
from the most recent 3.0 version of the WebNLG
corpus, from the WebNLG+ 2020 challenge.

DART (Nan et al., 2020) is a large-scale data-
to-text dataset that unifies and builds upon mul-
tiple data resources including E2E (Novikova et al.,
2017), WikiSQL (WSQL) (Zhong et al., 2017),
WikiTableQuestions (WTQ) (Pasupat and Liang,
2015), and WebNLG (Gardent et al., 2017a). To
better facilitate our experiments and evaluations on
different domains, we separately utilize the human-
annotated portion of E2E, WTQ, and WSQL from
DART. To align the data formats in accordance
with WebNLG, we also drop some WSQL and
WTQ samples that contain non-conventional struc-
tural tags. The DART dataset hereafter refers to the
cleaned, WebNLG-excluded, and human-annotated
portion of E2E, WTQ, and WSQL.

Table 1 shows detailed dataset statistics. When
the data is used for cycle training, we follow pre-
vious work and split all the paired samples into
one separate corpus of shuffled text, and another
separate corpus of shuffled triple sets. For the lin-
earized sequences, as shown in Figure 1, we: (1)
prefix the string “Generate in English:” to the
input sequence of the RDF-to-text model and pre-
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Dataset Domain Split Size
(Train/Dev/Test)

Unique
Predicates

Triples/Sample
(median/max)

Vocab
Size

Tokens/Sample
(median/max)

WebNLG DBPedia (16 categories) 35,426/4,464/7,305 1,236 3 / 7 20,126 21 / 80
E2E Restaurants 33,482/1,475/1,475 41 4 / 7 6,158 22 / 73
WTQ Wikipedia (open-domain) 3,253/361/155 5,013 2 / 10 11,490 13 / 107
WSQL Wikipedia (open-domain) 526/59/38 946 2 / 6 2,353 12 / 34

Table 1: Datasets statistics and comparison.

fix the string “Extract Triples:” to the input of
the text-to-RDF model; (2) convert camel-cased or
snake-cased subjects, predicates and objects to reg-
ular strings; and (3) normalize accented characters.

Fine-tuning large pre-trained language models,
such as BERT (Devlin et al., 2019), BART (Lewis
et al., 2020), and T5 (Raffel et al., 2020) has been
proven to be effective in achieving new state-of-the-
art performance on numerous tasks. Fine-tuning
refers to the supplemental training of a pre-trained
model on a dataset of the target task and domain.
We detail and perform the following three baseline
fine-tuning strategies in this work:

Fully supervised fine-tuning: We fine-tune T5
with the entire in-domain (with respect to the test
set) data as the supervised baseline.
Low-resource fine-tuning: We fine-tune the T5-
base model with 100 randomly selected sets of
triples and their associated reference texts to for-
malize a low-resource supervised baseline. We
deem 100 annotated samples to be a small enough
amount, that is easily achievable with a relatively
low human annotation effort.
Low-resource fine-tuning with additional pre-
training: When using text from the target domain
for cycle training, the teacher forcing algorithm nat-
urally raises the probability of generating the target
domain tokens, which may result in performance
gains in token matching metrics (Section 5.1). To
study the influence of using in-domain text, we
further pre-train the T5 model with in-domain text
and an unsupervised span-mask denoising objec-
tive prior to the low-resource fine-tuning process.
As our main objective is to probe a training strategy
orthogonal to the model structure, we only include
the above three baselines to control the model struc-
ture, data pre-requisites, and parameter sizes.

4.2 Comparing Cycle Training Strategies and
Pre-requisites

We explore two different training strategies evalu-
ating the effectiveness and generalizability of cycle
training under different data constraints.

Unsupervised cycle training: As the most con-
strained low-resource scenario, in unsupervised cy-
cle training we directly employ the IBT schema to
cycle-train the forward model and reverse model
with unpaired text and triple sets in turns.
Low-resource cycle training: In this setting, a
small amount of paired text and triple sets are ac-
cessible. For fair comparison and consistency, we
utilize the same subset of data as the low-resource
fine-tuning baseline described in Section 4.1. The
low-resource paired data is leveraged through pre-
cycle fine-tuning, which first trains the forward and
reverse model with the paired data before employ-
ing the IBT schema to cycle-train the two models.

Guo et al. (2020) and Iovine et al. (2022a)
vaguely state that the latent content or entity distri-
bution of the text corpus and the data corpus must
have some uncertain degree of overlap to make the
cycle training approach work. To empirically as-
sess this pre-requisite condition, we apply unsuper-
vised cycle training with the same size of text and
data corpus at different matching levels, as a rough
approximation of overlap of the latent content or
entity distribution. Specifically, we randomly se-
lect half of the WebNLG triplets as the data corpus.
We purposefully select five equal-sized text cor-
pora that contain 0%, 25%, 50%, 75%, and 100%
of the originally related reference text; and comple-
mentarily include 100%, 75%, 50%, 25%, 0% of
unrelated reference text respectively.

4.3 Training Parameters

We use the T5-base model which has 12 layers,
a hidden size of 768, 12 self-attention heads, and
220M parameters. We use the AdamW optimizer
with linear weight decay, a max input length of 256,
a learning rate of 3e-4, and an effective batch size
of 256. At inference time, we decode with the beam
search algorithm using 4 beams and a generation
length varying between 3 tokens and 256 tokens.
We train each model up to 50 epochs with a delta of
0.05 basis points and a patience of 5 epochs as the
early stopping criteria. We select the best model by
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Method ROUGE-1 ROUGE-2 ROUGE-L METEOR BLEU BertScore PARENT
Tested on WebNLG

Fully-supervised fine-tuning 59.99(0.10) 40.93(0.18) 49.32(0.15) 39.76(0.04) 42.83(0.21) 95.41(0.02) 45.67(0.30)
Low-resource fine-tuning 55.55(0.67) 36.63(0.37) 46.21(0.35) 35.22(0.70) 33.63(0.87) 94.60(0.08) 41.37(0.54)
+ additional pre-training 55.28(0.43) 35.71(0.32) 45.41(0.24) 35.26(0.46) 33.44(0.59) 94.33(0.06) 39.47(0.52)
Unsupervised cycle training 58.65(0.53) 37.70(1.02) 46.18(0.59) 37.98(0.33) 36.36(2.35) 94.42(0.26) 43.24(1.10)
Low-resource cycle training 60.21(0.21) 40.56(0.42) 48.71(0.17) 39.74(0.32) 41.77(0.70) 95.18(0.04) 46.14(0.36)

Tested on E2E
Fully-supervised fine-tuning 69.77(0.10) 42.87(0.17) 50.93(0.18) 52.90(0.43) 29.35(0.47) 94.76(0.02) 41.91(0.61)
Low-resource fine-tuning 66.62(0.15) 39.68(0.25) 48.59(0.18) 48.80(0.39) 25.31(0.31) 94.35(0.02) 39.56(1.21)
+ additional pre-training 66.88(0.40) 39.45(0.33) 48.65(0.36) 50.11(0.65) 26.29(0.55) 94.35(0.04) 39.65(0.53)
Unsupervised cycle training 63.43(0.81) 37.73(0.32) 45.96(0.61) 50.49(0.78) 27.92(0.37) 93.71(0.09) 37.97(0.30)
Low-resource cycle training 69.53(0.25) 42.48(0.20) 50.51(0.28) 53.02(0.24) 29.22(0.12) 94.74(0.02) 41.39(0.70)

Tested on WTQ
Fully-supervised fine-tuning 62.25(0.66) 34.59(0.61) 49.41(0.57) 39.17(0.86) 21.18(0.53) 92.88(0.05) 24.18(0.74)
Low-resource fine-tuning 55.89(0.88) 31.60(0.81) 46.73(0.64) 31.98(0.57) 15.34(0.72) 91.91(0.14) 23.36(1.05)
+ additional pre-training 55.57(0.68) 30.48(0.80) 44.47(0.74) 33.73(0.74) 15.89(0.39) 91.53(0.17) 22.88(0.43)
Unsupervised cycle training 61.27(0.50) 33.45(0.52) 48.22(0.44) 39.06(0.22) 20.46(0.69) 92.67(0.04) 23.05(0.35)
Low-resource cycle training 61.54(0.29) 34.25(0.78) 49.07(0.45) 39.09(0.60) 20.93(0.98) 92.66(0.10) 24.39(0.84)

Tested on WSQL
Fully-supervised fine-tuning 58.27(1.79) 32.77(1.15) 48.40(2.44) 37.95(0.99) 22.97(1.38) 93.18(0.19) 24.00(2.07)
Low-resource fine-tuning 56.37(1.15) 31.60(0.59) 49.42(0.77) 33.57(0.24) 23.34(1.03) 92.57(0.18) 23.68(1.11)
+ additional pre-training 56.01(0.66) 30.92(0.92) 47.00(1.18) 35.34(0.86) 21.18(0.65) 92.24(0.33) 22.66(0.56)
Unsupervised cycle training 42.24(0.23) 15.17(0.13) 33.52(0.23) 29.45(0.29) 4.03(0.15) 85.37(0.14) 14.63(0.17)
Low-resource cycle training 58.71(1.43) 33.13(1.90) 51.01(1.43) 37.43(1.04) 25.60(1.58) 93.03(0.18) 25.84(1.42)

Table 2: Evaluation of data-to-text generation (bold: best of all; underlined: best of low-resource settings). We
report the average and standard deviation (in parenthesized subscripts) of each metric for 5 repeated runs.

the validation set’s METEOR score - the ranking
metric of the WebNLG 2020 challenge, and we
report the aforementioned model’s performance on
the test set. We repeat each experiment 5 times
with different random seeds and report the average
and standard deviation of each metric.

5 Results and Discussion

5.1 Automatic Evaluation

We assess each system/strategy with five widely-
used automatic metrics that measure the genera-
tion quality from three different aspects: token-
matching, semantic similarity, and faithfulness.
ROUGE (Lin, 2004) is a recall-oriented metric
that calculates the overlapping n-grams (ROUGE-
N for N-grams) and word sequences (ROUGE-L)
between the reference text and generated text.
BLEU (Papineni et al., 2002) is a precision-
oriented metric calculating overlapping n-grams
between the reference text and generated text.
METEOR (Banerjee and Lavie, 2005) computes
the unigram match between the reference text and
generated text based on the tokens’ surface form,
stemming, synonyms, and paraphrase similarities.
BertScore (Zhang et al., 2020) measures the se-
mantic similarity of the reference text and gener-
ated text via the utilization of the contextual embed-
dings from BERT for the calculation of the cosine
similarity of best-matching token pairs.

PARENT (Dhingra et al., 2019) is an entailment-
based token-matching metric that calculates the
F1 score based on entailed precision (an n-gram
is correct if it occurs in the reference text or en-
tailed by the input data) and entailed recall (recall
against the reference text input data, adjusted by a
weight parameter). It measures the faithfulness of
the generated text with respect to the input data.

Table 2 displays the performance of multiple
data-to-text generation approaches under various
settings. We observe that unsupervised cycle train-
ing generally falls short of the fully-supervised fine-
tuning method’s performance. When compared
with the low-resource fine-tuning method, it scored
higher on WebNLG and WTQ but performed worse
on E2E and WSQL, where the performance gap
on WSQL is larger. We attribute such divergence
to the difference in the number of unique predi-
cates and vocabulary. Cycle training should be
able to improve the model’s generalizability and
robustness through exposure to larger amounts of
diverse text and structured data, and through its
capability of gradually learning different data-to-
text associations. For datasets like E2E and WSQL,
their smaller vocabulary size and number of unique
predicates imply that a small amount of annotated
samples might cover a great deal of the datasets’
underlying variation. This leads to a strong low-
resource fine-tuning performance that has smaller
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Overlapping Level ROUGE-1 ROUGE-2 ROUGE-L METEOR BLEU BertScore PARENT
0% 52.50(0.43) 31.16(0.40) 40.14(0.46) 35.99(0.46) 26.69(1.03) 92.59(0.12) 34.33(0.58)

25% 56.23(0.67) 34.59(0.82) 43.46(0.63) 37.23(0.17) 32.21(1.74) 93.63(0.22) 39.28(0.96)
50% 58.64(0.34) 37.40(0.60) 46.05(0.41) 38.07(0.28) 35.83(1.07) 94.41(0.17) 43.09(0.68)
75% 58.64(0.32) 37.66(0.26) 46.36(0.23) 37.78(0.18) 36.91(0.37) 94.46(0.09) 43.47(0.37)
100% 58.75(0.28) 38.04(0.44) 46.44(0.19) 37.86(0.25) 37.39(0.79) 94.57(0.12) 43.76(0.32)

Table 3: Cycle training with the same amount of data at different overlapping levels. We report the average and
standard deviation (in parenthesized subscripts) of each metric for 5 repeated runs.

performance gaps with the fully-supervised coun-
terparts, and overshadows the unsupervised cycle
training method.

However, when a small amount of annotated
data is made available for initializing the cycle
training, the low-resource cycle training strategy
significantly improves the generation performance
over the low-resource fine-tuning method, and
achieves competitive performance with respect to
the fully-supervised method. Such an improve-
ment is consistent across all four datasets and five
types of evaluation metrics. Notably, when ap-
plied to multi-domain and open-domain datasets
(WebNLG, WTQ, and WSQL), low-resource cycle
training generated texts that have better faithful-
ness to the input data, evident from the PARENT
score, compared to the fully-supervised fine-tuning
approach. Compared with the setting that applies
additional pre-training, it is evident that cycle train-
ing works beyond simply raising the probability of
generating target domain tokens.

As for the experiments on cycle training with un-
paired datasets at different overlapping levels, the
results in Table 3 show that performance sharply
increases at the beginning with the increase of over-
lapping levels and then turns to flatten at around
the 50% overlapping level. This suggests that when
the size is the same, the unpaired data corpus and
text corpus used for cycle training need to have at
least 50% entities (or say, latent information) over-
lap to achieve performance at an ideal level. We
deem 50% as a reasonable level since many related
but unpaired texts and structured data (e.g., content
and infoboxes from Wikipedia, product specifica-
tion tables and descriptions from online shopping
platforms, etc.) may have higher information over-
lap. Hence, based on our experimental results, we
believe that low-resource cycle training is a univer-
sally applicable approach that can effectively learn
from vast unpaired structured data and texts with
minimal human effort.

5.2 Human Evaluation

To quantitatively compare generated text with
respect to correctness, faithfulness, data cover-
age, and fluency, we develop a new counting and
ranking-based annotation schema, and use it to con-
duct human evaluation. Our schema features bet-
ter objectiveness, consistency, and precision com-
pared to the 0-100 rating-based schema used for the
WebNLG 2020 Challenge. We define the follow-
ing measures (full annotation guidelines, including
disambiguation examples, and screenshots of the
annotation interface available in Appendix A):

Count of Factual Errors (FE) measures the fac-
tual correctness of the generated text with respect
to the entities (subject and object) and predicates
of the input triplets. Factual errors are information
in the generations that contradict the information
in the input subject-predicate-object context. For
each attempted predicate given in the input triplets,
the annotator is asked to increase the factual error
count if the subject and/or object of the predicate’s
associated expression doesn’t match facts from the
input.
Count of Hallucination Errors (HE) measures
the relevance of the generated text with respect
to the input triplets. Hallucination errors occur
when words or phrases in the generation cannot
be inferred from the input subject-predicate-object
triplets, for instance, because the value does not
make logical sense, or because the predicate of the
expression is not present in any triple. Unlike FEs,
HEs add information not present in the triplets or
reference, but do not directly contradict the triplets.
The annotator is asked to increase the HE count if a
piece of information contained in the generated text
is not presented in, or cannot be reasonably inferred
by the input triplets. For better consistency and less
ambiguity, a reasonable inference is defined as a
piece of information contained in the generated text
that isn’t present in the input triplets but is present
in the reference text.
Count of Information Misses (IM) measures the
information coverage of the generated text with
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Method FE HE IM FP
Combined

Low-resource
fine-tuning

8.05 14.84 21.39 2.00

Low-resource
cycle-training

0.49 2.57 3.36 1.80

Fully-supervised
fine-tuning

2.08 11.48 8.46 1.73

WebNLG
Low-resource

fine-tuning
6.72 7.21 15.90 1.91

Low-resource
cycle-training

0.00 1.47 1.82 1.89

Fully-supervised
fine-tuning

0.00 6.72 10.29 1.73

E2E
Low-resource

fine-tuning
0.00 1.18 6.43 1.99

Low-resource
cycle-training

0.00 0.00 0.84 1.86

Fully-supervised
fine-tuning

0.00 0.00 0.00 1.64

WTQ
Low-resource

fine-tuning
14.71 15.69 33.82 2.16

Low-resource
cycle-training

0.00 0.00 1.96 1.75

Fully-supervised
fine-tuning

8.33 24.51 8.82 1.85

WSQL
Low-resource

fine-tuning
10.78 35.29 29.41 1.93

Low-resource
cycle-training

1.96 8.82 8.82 1.72

Fully-supervised
fine-tuning

0.00 14.71 14.71 1.76

Table 4: Normalized Human Evaluation Results (lower
is better; bold: best of all.)

respect to the predicates given in the input triplets.
For each predicate given in the input triplets, the
annotator is asked to increase the IM count if the
generated text does not attempt to express the pred-
icate.
Fluency Preference (FP) measures the quality of
the generated text in terms of the grammar, struc-
ture, and coherence of the text. The annotator is
asked to compare the fluency of pairs of generated
texts within a batch, to compile the final ranking
that reflects the annotator’s subjective preference.
The fluency comparison and ranking only consid-
ers the grammar, structure, and coherence of the
text independent of IM, FE, and HE.

In terms of the training time required to perform

the task accurately, we collected the error annota-
tions (FE, HE, IM) from two domain experts and
the fluency annotations from crowd-sourced work-
ers respectively via an annotation tool built on the
Appen1 platform. To enforce the annotation quality
and foster future research on explainable automatic
error analysis, we ask the domain experts to mark
the token(s) that constitute an FE or HE, and to
select the triple(s) that constitute the IM before
counting the respective errors. The domain experts
independently annotate the same set of 204 ran-
domly sampled generations with a resulting agree-
ment (Cohen’s kappa score (Artstein and Poesio,
2008)) of 0.74 for FE, 0.69 for HE, and 0.85 for
IM, which is very satisfactory given the complex-
ity of the task. For the relatively more subjective
fluency ranking task, we use the average of three
crowd-sourced native English speakers’ judgments
for each generation. As generating longer text for
larger triple sets is more difficult than generating
for smaller triplets, we normalize the counts of FE,
HE, and IM by the number of their input triples.
Therefore, the FE, HE, and IM we report in Table 4
can be interpreted as the probability of making such
errors per input data triple. We show an example of
our error analysis in Table 5, and provide additional
examples in Appendix B.

Our human evaluation suggests that low-
resource cycle training consistently reduces fac-
tual errors, hallucination errors and information
misses. From Section 5.1, cycle training presents a
larger performance gain when applied to datasets
that have more variations in terms of underlying
relations and surface realizations. When looking to-
gether with Table 2, the human evaluation of errors
and information coverage correlates better with the
PARENT score, which confirms PARENT’s capa-
bility of measuring faithfulness. It is also evident
from the annotation results that all three evaluated
data-to-text generation models are more likely to
make hallucination errors over factual errors, which
calls for more future effort to alleviate hallucina-
tions. In terms of the generated texts’ fluency, low-
resource cycle training is able to improve over the
low-resource fine-tuning method but still cannot
consistently beat the fully-supervised approach.

6 Conclusions

In this work, we demonstrated the application of
cycle training for data-to-text generation. We sys-

1https://appen.com/
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Input Triple Set

1. [S] Liselotte Grschebina [P] birthplace [O] Karlsruhe
2. [S] Liselotte Grschebina [P] nationality [O] Israel
3. [S] Liselotte Grschebina [P] training [O] Schoolof Applied Arts in Stuttgart
4. [S] Karlsruhe [P] country [O] Germany
5. [S] Israel [P] language [O] Modern Hebrew

Reference Text

- Liselotte Grschebina was an Israeli who attended the school of Applied Arts in Stuttgart. She was born
in Karlsruhe, Germany. Israel’s national language is Modern Hebrew.
- Liselotte Grschebina is an Israeli national who did her studies at the School of Applied Arts in Stuttgart
and was born in Karlsruhe, which is in Germany unlike Israel whose language is Modern Hebrew.
- Liselotte Grschebina was born in Karlsruhe which is located in Germany, has Israeli nationality (the
language in Israel is Modern Hebrew), and studied at the School of Applied Arts in Stuttgart.

Method Generation Remark
Fully-supervised

fine-tuning
Liselotte Grschebina was born in Karlsruhe, Germany. She studied at the School of Applied
Arts in Stuttgart. Modern Hebrew is spoken in Israel.

1 IM

Low-resource
fine-tuning

Liselotte Grschebina was born in Karlsruhe, Israel and trained at the School of Applied Arts
in Stuttgart.

3 IMs, 1 FE

Low-resource
cycle-training

Liselotte Grschebina was born in Karlsruhe, Germany and was a student at the School of
Applied Arts in Stuttgart. Modern Hebrew is spoken in Israel.

1 IM

Table 5: Error analysis example.

tematically investigated the effectiveness of cycle
training across different domains, and the applica-
tion of pre-cycle fine-tuning in low-resource set-
tings. We showed that our approach substantially
improved data-to-text generation performance in
low-resource settings, achieved competitive perfor-
mance compared to fully-supervised models, and
also improved the faithfulness of the generated text
through a reduction in factual errors, hallucinations
and information misses, even when compared to
fully supervised approaches. We also designed a
schema for effective human evaluation of data-to-
text generation, that improves upon prior work and
encourages more objective and consistent reviews
of faithfulness.

Limitations

We recognize that our annotation and analysis meth-
ods can require considerable human labor, that can
limit the amount of annotated data we can col-
lect. Also, despite cycle training being generally
accepted as a model-agnostic approach, we were
not able to test a wide variety of backbone models
due to resource constraints. In addition, though we
relaxed the entity constraints and made cycle train-
ing for data-to-text generation end-to-end, the non-
differentiability problem remains unsolved. The
intermediate outputs generated by the first model
of each cycle are assumed to be correct. This is a
weak assumption that may propagate misleading
training signals to the second model of each cycle,
particularly in the early stage of the training.

To address these limitations, future work may
focus on the following directions: 1) building dif-
ferentiable cycle training models; 2) exploring au-

tomated error detection methods and building mod-
els that may utilize such signals; and 3) assess-
ing different backbone models, including large lan-
guage models like GPT-X, with the cycle training
approach.
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Appendix

A Annotation Guidelines

In this section, we include descriptions of the hu-
man annotation task performed in this work.

For this annotation task, the annotators will
be provided a set of input triplets in the subject-
predicate-object structure, and the annotators will
be asked to provide their judgement of four model-
generated text snippets associated with the input
triplets. Our target is to annotate the 1) Count of
Factual Errors, 2) Count of Hallucination Errors,
3) Count of Information Misses, and 4) Fluency
Preference for the generations. We use two differ-
ent Appen interface-pages: one for the annotation
of the three types of error counts, and one for the
annotation of Fluency Preference.

A.1 Annotation of Error Counts
A.1.1 Count of Factual Errors (FE)
Count of Factual Errors (FE) measures the factual
correctness of the generated text with respect to the
entities (subject and object) and predicates of the
input triplets.
Annotation Instruction: Factual errors are infor-
mation in the generations which contradict the in-
formation in the subject-predictate-object context.
For each attempted predicate given in the input
triplets, the annotator is supposed to increase the
count if [the subject and/or object of the predicate’s
associated expression does not match the facts sug-
gested by the input triplets].
Examples: (See Table 6)

A.1.2 Count of Hallucination Errors (HE)
Count of Hallucination Errors (HE) measures the
relevance of the generated text with respect to the
input triplets.
Annotation Instruction: Hallucination errors oc-
cur when words or phrases in the generation can-
not be inferred from the subject-predicate-object
triplets, for instance because the value doesn’t
make logical sense, or because the predicate of
the expression isn’t present in any triple. Distin-
guished from FEs, HEs invent information not in
the triplets or reference, but do not directly con-
tradict the triplets. The annotator is supposed to
increase the count if [a piece of information con-
tained in the generated text is not presented in or
can not be reasonably inferred by the input triplets].
For better consistency and less ambiguity, reason-
able inference is defined as a piece of information

contained in the generated text isn’t presented in
the input triplets but is presented in the reference
text.
Examples: (See Table 7)

A.1.3 Count of Information Misses (IM)
Count of Information Misses (IM) measures the
information coverage of the generated text with
respect to the predicates given in the input triplets.
Annotation Instruction: For each predicate given
in the input triplets, the annotator is supposed to
increase the count by 1 if [the generated text did
not attempt to express the predicate].
Examples: (See Table 8)

A.1.4 Annotation Interface for Errors
The annotation task is presented batch-by-batch.
Each batch contains one shared input triplet and
three model-generated text snippets (in random or-
der) with respect to the input triplets. The annota-
tors will see the input triplets data and the reference
ground-truth data at first. Please keep in mind that
the ground-truth data is just a reference for the con-
venience of better understanding the input triplets
and the boundary of "reasonable inference" and
they may not be perfect. To begin with, we ask the
annotators to provide token level annotations of FE
and HE. The “Context” is the input triplets shown
before. The annotators can click the [ grey-rounded
i ] button at the upper-right conner to see informa-
tion regarding the use of the annotation tool. The
annotators can also click the [grey-rounded i] but-
ton next to the tag to see a recap of its definition.
Annotations of overlapped tokens are permitted.
After finishing up the token-level FE and HE anno-
tation, please provide the count of FE and the count
of HE respectively. Next, the annotators need to
identify if there’s any missed information in the
generation. If "Yes", the annotators will be asked
to check the IMs. See Figure 2 and Figure 3 for
screenshots of the annotation interface for FE, HE,
and IM.

A.1.5 Fluency Preference (FP)
Fluency Preference (FP) measures the quality of the
generated text in terms of the grammar, structure,
and the coherence of the text.
Annotation Instruction: The annotator is sup-
posed to perform pairwise fluency comparison of
the generated texts within a batch to compile the
final ranking that reflects the annotator’s subjective
preference. The fluency comparison and ranking
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Input Triple
Set 1

1. [S] Mexico [P] currency [O] Mexican peso
2. [S] Mexico [P] demonym [O] Mexicans
3. [S] Bionico [P] course [O] Dessert
4. [S] Bionico [P] ingredient [O] Raisin
5. [S] Bionico [P] country [O] Mexico

Generations
and Reasonings

• 1 FE: Bionico is a dessert made with Raisin and Mexican peso. It is a dish from Mexico.
– According to the input data, Mexican peso is the currency of Mexico not the ingredient of Bionico, so

it is a FE.
• 2 FEs: In Mexico, the currency is the Mexican peso. It is a dessert with a Raisin ingredient.

– "It" is a pronoun that grammatically refers to Mexican peso, so the subjects of attempted expressions
for triplet 3 and 4 are wrong, which results in two FEs.
• 1 FE: Bionico is the demonym of Raisin

– This is considered as an attempt to express triplet 2 but is factually incorrect.
Input Triple

Set 2
1. [S] Alan B. Miller Hall [P] address [O] 101 Ukrop Way
2. [S] Alan B. Miller Hall [P] height [O] 36.5 meters

Generations
and Reasonings

• 2 FEs: Alan B. Miller Hall located at 440 Terry Avenue has a height of 365 meters.
– Although 440 Terry Avenue and 365 may seem like hallucinations, they counter the fact that the

address of Alan B. Miller Hall is 101 Ukrop Way and the fact that the Hall’s height is 36.5 meters. We
consider them as FEs instead of HEs because the input data explicitly contradicts these generated strings
(which is how FEs are defined).

Table 6: Disambiguation examples of Factual Errors (FE).

Count of Hallucination Errors (HE)

Input Triple
Set 1

1. [S] ALCO RS-3 [P] build date [O] May 1950 - August 1956
2. [S] ALCO RS-3 [P] power type [O] Diesel-electric transmission
3. [S] ALCO RS-3 [P] builder [O] Montreal Locomotive Works
4. [S] ALCO RS-3 [P] length [O] 17068.8

Reference Text

- The ALCO RS-3 was produced between May 1950 and August 1956 and was built by Montreal Locomotive
Works. This locomotive has a diesel-electric transmission and is 17068.8 millimetres in length.
- The ALCO RS-3 was produced between May 1950 and August 1956 and was built by Montreal Locomotive
Works. It has a diesel-electric transmission and is 17068.8 millimetres long.
- The ALCO RS-3, built by the Montreal Locomotive Works between May 1950 and August 1956, has a
diesel-electric transmission and measures 17068.8 millimetres in length.

Generations
and Reasonings

• 1 HE: The Montreal Locomotive Works built the ALCO RS-3 from May 1950 - August 1956. It has a
diesel-electric transmission and a length of 17068.8 meters.

– The unit expression of meters is considered as a HE since such information doesn’t appear in the input
data or the reference text (hence not considered as a reasonable inference).
• 0 HE: The ALCO RS-3 was built by the Montreal Locomotive Works between May 1950 and August
1956. It has a diesel-electric transmission and is 17068.8 millimetres long.

– The unit expression of milimeters doesn’t appear in the input data but appears in the reference text
(hence it is considered as a reasonable inference), so it is not a HE.

Input Triple
Set 2

1. [S] Liselotte Grschebina [P] death place [O] Israel
2. [S] Liselotte Grschebina [P] death place [O] Petah Tikva
3. [S] Israel [P] population density [O] 387.63
4. [S] Israel [P] long name [O] State of Israel
5. [S] Liselotte Grschebina [P] nationality [O] Israel

Reference Text

- Liselotte Grschebina is an Israeli national who died in Petah Tikva, Israel which is formally known as the
State of Israel and has a population density of 387.63 people per square kilometre of land area.
- Liselotte Grschebina was an Israeli who died in Petah Tikva, Israel which has a population density of 387.63
people per square kilometre of land area and is named "State of Israel."
- Liselotte Grschebina has Israeli nationality and died in Petah Tikva, Israel. Israel has the population density
of 387.63 and its full name is the State of Israel.

Generations
and Reasonings

• 1 HE: Liselotte Grschebina was born in Israel and died in Petah Tikva. Israel has a population density of
387.63 people.

– The birth place information doesn’t appear in the input data and cannot be reasonably inferred either,
so it is considered as a HE.

Table 7: Disambiguation examples of Hallucination Errors (HE).
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Input Triple
Set 1

1. [S] Liselotte Grschebina [P] birth place [O] Karlsruhe
2. [S] Liselotte Grschebina [P] nationality [O] Israel3. [S] Liselotte Grschebina [P] training [O] School of
Applied Arts in Stuttgart
4. [S] Karlsruhe [P] country [O] Germany
5. [S] Israel [P] language [O] Modern Hebrew

Generations
and Reasonings

• 1 IM: Liselotte Grschebina was born in Karlsruhe, Germany. She studied at the School of Applied Arts in
Stuttgart. Modern Hebrew is spoken in Israel.

– Triplet 2 hasn’t been expressed.
– The expression of a predicate can be implicit. For instance, Karlsruhe, Germany is an implicit

expression with respect to triplet 4.
• 2 IMs: Liselotte Grschebina was born in Karlsruhe, Israel and trained at the School of Applied Arts in
Stuttgart.

– Triple 2 and 5 haven’t been expressed.
– Karlsruhe, Israel can be considered as an expression attempt of triplet 4 although it contains factual er-

rors. IM only counts information coverage with respect to the predicates and neglects entities (subject/object).
• 0 IM: Liselotte Grschebina was born in Karlsruhe, Germany and studied at the School of Applied Arts in
Stuttgart. She is Israeli and speaks Modern Hebrew.

– (She/Liselotte) speaks Modern Hebrew can be considered as an expression attempt of triplet 5. Some-
body(Israeli) speaks Modern Hebrew is a reasonable alternative expression attempt of the language in Israel
is Modern Hebrew.

Input Triple
Set 2

1. [S] Liselotte Grschebina [P] death place [O] Israel
2. [S] Liselotte Grschebina [P] death place [O] Petah Tikva

Generations
and Reasonings

• 1 IM: Liselotte Grschebina died in Petah Tikva.
– This is a special case which we count as having a IM. In rare cases, the predicates in the input data

may look the same due to omissions. Here, the predicate of triplet 1 is actually death place (country) and of
triplet 2 is actually death place (city). Hence, this generation only expresses one triplet’s predicate.

Table 8: Disambiguation examples of Information Misses (IM).

shall only consider the grammar, structure, and the
coherence of the text without the consideration of
IM, FE, and HE.
Examples: Since FP is a relatively more subjective
measure that asks for overall preference, we only
provide some contrasting examples for the three
aspects of fluency.

• Grammar: Generation A is better than B be-
cause B is grammatically incorrect/influent.

– Generation A: 108, written by karen
maser, has 2.12 million U.S. viewers.

– Generation B: 108 U.S. viewers million
is 2.12, written by karen maser.

• Structure: Generation A is better than B be-
cause the pieces of information in A are more
naturally connected and expressed.

– Generation A: Andrew Rayel is a mem-
ber of the Bobina band that plays trance
music.

– Generation B: Andrew Rayel is an as-
sociated band/associated musical artist
with Bobina. His genre is Trance music.

• Coherence: Generation A is better than B be-
cause She speaks modern Hebrew is more log-
ically and consistently connected with the pre-

vious sentences compared to Modern Hebrew
is spoken in Israel.

– Generation A: Liselotte Grschebina was
born in Karlsruhe, Germany and trained
in the School of Applied Arts in Stuttgart.
She speaks modern Hebrew.

– Generation B: Liselotte Grschebina was
born in Karlsruhe, Germany. She studied
at the School of Applied Arts in Stuttgart.
Modern Hebrew is spoken in Israel.

A.1.6 Annotation Interface for FP
The annotators may see two to three generations,
and the annotators are asked to perform pairwise
comparison and rank the generations by their gram-
mar, structure, and coherence without consider-
ing information coverage and factual errors. The
annotators should start with 1 for the highest-
ranked/most-fluent text of the generations within
the batch. Ranking tie is permitted, but note this is
a ranking task, so the annotators will need to check
the numbers in a normal ranking manner. If the an-
notators see two generations [A, B], and A is better
than B, then the annotators should select 1 for A
and 2 for B instead of 3 for B. If the annotators see
three generations [A, B, C], and A is identical to B,
B is better than C, then the annotators should select
1 for A, 1 for B, 3 for C instead of 2 for C. See Fi-
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Figure 2: Annotation Interface for FE and HE.

Figure 3: Annotation Interface for IM.

Figure 4: Annotation Interface for FP.
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-gure 4 for a screenshot of the annotation interface
for FP.

B Additional Result Analysis for
WebNLG and DART

In this section, we show some additional samples
of text generated by multiple models trained under
different cycle settings, and the errors made by
these models for the WebNLG dataset in Table 9
and DART dataset in Table 10.
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WebNLG - Sample 1

Input Triple Set

1. [S] Liselotte Grschebina [P] death place [O] Israel
2. [S] Liselotte Grschebina [P] death place [O] Petah Tikva
3. [S] Israel [P] population density [O] 387.63
4. [S] Israel [P] long name [O] State of Israel
5. [S] Liselotte Grschebina [P] nationality [O] Israel

Reference Text

- Liselotte Grschebina is an Israeli national who died in Petah Tikva, Israel which is formally known as
the State of Israel and has a population density of 387.63 people per square kilometre of land area.
- Liselotte Grschebina was an Israeli who died in Petah Tikva, Israel which has a population density of
387.63 people per square kilometre of land area and is named "State of Israel".
- Liselotte Grschebina has Israeli nationality and died in Petah Tikva, Israel. Israel has the population
density of 387.63 and its full name is the State of Israel.

Method Generation Remark

Fully-supervised
fine-tuning

Liselotte Grschebina was an Israeli national who died in Petah Tikva, Israel. The long
name of Israel is the State of Israel and the population density is 387.63 inhabitants per
square kilometre.

Low-resource
fine-tuning

Liselotte Grschebina was born in Israel and died in Petah Tikva. Israel has a population
density of 387,63 people.

3 IMs,
1 FE, 1HE

Low-resource
cycle-training

Liselotte Grschebina died in Petah Tikva, Israel. The population density of Israel is 387.63
inhabitants per square kilometre and the long name is the State of Israel.

1 IM

WebNLG - Sample 2

Input Triple Set

1. [S] Alan B. Miller Hall [P] architect [O] Robert A. M. Stern
2. [S] Alan B. Miller Hall [P] address [O] 101 Ukrop Way
3. [S] Alan B. Miller Hall [P] current tenants [O] Mason School of Business
4. [S] Alan B. Miller Hall [P] completion date [O] 2009-06-01
5. [S] Alan B. Miller Hall [P] location [O] Virginia

Reference Text

- The Mason School of Business is located at the Alan B. Miller Hall in Virginia at 101 Ukrop Way. The
architect of the building was Robert A M Stern and the building completion date was 01/06/2007.
- The address of Alan B. Miller Hall is 101 Ukrop Way, Virginia and the hall is currently tenanted by The
Mason School of Business. The hall was designed by Robert A.M. Stern and was completed on June
1st, 2009.
- Alan B. Miller Hall, which was designed by Robert A.M. Stern is in the State of Virginia, at 101 Ukrop
Way. The building was finished on 01/06/2009 and is currently tenanted by The Mason School of
Business.

Method Generation Remark
Fully-supervised

fine-tuning
The Mason School of Business are the current tenants of Alan B Miller Hall which was
designed by Robert A M Stern and completed on 1 June 2009 at 101 Ukrop Way, Virginia.

Low-resource
fine-tuning

Alan B. Miller Hall was completed on June 1, 2009 and is located in Virginia. The architect
is Robert A. M. Stern.

2 IMs

Low-resource
cycle-training

Alan B Miller Hall in Virginiawas designed by Robert A M Stern and is located at 101
Ukrop Way. The current tenants are the Mason School of Business. It was completed on 1
June 2009.

WebNLG - Sample 3

Input Triple Set
1. [S] Bootleg Series Volume 1: The Quine Tapes [P] producer [O] The Velvet Underground
2. [S] Bootleg Series Volume 1: The Quine Tapes [P] genre [O] Rock music
3. [S] The Velvet Underground [P] genre [O] Proto-punk

Reference Text

- The rock album "Bootleg Series Volume 1: The Quine Tapes" was produced by proto-punk band The
Velvet Underground.
- The Bootleg Series Volume I: The Quine tapes is a rock album, by the proto-punk band, The Velvet
Underground.
- Bootleg Series Volume 1: The Quine Tapes is a rock album that also fits into the proto-punk genre. It
was produced by the Velvet Underground.

Method Generation Remark
Fully-supervised

fine-tuning
The Velvet Underground, whose genre is proto-punk, produce the bootleg series volume
1: The Quine Tapes. The genre of the bootleg series is rock music.

Low-resource
fine-tuning

The Velvet Underground is the producer of Bootleg Series Volume 1: The Quine Tapes.
The genre of the bootleg series is rock music.

1 IM

Low-resource
cycle-training

The Velvet Underground is the producer of Bootleg Series Volume 1: The Quine Tapes.
The band performs rock music and their genre is Proto-punk.

Table 9: Error analysis of additional data samples generated by various cycle training settings, for the WebNLG
dataset.
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DART - Sample 1

Input Triple Set

1. [S] The Vaults [P] eat type [O] restaurant
2. [S] The Vaults [P] food [O] French
3. [S] The Vaults [P] pricerange [O] moderate
4. [S] The Vaults [P] area [O] riverside
5. [S] The Vaults [P] family friendly [O] yes
6. [S] The Vaults [P] near [O] Raja Indian Cuisine

Reference Text - The French restaurant, The Vaults, is a moderately priced, kid friendly restaurant in riverside near Raja
Indian Cuisine.

Method Generation Remark
Fully-supervised

fine-tuning
The Vaults is a moderately priced French restaurantin the riverside area near Raja Indian
Cuisine. It is kid friendly.

Low-resource
fine-tuning

The Vaults is a moderately priced French restaurant located near Raja Indian Cuisine. 2 IMs

Low-resource
cycle-training

The Vaults is a French restaurant near Raja Indian Cuisine in the riverside area. It is kid
friendly and moderately priced.

DART - Sample 2

Input Triple Set
1. [S] K-2 1000 m [P] silver [O] Bulgaria Berenike Faldum Daniela Nedeva
2. [S] K-2 1000 m [P] gold [O] Germany Anne Knorr Debora Niche
3. [S] K-2 1000 m [P] bronze [O] Hungary Aliz Sarudi Erika Medveczky

Reference Text - Anne Knorr won gold, Berenike Faldum won silver, and Aliz Satudi won bronze.
Method Generation Remark

Fully-supervised
fine-tuning

Bulgaria, Berenike Faldum, Daniela Nedeva won silver, Germany Anne Knorr, Debora
Niche won gold, Hungary Aliz Sarudi, Erika Medveczky won bronze.

Low-resource
fine-tuning

Bulgaria Berenike Faldum Daniela Nedeva won gold in the K-2 1000 m.
2 IMs
1 FE

Low-resource
cycle-training

Bulgaria Berenike Faldum Daniela Nedeva won silver, Germany Anne Knorr Debora Niche
won gold, Hungary Aliz Sarudi and Erika Medveczky won bronze in K-2 1000 m.

DART - Sample 3

Input Triple Set

1. [S] Illinois 2 [P] result [O] Lost re-election Republican gain
2. [S] Barratt O’Hara [P] first elected [O] 1948
3. [S] Illinois 2 [P] candidates [O] Richard B. Vail R 53.6% Barratt O’Hara D 46.4%
4. [S] Illinois 2 [P] incumbent [O] Barratt O’Hara
5. [S] Barratt O’Hara [P] party [O] Democratic

Reference Text - Incumbent barratt o’hara was first elected in 1948.0.
Method Generation Remark

Fully-supervised
fine-tuning

Barratt O’Hara was first elected in 1948.0. 4 IMs

Low-resource
fine-tuning

Barratt O’Hara was first elected in 1948. 4 IMs

Low-resource
cycle-training

In Illinois 2, Barratt O’Hara lost re-election Republican gain and was first elected in 1948. 3 IMs

DART - Sample 4

Input Triple Set

1. [S] Clowns [P] eat type [O] pub
2. [S] Clowns [P] price range [O] more than £30
3. [S] Clowns [P] customer rating [O] 3 out of 5
4. [S] Clowns [P] near [O] All Bar One

Reference Text - For a 3 out of 5 star customer rated pub near All Bar One, Clowns is relatively expensive.
Method Generation Remark

Fully-supervised
fine-tuning

Clowns is a pubnear All Bar One. It has a customer rating of 3 out of 5 and a price range
of more than £30.

Low-resource
fine-tuning

Clowns is a pub with a customer rating of 3 out of 5 2 IMs

Low-resource
cycle-training

Clowns is a pub near All Bar One. It has a customer rating of 3 out of 5 and a price range
of more than £30.

Table 10: Error analysis of additional data samples generated by various cycle training settings, for the DART
dataset.
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