
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 2775–2790

July 9-14, 2023 ©2023 Association for Computational Linguistics

Gradient-based Intra-attention Pruning on Pre-trained Language Models

Ziqing Yang†, Yiming Cui‡†, Xin Yao†, Shijin Wang†§
†State Key Laboratory of Cognitive Intelligence, iFLYTEK Research, Beijing, China

‡Research Center for SCIR, Harbin Institute of Technology, Harbin, China
§iFLYTEK AI Research (Central China), Wuhan, China
†{zqyang5,ymcui,xinyao10,sjwang3}@iflytek.com

‡ymcui@ir.hit.edu.cn

Abstract

Pre-trained language models achieve superior
performance but are computationally expensive.
Techniques such as pruning and knowledge dis-
tillation have been developed to reduce their
sizes and latencies. In this work, we propose a
structured pruning method GRAIN (Gradient-
based Intra-attention pruning), which performs
task-specific pruning with knowledge distilla-
tion and yields highly effective models. Differ-
ent from common approaches that prune each
attention head as a whole, GRAIN inspects and
prunes intra-attention structures, which greatly
expands the structure search space and enables
more flexible models. We also propose a gra-
dient separation strategy that reduces the inter-
ference of distillation on pruning for a better
combination of the two approaches. Experi-
ments on GLUE, SQuAD, and CoNLL 2003
show that GRAIN notably outperforms other
methods, especially in the high sparsity regime,
and achieves 6 ∼ 7× speedups while main-
taining 93% ∼ 99% performance. Under ex-
treme compression where only 3% transformer
weights remain, the pruned model is still com-
petitive compared to larger models.1

1 Introduction

Transformer-based (Vaswani et al., 2017) pre-
trained language models (PLMs) have achieved
great success and become the backbones of various
natural language processing tasks. However, PLMs
are computationally expensive and slow in infer-
ence due to their large sizes, which limits their ap-
plications in real-world scenarios. Hence, a grow-
ing interest has been in developing compression
and acceleration methodologies for PLMs.

A common approach to model compression is
structured pruning, which compresses the model
by removing groups of consecutive parameters,
namely the pruning units. In applying structured

1Code is available at https://github.com/airaria/
GRAIN.

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5
Model Size (M)

76

78

80

82

84

86

Ac
cu

ra
cy

5% 10% 20%

Teacher

MNLI-m
GRAIN
CoFi

Block Pruning
AutoTinyBERT

DynaBERT
TinyBERT

MobileBERT
MobileBERT-Tiny

Figure 1: A comparison of GRAIN and other distillation
and pruning methods on MNLI-m development set at
different model sizes. More details are in Section 5.

pruning on PLMs, recent works have investigated
removing units such as hidden dimensions in feed-
forward layers, attention heads in the multi-head
attention (Michel et al., 2019; Li et al., 2022), and
coarse-grained units such as multi-head attention
layers and feed-forward layers (Xia et al., 2022).

However, these pruning units only span a small
space of model structures and limit the exploration
for better structures. For example, in the pruning of
BERTbase (Devlin et al., 2019), which contains 144
attention heads, the possible choices of attention
heads for the pruned model are limited. Block
Pruning (Lagunas et al., 2021) extends pruning
units by considering blocks in the weight matrices,
but Block Pruning is not a fully structured pruning
method and can not achieve large speedups.

In this work, we propose GRAIN (Gradient-
based Intra-attention pruning), a structured prun-
ing method that prunes PLMs with finer pruning
units. In the following, we present the method from
three aspects: pruning units, pruning algorithm,
and training objectives.
Pruning Units Unlike attention heads pruning
where the pruning unit is a single head, we propose
intra-attention pruning, which inspects and prunes

2775

https://github.com/airaria/GRAIN
https://github.com/airaria/GRAIN

the structures inside attention heads. Intra-attention
pruning greatly expands the search space of model
structures, making the resulting models more likely
to find better structures. However, directly apply-
ing intra-attention pruning yields fragmented mod-
els, i.e., models with many small heads. The frag-
mented models have relatively large latencies on
devices like GPUs. To overcome the shortcom-
ing, we introduce structure regularization, which
encourages prioritizing specific units for pruning.
Structure regularization helps generate more regu-
lar structures and achieve lower latencies.

Pruning Algorithm Pruning algorithms decide
which units to be removed. We adapt the gradient-
based pruning algorithm (Michel et al., 2019) for
intra-attention pruning. Gradient-based pruning
is a light-weighted method that estimates the im-
portance of the pruning units with gradient-based
scores and then prunes the least important ones.
In addition, we conduct the pruning in an itera-
tive manner (Zhu and Gupta, 2018), i.e., the model
is gradually pruned during fine-tuning. The itera-
tive approach has been employed in combination
with pruning algorithms such as Movement Prun-
ing (Sanh et al., 2020) and Magnitude Pruning (Zhu
and Gupta, 2018), but few works have combined
it with gradient-based pruning. We find that itera-
tive gradient-based pruning is especially effective
despite its simplicity.

Training Objectives As another common ap-
proach to model compression, knowledge distil-
lation offers highly effective training objectives
(Jiao et al., 2020). Pruning with distillation ob-
jective shows improved performance (Sanh et al.,
2020; Xia et al., 2022). However, in gradient-based
pruning, the distillation objectives may disturb the
estimation of importance scores. We propose a
gradient separation strategy that uses different gra-
dients for model optimization and importance score
estimation. We show that this method leads to bet-
ter performance.

GRAIN performs task-specific pruning without
additional pre-training or data augmentation. In the
experiments, we compare GRAIN with strong prun-
ing and distillation baselines on GLUE, SQuAD,
and CoNLL 2003. GRAIN notably outperforms the
comparable methods in the high-sparsity regime.
A demonstration of the results on MNLI is shown
in Figure 1. While keeping 5% parameters in trans-
formers, GRAIN maintains 93% ∼ 99% perfor-
mance of BERTbase and 6 ∼ 7× speedups across

different tasks. Furthermore, GRAIN still achieves
competitive results even under extreme compres-
sion where only 3% transformer weights remain.

2 Related Work

A growing number of works have been devoted to
the compression and acceleration of PLMs. Most
of the works have combined multiple techniques.

Knowledge Distillation (Hinton et al., 2015) is
a training technique that trains a student model to
mimic the outputs and intermediate representations
of the teacher model (Sun et al., 2019). DistilBERT
(Sanh et al., 2019) and TinyBERT (Jiao et al., 2020)
are both small BERT-like models distilled with gen-
eral and task-specific distillation. MobileBERT
(Sun et al., 2020) and KroneckerBERT (Tahaei
et al., 2022) have designed novel structures for
student models. Chen et al. (2021) proposes to
extract a subnetwork from the teacher and then per-
form distillation. AutoTinyBERT (Yin et al., 2021)
combine distillation with neural architecture search
to find optimal hyperparameters. DynaBERT (Hou
et al., 2020) apply task-specific distillation and can
flexibly adjust the model size. In this work, we only
apply task-specific distillation, which consumes
fewer resources.

Structured Pruning on PLMs remove differ-
ent types of units from the models, like attention
heads (Michel et al., 2019), FFN hidden dimen-
sions (Liang et al., 2021), blocks of weights (Lagu-
nas et al., 2021), MHA layers or FFN layers (Xia
et al., 2022). Many works combine pruning with
other methods. Wang et al. (2020) presents a struc-
tured pruning approach with low-rank factorization
of weight matrices. McCarley (2019) and Xia et al.
(2022) apply pruning with knowledge distillation.
In this work, we apply matrix factorization on the
embeddings and use distillation and pruning to re-
duce the size of transformers.

Unstructured Pruning removes each weight in-
dividually based on its magnitude (Han et al., 2015;
Zhu and Gupta, 2018; Gordon et al., 2020), or the
score computed by first-order (Sanh et al., 2020;
Louizos et al., 2017) or second-order (Kurtic et al.,
2022) method. Unstructured pruning yields higher
sparsity models but is hard to speed up without
specialized devices for sparse matrix operations. In
this work, we only consider structured pruning.

Besides model compression, another group of
acceleration methods is dynamic inference, where
the computation cost is determined at test time (Fan

2776

et al., 2020; Liu et al., 2020; Xin et al., 2020). Liu
et al. (2021) and Shen et al. (2022) have proposed
to integrate model compression with dynamic in-
ference. We do not consider dynamic inference in
this work and leave it for future work.

3 Preliminaries

3.1 Transformers
A Transformer block (Vaswani et al., 2017) is
mainly composed of a multi-head attention (MHA)
layer and a feed-forward network (FFN) layer.

Let X ∈ Rn×d be the input sequence, where
n is the length, and d is the hidden size. An
attention head is parameterized by the matrices
WQ

i ,W
K
i ,W

V
i ,W

O
i ∈ Rdh×d. Its output is2

Atti(X) = softmax
(
QiK

T
i /
√
d
)
ViW

O
i , (1)

Qi = X(WQ
i)T,Ki = X(WK

i)T,Vi = X(W V
i)T,

where dh is head size, and i is the head index. An
MHA layer contains Nh = d/dh attention heads

MHA(X) =
∑Nh

i
Atti(X). (2)

Following the MHA layer is the feed-forward net-
work layer. It consists of two linear layers and a
GeLU activation (Hendrycks and Gimpel, 2016)

FFN(X) = GeLU(X ·W1) ·W2, (3)

where W1 ∈ Rd×df , W2 ∈ Rdf×d, and df is the
intermediate hidden size. Typically df > d.

A transformer block contains other components,
such as LayerNorm and residual connection, but
they only take up a few parameters.

3.2 Gradient-based Pruning
Gradient-based pruning (Michel et al., 2019) de-
fines the importance score of a pruning unit w as
the variation of the loss with respect to the unit:

IS(w) = Ex∼X
∣∣∣∣
∂L(x)

∂w
w

∣∣∣∣ , (4)

where X is the data distribution. The term in the
absolute value is the first-order Taylor approxima-
tion of the loss L around w = 0. To apply (4) in
PLM pruning, w should be set accordingly. For
example, by setting w to WO

i , Equation (4) gives
the importance score of the head hi; by setting w to

2We omit bias terms throughout for simple presentation.

the i-th row of W2, Equation (4) gives the impor-
tance score of the i-th FFN hidden dimension. A
lower importance score implies that the loss is less
sensitive to the unit. The pruning units are sorted
and then pruned in the order of increasing scores.

4 Methodology

GRAIN performs task-specific intra-attention prun-
ing together with knowledge distillation. The
overview of GRAIN is depicted in Figure 2. Fol-
lowing previous works, we only include the en-
coder in counting the model size unless otherwise
specified. We refer to the size of the pruned model
relative to the unpruned model as model density:

model density =
SizeOf(pruned model)
SizeOf(original model)

.

Sparsity is equal to one minus model density.

4.1 Intra-attention Pruning
4.1.1 Intra-attention Pruning Units
FFN hidden dimensions and attention heads are
common pruning units in PLM pruning studies.
These pruning units have been treated as atomic in
structured pruning. However, attention heads in-
clude finer pruning units and are not really atomic.
Equation (2) shows that the output of an MHA
layer is the sum of individual heads, so different
heads can be pruned independently. To be spe-
cific, We can remove the rows of the matrices
WQ

i ,W
K
i ,W

V
i ,W

O
i to reduce head size. Fur-

ther, from Equation (1), we see that the output di-
mensions of WQ

i ,W
K
i and the input dimensions

of W V
i ,W

O
i can be different. It gives another

freedom to set the dimensions of attention heads.
Based on the above observation, we introduce

two kinds of intra-attention pruning units: query
units, namely the rows of WQ

i ,W
K
i ; and value

units, namely the rows of W V
i ,W

O
i . We keep

FFN hidden dimensions but discard attention heads
as the pruning units since the intra-attention prun-
ing units are more structurally fundamental. Each
pruning unit takes 2d parameters. The new set of
pruning units greatly expands the structure space.

In the actual implementation (Wolf et al., 2020),
the parameters of all heads in an MHA layer
are gathered and stored in four large matrices
WQ,WK ,W V ,WO ∈ Rd×d. The parameters
of the i-th head are stored in the rows (i, i + dh).
We prune query and value units from large matri-
ces by removing corresponding rows. The pruning
units are illustrated in the right part of Figure 2.

2777

Intra-attention Pruning Units

e

 SVD:

Softm
ax

Student

Position Embedding

Word Embedding

+

Add + LayerN
orm

Add + LayerN
orm

Prediction H
ead

TransformerEmbedding Layer

Prediction H
ead

Embedding Factorization Update Model StructureGradient-based Pruning with Gradient of

Forward Flow Gradient of

D
istillation

Pruning

LayerN
orm

Gradient of

Calculate Importance Score Intra-Attention Pruning FFN Pruning

Structure Regularization

FFN Pruning UnitsTeacher

Figure 2: An overview of GRAIN. Left: The distillation and pruning methodology of the student model. Right:
The pruning units in intra-attention pruning. We show three heads for illustration. Each head can be pruned to a
different size. The pruned units are in white. The dashed lines indicate that the connected rows or columns should
be removed together.

4.1.2 Structure Regularization
Since intra-attention pruning removes the units in-
side attention heads, it tends to generate models
with many small heads of different sizes, but the
total number of heads can still be large. We refer to
this kind of structure as fragmented (see the upper
panel in Figure 6 for an example). The fragmented
structure has low efficiency on devices like GPUs
since there are still many attention modules left in
the model, and these heads are hard to parallelize.

To remedy this, we introduce Structure Reg-
ularization (StructReg for short) to encourage
generating less fragmented structures. Intuitively,
to avoid small heads, the pruning process should
first prune the units in the small heads and make
them empty, which can then be safely removed.

To be general, we define D(M,W) as the den-
sity of a set of pruning units W in module M,
i.e., the ratio of the remaining units in M. The
regularized importance score of a unit w ∈ W is:

ISr(w) = IS(w) · tanh(D(M,W)/α), (5)

where α is the regularization strength. The lower
the density of the units in M, the lower the reg-
ularized scores of the units. Hence, the units in
low-density modules will be pruned with priority
until all the units inM have been pruned, leaving
fewer low-density modules in the pruned model.

StructReg can be applied on different levels by
choosing different Ms and Ws. We apply it to
intra-attention structures. We setM to each atten-
tion head andW to the value units inM. Heads

with fewer value units will be pruned with priority
until empty, resulting in fewer small heads.

4.2 Knowledge Distillation
Distillation Objectives Knowledge distillation
provides effective objectives for transferring knowl-
edge from a large model to a small model. The
most simple distillation objective involves a cross-
entropy loss between the student’s and the teacher’s
prediction probabilities

LCE = p(T)
τ · log p(S)

τ , (6)

where T and S denote teacher and student respec-
tively, and pτ = softmax(z/τ) is the scaled proba-
bility with temperature τ and logits z. By integrat-
ing logits distillation with hidden layer representa-
tion distillation (Jiao et al., 2020; Sun et al., 2020),
the performance of knowledge distillation can be
further improved:

LHidden =
∑

(i,j)∈I
MSE(H

(S)
i Wi,H

(T)
j), (7)

where I is the set of layer index pairs, Hi(i > 0)
is the hidden states from the i-th transformer block
(H0 is the output from the embedding layer), and
Wi is a trainable linear mapping. We employ the
sum of LCE and LHidden as the total loss.
Gradient Separation When applying distilla-
tion with gradient-based pruning, the hidden layer
matching loss LHidden should be treated carefully.

2778

In gradient-based pruning, the units are pruned
based on how significantly they affect the model
predictions. Thus, the importance score should be
calculated solely from the cross-entropy loss, and
we should avoid the gradients from other losses like
LHidden affecting the estimation of the importance
scores. Therefore, we propose to use the gradient
from LCE for model optimization and importance
score computation, while using the gradient from
LHidden only for model optimization. We call this
strategy gradient separation (GS). The gradient
flows of different losses are illustrated in Figure 2.

4.3 Iterative Gradient-based Pruning
Iterative Pruning Similar to Sanh et al. (2020),
we take an iterative approach to prune the model,
i.e., the model size is gradually reduced during
fine-tuning. We denote the total training steps as
N and the current step as i. The model is pruned
to the density s(t) at every step, where s(t) is the
density scheduler as a function of the training per-
centage t = i/N ∈ [0, 1]. We will give the exact
form of s(t) shortly. Notice that in the standard
gradient-based pruning, the importance score is es-
timated from all the examples in the dataset X (see
Equation (4)). It would be impractical to estimate
the score at every step. Therefore we define an
exponentially smoothed importance score ISi(w)
which can be computed efficiently during training
and used for pruning at step i:

ISi(w) = β · ISi−1(w) + (1− β) · ISi(w), (8)

where ISi(w) is the importance score of the pruning
unit w calculated with a single batch at step i, and
β is the smoothing factor. The smoothed score
avoids the large variance and leads to more stability.
Equation (8) can also be applied on the regularized
score simply by replacing IS(w) with ISr(w).
Scheduling Following Zhu and Gupta (2018), we
use a cubic density scheduler s(t)





1 0 ≤ t < ps

sf + (1− sf)(1− t−ps
pe−ps)3 ps ≤ t ≤ pe

sf pe < t ≤ 1

.

The complete process can be divided into three
stages, as depicted in Figure 3. The first stage is
the warm-up stage. We train the student model for
Nps steps with the distillation objective, where 0 <
ps < 1 is a hyperparameter. In the second stage,
we gradually prune the model with distillation for

0.0 0.2 0.4 0.6 0.8 1.0
Training Percentage

0.2

0.4

0.6

0.8

1.0

LR
 re

la
tiv

e
to

 th
e

pe
ak

 L
R

Stage I Stage II Stage III

ps pe

target density
0.2

0.4

0.6

0.8

1.0

D
en

si
ty

Learning Rate
Density

Figure 3: The training stages of GRAIN.

N(pe − ps) steps. The model density s decreases
from the initial density (100%) to the target density
sf following the schedule. In the last stage, the
model structure is fixed, and we continually train
the model with distillation to recover performance
(Sanh et al., 2020; Zhu and Gupta, 2018). The
three stages take place consecutively, and the whole
process is done in a single run of fine-tuning.

4.4 Embedding Factorization
The pruning mentioned above reduces the param-
eters in the transformers, while another large frac-
tion of the parameters stored in the word embed-
ding matrix is untouched. We apply singular value
decomposition (SVD) to reduce the embedding
size. SVD decomposes the word embedding ma-
trix E ∈ Rq×d as E = UΣV , where q is the vo-
cabulary size and d is the hidden size, U ∈ Rq×d,
V ∈ Rd×d and Σ is a diagonal matrix composed of
singular values. E can be approximated as Er by
selecting top r singular values and corresponding
r rows from U and V

E ≈ Er = UrΣrVr = WrVr, (9)

where Wr ∈ Rq×r and Ur ∈ Rr×d. The original
embedding E is now replaced by Wr and Vr. The
embedding size is reduced from qd to (q + d)r.

Embedding factorization has little effect on la-
tencies but significantly reduces model sizes. Some
works (Xia et al., 2022; Lagunas et al., 2021) do not
prune embeddings. We also conduct experiments
without embedding factorization for comparison.
We name this setting as GRAIN w/o EF.

5 Experiments

5.1 Experiment Setup
Datasets We evaluate our approach on machine
reading comprehension SQuAD 1.1 (Rajpurkar

2779

5 10 15 20
Model Size (M)

82

84

86

88

90

92

Ac
cu

ra
cy

5% 10% 20%

Teacher

QNLI

5 10 15 20
Model Size (M)

87

88

89

90

91

92

Ac
cu

ra
cy

5% 10% 20%

Teacher

QQP

5 10 15 20
Model Size (M)

86

88

90

92

94

Ac
cu

ra
cy

5% 10% 20%

Teacher

SST-2

5 10 15 20
Model Size (M)

78

80

82

84

86

88

90

F1

5% 10% 20%

Teacher

SQuAD
GRAIN CoFi Block Pruning AutoTinyBERT DynaBERT TinyBERT4 MobileBERT MobileBERT-Tiny

Figure 4: Performance of GRAIN and baseline methods at different model densities. The results of CoFi, AutoTiny-
BERT, and MobileBERT are taken from the original papers and the CoFi repository. Since the precise sizes of CoFi
models around density 10%, 15%, and 20% are unknown, we use 10%, 15%, and 20% as estimates instead.

Model QNLI
(Acc)

MNLI
(m/mm Acc)

QQP
(Acc)

SST-2
(Acc)

SQuAD
(F1 / EM)

CoNLL-03
(F1)

Model
Size

Total
Size

BERTbase (teacher) 91.9 84.7 / 85.0 91.2 92.9 88.6 / 81.1 91.2 85.1M 108.9M

5% Model Density
TinyBERT4

† 87.4 80.9 / 81.9 89.9 90.9 81.6 / 71.9 84.9 4.7M (5.5%) 14.6M
AutoTinyBERT§ 88.0 79.4 / - 87.7 88.8 84.6 / - - 4.3M (5.0%) 14.5M
Block Pruning† 83.0 78.9 / 78.6 89.2 86.1 80.7 / 71.0 84.0 4.6M (5.4%) 28.8M
CoFi (reimpl.)† 85.3 79.8 / 79.6 89.8 89.8 79.0 / 69.2 85.0 4.2M (4.9%) 28.2M
CoFi§ 86.1 80.6 / 80.7 90.1 90.6 82.6 / - - 4.7M (5.5%)‡ 29.0M‡

GRAIN 89.0 82.2 / 82.5 90.4 91.4 83.6 / 73.7 88.3 4.3M (5.0%) 10.7M
GRAIN w/o EF 89.1 82.4 / 82.2 90.5 91.6 83.4 / 73.2 88.3 4.3M (5.0%) 28.1M

3% Model Density
GRAIN 87.8 80.7 / 81.1 90.0 90.4 79.5 / 68.4 86.8 2.6M (3.0%) 9.0M
GRAIN w/o EF 87.6 81.0 / 81.2 90.2 91.0 79.0 / 67.3 87.2 2.6M (3.0%) 26.4M

Table 1: Results of GRAIN and the baselines at model density around 5% and 3%. The best results are in bold.
We average the sizes across different tasks in counting the model and total size. §: The results are taken from the
original papers. †: The results are obtained by our reimplementation with the released code. ‡: The size is averaged
excluding QQP since there are no public CoFi model checkpoints for the QQP task.

et al., 2016), named entity recognition CoNLL
2003 (Tjong Kim Sang and De Meulder, 2003),
and four classification tasks (SST-2, QNLI, MNLI,
and QQP) that have relative large training data from
GLUE benchmark (Wang et al., 2018). Details are
summarized in Appendix B. We report the results
on the development sets of GLUE and SQuAD and
the results on the test set of CoNLL 2003.
Training Settings We use BERTbase as the back-
bone model.3 We first fine-tune the teachers for
each task, then train and prune the students follow-
ing the procedure in Section 4.3. The target model
densities range from 3% to 20%. We list the model
size and the total size (with embeddings and classi-
fiers) for reference. We report the mean score of 3
runs with different random seeds. See Appendix A
for training details and costs.
Baselines We compare our proposed method

3We also experiment with RoBERTa (Liu et al., 2019) and
Chinese-RoBERTa-wwm-ext (Cui et al., 2021) on Chinese
tasks. See Appendix E for details.

with CoFi (Xia et al., 2022), Block Pruning (La-
gunas et al., 2021), TinyBERT4 (Jiao et al., 2020)
and DynaBERT (Hou et al., 2020). We also list
the results of AutoTinyBERT (Yin et al., 2021)
and MobileBERT (Sun et al., 2020). However,
they are not directly comparable to GRAIN since
they have been distilled from different teacher mod-
els and pre-trained extensively, consuming much
more computation. Following Xia et al. (2022), we
re-implement TinyBERT4 and DynaBERT without
task-specific data augmentation for a fair compari-
son. We also re-implement CoFi and Block Pruning
with their public code, and choose Hybrid Filled
approach as the Block Pruning baseline. We use the
same teachers in training for GRAIN, TinyBERT4,
CoFi, and Block Pruning.

5.2 Main Results
In Figure 1 and Figure 4, we show the scores
of GRAIN and the baseline methods on various
downstream tasks with model densities ranging

2780

Method QNLI SST-2 SQuAD

GRAIN 89.0 91.4 83.6
GRAIN w/o EF 89.1 91.6 83.4
− StructReg 89.4 92.2 83.1
− GradSep 89.3 92.0 82.8
− Hidden Layer Loss 86.1 88.1 80.3
− Importance Scores 82.3 88.0 65.7

Table 2: Ablation results at 5% model density.

from 3% to 20%. Table 1 summarizes the de-
tailed results at densities 5% and 3%.4 We see
that GRAIN outperforms baselines in the majority
of tasks on a wide range of model sizes. GRAIN
outperforms TinyBERT4 and Block Pruning on
all tasks and outperforms CoFi except on SST-2
at relatively high density. Especially, in the low-
density regime, GRAIN exhibits notable advan-
tages over other methods. Under extreme com-
pression at density 3%, GRAIN (2.6M) can match
TinyBERT (4.7M) and CoFi (4.7M) on most tasks,
despite having fewer parameters. In addition, com-
pared to MobileBERT and AutoTinyBERT, which
require general pre-training and use different teach-
ers than GRAIN’s, although not directly compa-
rable, GRAIN shows promising results with less
computation.

In Table 1, we show the results of GRAIN with-
out embedding factorization (GRAIN w/o EF).
One can see that the pruned models do not always
benefit from having large embeddings. On SQuAD,
the factorized embedding leads to improved perfor-
mance, while on SST-2, a large embedding matrix
is better. However, the gaps at model density 5%
are closer than those at model density 3%, indicat-
ing that embedding factorization has more minor
impacts on larger pruned models.

We also measure the latency of GRAIN and find
that GRAIN achieves competitive speedups when
compared with other methods. Please refer to Ap-
pendix D for more details.

To summarize the above, GRAIN is efficient
and effective for compressing pre-trained language
models on a wide range of downstream tasks.

5.3 Ablation Study

We apply ablations on GRAIN w/o EF to study the
effect of each component, as listed in Table 2.

Firstly, The impact of removing StructReg varies

4Please refer to Table 7 in Appendix E for detailed results
of GRAIN at higher model densities.

Units (FFN, Heads) QNLI SQuAD

Intra+FFN (3.5%, 7,9%) 89.0
Intra+FFN (3.5%, 8.0%) 83.6

Heads+FFN (5.0%, 5.0%) 87.3 77.3
Heads+FFN (3.75%, 7.5%) 88.2 79.2
Heads+FFN (3.0%, 9.0%) 88.5 81.4
Heads+FFN (2.5%, 10%) 88.5 80.9
Heads+FFN (1.5%, 12%) 88.2 80.8

Table 3: Comparison between different pruning units at
5% model density. Heads+FFN denotes pruning with
attention heads and FFN hidden dimensions. Intra+FFN
denotes pruning with intra-attention units and FFN hid-
den dimensions. The best results are shown in bold. The
best results with Heads+FFN are underlined.

depending on the task, with performance either
increasing or decreasing. We defer the detailed
discussion on StructReg to Section 5.4.

Secondly, we remove gradient separation (Grad-
Sep), so the importance scores are influenced by
gradients from both LHidden and LCE. The perfor-
mance on different tasks drops more or less, and
SQuAD is most notably affected. The results indi-
cate that the gradients from the hidden layer loss
LHidden have an impact on the pruning process, and
it would be more beneficial to exclude it from the
estimation of importance scores.

Thirdly, we remove the hidden layer loss LHidden,
so knowledge distillation only optimizes the cross-
entropy objective LCE. The performance drops
significantly, showing the necessity to use both
objectives for obtaining effective pruned models.

Lastly, we investigate if gradient-based pruning
is necessary and effective. To ablate gradient-based
pruning, we generate random scores instead of
gradient-based scores at each pruning step and keep
all other settings unchanged, so the models are ran-
domly pruned. The results are displayed in the last
line in Table 2. The random structures resulted in
inferior results, proving the superiority of the struc-
tures found by gradient-based pruning. Thus both
pruning and distillation are crucial components.

5.4 Analysis

We first compare the effects of different pruning
units. Then we look into the structures of pruned
models to better understand our method.
Attention Heads Pruning Intra-attention prun-
ing allows larger structure search space and more
flexible models, but is intra-attention pruning more

2781

50
0

60
0

70
0

80
0

90
0

10
00

11
00

Latency (ms)

88.8

89.2

89.6

90.0

Ac
cu

ra
cy

4x5x6x7x

98% Teacher

QNLI

GRAIN w/o StructReg
GRAIN w/ StructReg

50
0

60
0

70
0

80
0

90
0

10
00

11
00

Latency (ms)

82.0

82.2

82.4

82.6

Ac
cu

ra
cy

4x5x6x7x

97% Teacher

MNLI-m

GRAIN w/o StructReg
GRAIN w/ StructReg

50
0

60
0

70
0

80
0

90
0

10
00

11
00

Latency (ms)

91.0

91.2

91.4

91.6

Ac
cu

ra
cy

4x5x6x7x

98% Teacher

SST2

GRAIN w/o StructReg
GRAIN w/ StructReg

50
0

60
0

70
0

80
0

90
0

10
00

11
00

Latency (ms)

83.0

83.2

83.4

83.6

83.8

F1

4x5x6x7x

94% Teacher

SQuAD

GRAIN w/o StructReg
GRAIN w/ StructReg

Figure 5: Performance and latencies under different structure regularization strengths at density 5%. The orange
marker denotes α = 0, and the blue markers denote α = 0.05, 0.1, 0.15, 0.2, 0.25, 0.3 from right to left. The vertical
lines indicate the speedups relative to BERTbase (teacher). The horizontal line indicates the teacher’s performance.

25
%

50
%

75
%

10
0% Without StructReg (= 0)

25
%

50
%

75
%

10
0%

1 2 3 4 5 6 7 8 9 10 11 12

With StructReg (= 0.3)

0 10 20 30 40 50 60

Number of Query Units

0 10 20 30 40 50 60

Number of Value Units

Figure 6: The structures of the pruned models at 5%
density on QNLI. Orange bars denote the remaining
units in FFN layers. Each purple (green) cell denotes a
remaining pair of query/key (value/output) matrices in
a head. The darker the cell, the more units remain.

effective compared to attention heads pruning in
practice? To answer the question, we conduct com-
parative attention heads pruning experiments.

We follow the GRAIN procedure, except for set-
ting the pruning units to be attention heads and
FFN hidden dimensions. The structure regular-
ization strength is set to 0, and the target model
density is set to 5%. Since each attention head
has more parameters than each FFN hidden dimen-
sion, the importance scores of attention heads and
FFN hidden dimensions are not directly compara-
ble, so attention heads and FFN hidden dimensions
can not be globally sorted and pruned.5 Hence,
we sort and prune the two kinds of units indepen-
dently and we have the freedom to set their den-
sities as long as the model density is fixed to 5%.

5A possible solution is to manually rescale the scores of
different units. However, this also introduces additional hyper-
parameters.

We experiment with five groups of (FFN,Heads)
density,6 and the results are shown in Table 3. In-
tra+FFN denotes pruning with intra-attention units.
Heads+FFN denotes pruning with attention heads.
Heads+FFN reaches its best performance when its
(FFN, Heads) density is close to the (FFN, Heads)
density of Intra+FFN, but Intra+FFN still outper-
forms Heads+FFN at different (FFN, Heads) densi-
ties. The results imply that intra-attention pruning
is more effective than attention heads pruning.
Model Structures As we stated previously, intra-
attention pruning tends to yield fragmented struc-
tures, which hinder running efficiency. We apply
structure regularization (StructReg) to encourage
generating models with less fragmented units. To
get an intuitive understanding, Figure 6 shows the
structures of the models pruned with and without
StructReg at model density 5% on QNLI.7 We first
notice that with intra-attention pruning, attention
heads take more diverse structures since the num-
ber of query and value units can differ. The model
pruned without StructReg holds 95 attention heads,
where most heads contain only a few query or value
units. The average query and value units per head
are 9.8 and 8.2, respectively. With StructReg, the
model holds only 25 attention heads, and the aver-
age numbers of query and value units per head are
28.6 and 28.5. The number of heads is significantly
reduced. We also find FFN layers are more severely
pruned than attention heads, consistent with results
in Xia et al. (2022).
Speed and Performance We next study the im-
pacts of StructReg on speed and performance. We
evaluate the latency with batch size 128 and se-
quence length 512 on an NVIDIA M40 GPU for all
tasks. The results are shown in Figure 5. The

6FFN (heads) density is defined as the percentage of the
remained parameters in all FFNs (heads).

7Structures of models on different tasks are listed in Ap-
pendix C.

2782

latency of BERTbase is around 3840ms, far be-
yond the plots’ range. The pruned models without
StructReg only achieve about 4× speedup. As the
regularization strength α increases from 0 to 0.3,
the latency decreases monotonically. At α = 0.3
(the leftmost marker in each plot), models achieve
6 ∼ 7× speedups, notably faster than the unregu-
larized ones. The task performance is also affected
by StructReg. As α increases from 0 to 0.3, the
QNLI accuracy drops by 0.6%, while SQuAD F1
increases by 0.4%. There is no uniform trend in
performance across different tasks. Nevertheless,
compared to the gains in speedups, the variances in
performance are marginal.

6 Conclusion

This paper proposes GRAIN, a gradient-based
structured pruning method that expands the struc-
ture search space by pruning with intra-attention
structures. We provide a structure regularization
strategy that encourages finding regular structures
and helps achieve lower latencies. We also com-
bine pruning with distillation. We propose to sep-
arate the gradients from different losses to reduce
the interference. GRAIN is computationally effi-
cient since it does not require pre-training or data
augmentation. Experiments show that GRAIN
achieves impressive high performance and outper-
forms other methods at different model densities
on various natural language understanding tasks
and meanwhile maintains competitive speedups.

Limitations

Inference Speed At the same model size, the la-
tencies of GRAIN on different tasks are relatively
large compared to the methods like CoFi and Tiny-
BERT. This is because GRAIN generates models
with different head size, and the computation of
these heads are not parallelized. Thus the resulting
models are slower than the models with uniform at-
tention structures. This problem could be relieved
by introducing model structure regularization at a
higher level or by some engineering techniques,
such as merging heads with the same or similar
size into a large matrix to increase parallelism.
Backbone Models GRAIN is designed for
transformer-based models. Although the trans-
former is one of the most popular building blocks
of NLP models, there are many other promising
structures. The effectiveness of GRAIN on model
compression is possibly correlated with hardware

lottery or software lottery (Hooker, 2020). In ad-
dition, we have only tested our method with the
standard multi-head attention mechanism. Trans-
planting GRAIN to other attention mechanisms is
possible, but the effectiveness has yet to be tested.

Acknowledgements

This work is supported by the National Key Re-
search and Development Program of China (Grant
No. 2022YFC3303504).

References
Cheng Chen, Yichun Yin, Lifeng Shang, Zhi Wang,

Xin Jiang, Xiao Chen, and Qun Liu. 2021. Extract
then distill: Efficient and effective task-agnostic bert
distillation.

Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, and
Ziqing Yang. 2021. Pre-training with whole word
masking for chinese bert.

Yiming Cui, Ting Liu, Wanxiang Che, Li Xiao, Zhipeng
Chen, Wentao Ma, Shijin Wang, and Guoping Hu.
2019. A span-extraction dataset for Chinese ma-
chine reading comprehension. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5886–5891, Hong Kong,
China. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Angela Fan, Edouard Grave, and Armand Joulin. 2020.
Reducing transformer depth on demand with struc-
tured dropout. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net.

Mitchell Gordon, Kevin Duh, and Nicholas Andrews.
2020. Compressing BERT: Studying the effects of
weight pruning on transfer learning. In Proceedings
of the 5th Workshop on Representation Learning for
NLP, pages 143–155, Online. Association for Com-
putational Linguistics.

Song Han, Jeff Pool, John Tran, and William J. Dally.
2015. Learning both weights and connections for
efficient neural networks. CoRR, abs/1506.02626.

Dan Hendrycks and Kevin Gimpel. 2016. Gaus-
sian error linear units (gelus). arXiv preprint
arXiv:1606.08415.

2783

https://doi.org/10.48550/ARXIV.2104.11928
https://doi.org/10.48550/ARXIV.2104.11928
https://doi.org/10.48550/ARXIV.2104.11928
https://doi.org/10.1109/TASLP.2021.3124365
https://doi.org/10.1109/TASLP.2021.3124365
https://doi.org/10.18653/v1/D19-1600
https://doi.org/10.18653/v1/D19-1600
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://openreview.net/forum?id=SylO2yStDr
https://openreview.net/forum?id=SylO2yStDr
https://doi.org/10.18653/v1/2020.repl4nlp-1.18
https://doi.org/10.18653/v1/2020.repl4nlp-1.18
http://arxiv.org/abs/1506.02626
http://arxiv.org/abs/1506.02626

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean.
2015. Distilling the knowledge in a neural network.
CoRR, abs/1503.02531.

Sara Hooker. 2020. The hardware lottery.

Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao
Chen, and Qun Liu. 2020. Dynabert: Dynamic BERT
with adaptive width and depth. In Advances in Neu-
ral Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual.

Hai Hu, Kyle Richardson, Liang Xu, Lu Li, Sandra
Kübler, and Lawrence Moss. 2020. OCNLI: Orig-
inal Chinese Natural Language Inference. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2020, pages 3512–3526, Online. Association
for Computational Linguistics.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. 2020.
TinyBERT: Distilling BERT for natural language un-
derstanding. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pages 4163–
4174, Online. Association for Computational Lin-
guistics.

Eldar Kurtic, Daniel Campos, Tuan Nguyen, Elias Fran-
tar, Mark Kurtz, Benjamin Fineran, Michael Goin,
and Dan Alistarh. 2022. The optimal BERT surgeon:
Scalable and accurate second-order pruning for large
language models. CoRR, abs/2203.07259.

François Lagunas, Ella Charlaix, Victor Sanh, and
Alexander Rush. 2021. Block pruning for faster trans-
formers. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Process-
ing, pages 10619–10629, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Yanyang Li, Fuli Luo, Runxin Xu, Songfang Huang, Fei
Huang, and Liwei Wang. 2022. Probing structured
pruning on multilingual pre-trained models: Settings,
algorithms, and efficiency. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1852–1865, Dublin, Ireland. Association for Compu-
tational Linguistics.

Chen Liang, Simiao Zuo, Minshuo Chen, Haoming
Jiang, Xiaodong Liu, Pengcheng He, Tuo Zhao, and
Weizhu Chen. 2021. Super tickets in pre-trained
language models: From model compression to im-
proving generalization. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 6524–6538, Online. Association
for Computational Linguistics.

Weijie Liu, Peng Zhou, Zhiruo Wang, Zhe Zhao,
Haotang Deng, and Qi Ju. 2020. FastBERT: a self-
distilling BERT with adaptive inference time. In

Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 6035–
6044, Online. Association for Computational Lin-
guistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach.

Zejian Liu, Fanrong Li, Gang Li, and Jian Cheng. 2021.
EBERT: Efficient BERT inference with dynamic
structured pruning. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 4814–4823, Online. Association for Computa-
tional Linguistics.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net.

Christos Louizos, Max Welling, and Diederik P. Kingma.
2017. Learning sparse neural networks through l0
regularization. CoRR, abs/1712.01312.

J. S. McCarley. 2019. Pruning a bert-based question
answering model. CoRR, abs/1910.06360.

Paul Michel, Omer Levy, and Graham Neubig. 2019.
Are sixteen heads really better than one? In Ad-
vances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Process-
ing Systems 2019, NeurIPS 2019, December 8-14,
2019, Vancouver, BC, Canada, pages 14014–14024.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Köpf, Edward Z.
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch: An
imperative style, high-performance deep learning li-
brary. In Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Informa-
tion Processing Systems 2019, NeurIPS 2019, De-
cember 8-14, 2019, Vancouver, BC, Canada, pages
8024–8035.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. ArXiv,
abs/1910.01108.

2784

http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/2009.06489
https://proceedings.neurips.cc/paper/2020/hash/6f5216f8d89b086c18298e043bfe48ed-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6f5216f8d89b086c18298e043bfe48ed-Abstract.html
https://doi.org/10.18653/v1/2020.findings-emnlp.314
https://doi.org/10.18653/v1/2020.findings-emnlp.314
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.48550/arXiv.2203.07259
https://doi.org/10.48550/arXiv.2203.07259
https://doi.org/10.48550/arXiv.2203.07259
https://doi.org/10.18653/v1/2021.emnlp-main.829
https://doi.org/10.18653/v1/2021.emnlp-main.829
https://doi.org/10.18653/v1/2022.acl-long.130
https://doi.org/10.18653/v1/2022.acl-long.130
https://doi.org/10.18653/v1/2022.acl-long.130
https://doi.org/10.18653/v1/2021.acl-long.510
https://doi.org/10.18653/v1/2021.acl-long.510
https://doi.org/10.18653/v1/2021.acl-long.510
https://doi.org/10.18653/v1/2020.acl-main.537
https://doi.org/10.18653/v1/2020.acl-main.537
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/2021.findings-acl.425
https://doi.org/10.18653/v1/2021.findings-acl.425
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
http://arxiv.org/abs/1712.01312
http://arxiv.org/abs/1712.01312
http://arxiv.org/abs/1910.06360
http://arxiv.org/abs/1910.06360
https://proceedings.neurips.cc/paper/2019/hash/2c601ad9d2ff9bc8b282670cdd54f69f-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264

Victor Sanh, Thomas Wolf, and Alexander M. Rush.
2020. Movement pruning: Adaptive sparsity by fine-
tuning. In Advances in Neural Information Process-
ing Systems 33: Annual Conference on Neural In-
formation Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual.

Chih Chieh Shao, Trois Liu, Yuting Lai, Yiying Tseng,
and Sam Tsai. 2019. Drcd: a chinese machine read-
ing comprehension dataset.

Bowen Shen, Zheng Lin, Yuanxin Liu, Zhengxiao Liu,
Lei Wang, and Weiping Wang. 2022. Cost-eff: Col-
laborative optimization of spatial and temporal effi-
ciency with slenderized multi-exit language models.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019.
Patient knowledge distillation for BERT model com-
pression. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
4323–4332, Hong Kong, China. Association for Com-
putational Linguistics.

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu,
Yiming Yang, and Denny Zhou. 2020. Mobilebert:
a compact task-agnostic BERT for resource-limited
devices. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2020, Online, July 5-10, 2020, pages 2158–2170.
Association for Computational Linguistics.

Marzieh Tahaei, Ella Charlaix, Vahid Nia, Ali Ghodsi,
and Mehdi Rezagholizadeh. 2022. KroneckerBERT:
Significant compression of pre-trained language mod-
els through kronecker decomposition and knowledge
distillation. In Proceedings of the 2022 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 2116–2127, Seattle, United States.
Association for Computational Linguistics.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the Seventh Conference on Natural
Language Learning at HLT-NAACL 2003, pages 142–
147.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 5998–6008.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Proceed-
ings of the Workshop: Analyzing and Interpreting
Neural Networks for NLP, BlackboxNLP@EMNLP
2018, Brussels, Belgium, November 1, 2018, pages
353–355. Association for Computational Linguistics.

Ziheng Wang, Jeremy Wohlwend, and Tao Lei. 2020.
Structured pruning of large language models. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 6151–6162, Online. Association for Computa-
tional Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Mengzhou Xia, Zexuan Zhong, and Danqi Chen. 2022.
Structured pruning learns compact and accurate mod-
els. In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1513–1528, Dublin, Ireland.
Association for Computational Linguistics.

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and
Jimmy Lin. 2020. DeeBERT: Dynamic early exiting
for accelerating BERT inference. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 2246–2251, Online.
Association for Computational Linguistics.

Liang Xu, Hai Hu, Xuanwei Zhang, Lu Li, Chenjie Cao,
Yudong Li, Yechen Xu, Kai Sun, Dian Yu, Cong
Yu, Yin Tian, Qianqian Dong, Weitang Liu, Bo Shi,
Yiming Cui, Junyi Li, Jun Zeng, Rongzhao Wang,
Weijian Xie, Yanting Li, Yina Patterson, Zuoyu Tian,
Yiwen Zhang, He Zhou, Shaoweihua Liu, Zhe Zhao,
Qipeng Zhao, Cong Yue, Xinrui Zhang, Zhengliang
Yang, Kyle Richardson, and Zhenzhong Lan. 2020.
CLUE: A Chinese language understanding evalua-
tion benchmark. In Proceedings of the 28th Inter-
national Conference on Computational Linguistics,
pages 4762–4772, Barcelona, Spain (Online). Inter-
national Committee on Computational Linguistics.

Yichun Yin, Cheng Chen, Lifeng Shang, Xin Jiang,
Xiao Chen, and Qun Liu. 2021. AutoTinyBERT: Au-
tomatic hyper-parameter optimization for efficient
pre-trained language models. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 5146–5157, Online. As-
sociation for Computational Linguistics.

Michael Zhu and Suyog Gupta. 2018. To prune, or
not to prune: Exploring the efficacy of pruning for
model compression. In 6th International Conference
on Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30 - May 3, 2018, Workshop Track
Proceedings. OpenReview.net.

2785

https://proceedings.neurips.cc/paper/2020/hash/eae15aabaa768ae4a5993a8a4f4fa6e4-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/eae15aabaa768ae4a5993a8a4f4fa6e4-Abstract.html
http://arxiv.org/abs/1806.00920
http://arxiv.org/abs/1806.00920
https://doi.org/10.48550/ARXIV.2210.15523
https://doi.org/10.48550/ARXIV.2210.15523
https://doi.org/10.48550/ARXIV.2210.15523
https://doi.org/10.18653/v1/D19-1441
https://doi.org/10.18653/v1/D19-1441
https://doi.org/10.18653/v1/2020.acl-main.195
https://doi.org/10.18653/v1/2020.acl-main.195
https://doi.org/10.18653/v1/2020.acl-main.195
https://doi.org/10.18653/v1/2022.naacl-main.154
https://doi.org/10.18653/v1/2022.naacl-main.154
https://doi.org/10.18653/v1/2022.naacl-main.154
https://doi.org/10.18653/v1/2022.naacl-main.154
https://www.aclweb.org/anthology/W03-0419
https://www.aclweb.org/anthology/W03-0419
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.18653/v1/w18-5446
https://doi.org/10.18653/v1/w18-5446
https://doi.org/10.18653/v1/2020.emnlp-main.496
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2022.acl-long.107
https://doi.org/10.18653/v1/2022.acl-long.107
https://doi.org/10.18653/v1/2020.acl-main.204
https://doi.org/10.18653/v1/2020.acl-main.204
https://doi.org/10.18653/v1/2020.coling-main.419
https://doi.org/10.18653/v1/2020.coling-main.419
https://doi.org/10.18653/v1/2021.acl-long.400
https://doi.org/10.18653/v1/2021.acl-long.400
https://doi.org/10.18653/v1/2021.acl-long.400
https://openreview.net/forum?id=Sy1iIDkPM
https://openreview.net/forum?id=Sy1iIDkPM
https://openreview.net/forum?id=Sy1iIDkPM

A Reproducibility and Training Costs

Hyperparameters We summarize the hyperpa-
rameters of our experiments in Table 4. We use
AdamW optimizer (Loshchilov and Hutter, 2019).
The learning rate is scheduled with 10% warm-up
steps followed by a linear decay.
Training Environment All the training experi-
ments are conducted on a single NVIDIA V100
GPU. The PyTorch (Paszke et al., 2019) version is
1.8.1, the CUDA version is 10.2, and Transformers
(Wolf et al., 2020) version is 4.10.0.
Training Costs It takes about 15 hours to finish
training on MNLI and QQP, 11 hours on SQuAD,
5 hours on QNLI, 3 hours on SST-2, and 1 hour on
CoNLL 2003.

Hyperparameter Value

peak learning rate
3e-5 (GLUE)

3e-5 (SQuAD)
1e-4 (CoNLL 2003)

number of epochs
20 (GLUE)

20 (SQuAD)
40 (CoNLL 2003)

batch size 32
temperature τ 8
start of pruning ps 0.2
end of pruning pe 0.4
smoothing factor β 0.998
regularization strength α 0.3
reduced embedding size r 192

Table 4: Hyperparameters used in the experiments.

B Dataset Statistics

The details of the datasets are shown in Table 5.

C Structures of Pruned Models

Table 6 summarizes the structures of the pruned
models on different tasks at model density 5%.

D Inference Speed vs. Performance

Figure 7 shows the latency of GRAIN and other
methods on various tasks. All the measurements
are conducted under the same environment (see
the paragraph Speed and Performance in Section
5.4). The structure regularization strength α is 0.3.
GRAIN achieves competitive speedups comparable
to other methods.

Task Train Size Metric # Labels

English Task
QNLI 105k Acc 2
MNLI 393k Acc 3
QQP 364k Acc 2
SST-2 67k Acc 2
SQuAD 88k F1 N/A
CoNLL 2003 14k F1 9

Chinese Task
OCNLI 50k Acc 3
TNEWS 53k Acc 15
CMRC 2018 10k F1 N/A
DRCD 27k F1 N/A

Table 5: Details of the datasets.

E More Results

E.1 Pruning RoBERTa
We conduct GRAIN with RoBERTa-base (Liu et al.,
2019) on the same set of tasks and use the same
hyperparameters as those in Table 4. The results
of GRAIN with BERT and RoBERTa at differ-
ent model densities are shown in Table 7. The
pruned RoBERTa outperforms pruned BERT at
high densities, but at low densities, BERT surpasses
RoBERTa on some tasks.

E.2 Experiments on Chinese Tasks
Due to the limited availability of results on model
compression methods for Chinese tasks, we present
the results of GRAIN on several Chinese tasks, pro-
viding a useful reference point for related works.

We evaluate GRAIN on the following Chinese
tasks: OCNLI (Hu et al., 2020), an original Chinese
natural language inference task; TNEWS (Xu et al.,
2020), a short text classification task for news;
CMRC 2018 (Cui et al., 2019) and DRCD (Shao
et al., 2019), two representative span-extraction
Chinese machine reading comprehension tasks.
The details of the datasets are shown in Table 5.

The learning rate is 1e-4 for CMRC 2018 and
DRCD, 2e-5 for OCNLI and TNEWS; the number
of epochs is 40 for CMRC 2018 and DRCD, 20 for
OCNLI and TNEWS. Other hyperparameters are
the same as those in Table 4. The teacher model is
Chinese-RoBERTa-wwm-ext (Cui et al., 2021).

We report the mean score of 3 runs for each
task using different random seeds. The results are
shown in Table 8.

2786

Datasets MHA Layers Total Heads Query Units / Head Value Units / Head FFN Size

QNLI (α = 0) 12 95 9.8 8.2 87.9
QNLI (α = 0.3) 12 25 28.6 28.5 106.1

MNLI (α = 0) 12 86 9.0 8.6 103.9
MNLI (α = 0.3) 11 21 28.8 32.9 122.5

QQP (α = 0) 12 93 9.8 8.7 87.1
QQP (α = 0.3) 12 26 27.5 26.4 113.5

SST-2 (α = 0) 12 101 4.2 8.9 120.2
SST-2 (α = 0.3) 11 19 20.5 37.7 138.2

SQuAD (α = 0) 12 75 12.8 10.1 87.3
SQuAD (α = 0.3) 12 23 33.0 30.8 108.0

CoNLL-03 (α = 0) 12 91 6.1 9.1 114.5
CoNLL-03 (α = 0.3) 9 22 21.4 31.9 132.6

Table 6: Structures of the pruned models on different tasks at model density 5%.

400 600 800 1000 1200 1400
Latency (ms)

82

84

86

88

90

92

Ac
cu

ra
cy

Teacher

3x4x5x7x

QNLI

400 600 800 1000 1200 1400
Latency (ms)

76

78

80

82

84

86

Ac
cu

ra
cy

Teacher

3x4x5x7x

MNLI

400 600 800 1000 1200 1400
Latency (ms)

85

87

89

91

93

Ac
cu

ra
cy

Teacher

3x4x5x7x

SST-2

400 600 800 1000 1200 1400
Latency (ms)

78

80

82

84

86

88

90

F1

Teacher

3x4x5x7x

SQuAD

GRAIN CoFi (Reimpl.) Block Pruning DynaBERT TinyBERT4

Figure 7: Performance vs. latency of GRAIN and other methods. The dashed vertical lines indicate the speedups
relative to BERTbase.

Model QNLI
(Acc)

MNLI
(m/mm Acc)

QQP
(Acc)

SST-2
(Acc)

SQuAD
(F1 / EM)

CoNLL-03
(F1)

Model
Size

Total
Size

BERTbase (teacher) 91.9 84.7 / 85.0 91.2 92.9 88.6 / 81.1 91.2 85.1M 108.9M
RoBERTabase (teacher) 93.0 87.7 / 87.5 91.7 94.7 91.5 / 84.9 92.1 85.1M 124.0M

20% Model Density
GRAIN 91.2 84.3 / 84.2 91.0 92.0 87.8 / 79.9 90.4 17M (20%) 23.4M
GRAIN-R 91.9 86.8 / 86.6 91.6 93.1 89.4 / 81.6 91.2 17M (20%) 27.2M

10% Model Density
GRAIN 90.2 83.4 / 83.5 90.7 91.9 86.4 / 77.7 89.7 8.5M (10%) 14.9M
GRAIN-R 90.9 {85.0 / 85.0 91.0 92.2 86.5 / 77.6 90.7 8.5M (10%) 18.7M

5% Model Density
GRAIN 89.0 82.2 / 82.5 90.4 91.4 83.6 / 73.7 88.3 4.3M (5.0%) 10.7M
GRAIN-R 89.4 83.1 / 83.0 90.3 91.6 82.4 / 71.9 89.7 4.3M (5.0%) 14.5M

3% Model Density
GRAIN 87.8 80.7 / 81.1 90.0 90.4 79.5 / 68.4 86.8 2.6M (3.0%) 9.0M

Table 7: Results of GRAIN (pruning BERT) and GRAIN-R (pruning RoBERTa) with model density varying from
3% to 20%.

2787

Model OCNLI
(Acc)

TNEWS
(Acc)

CMRC 2018
(F1/EM)

DRCD
(F1/EM)

Model
Size

Total
Size

RoBERTa-wwm-ext (teacher) 77.1 57.8 87.3 / 67.7 94.5 / 89.1 85.1M 101.7M

20% Model Density
GRAIN 75.4 56.9 87.3 / 67.7 93.8 / 88.5 17M (20%) 21.6M

10% Model Density
GRAIN 73.3 56.2 85.8 / 65.3 92.6 / 86.7 8.5M (10%) 13.1M

5% Model Density
GRAIN 70.2 55.6 83.5 / 61.1 90.6 / 83.4 4.3M (5.0%) 8.9M

Table 8: Results of GRAIN (pruning Chinese RoBERTa-wwm-ext) on the development sets of Chinese text
classification and machine reading comprehension tasks.

2788

ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

The section after Conclusion.

�7 A2. Did you discuss any potential risks of your work?
This work presents a general compression method, which is not tied to particular applications.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Section 1 Introduction.

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
Section 5.1 and Appendix B

�3 B1. Did you cite the creators of artifacts you used?
Section 5.1 and Appendix B

�7 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
The licenses for each artifact can be found in the original paper or the repository on GitHub.

� B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Not applicable. Left blank.

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Not applicable. Left blank.

�7 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Reader may refer to the original papers of the artifacts.

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Appendix B

C �3 Did you run computational experiments?
Section 5

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Section 5.1 and Appendix A

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

2789

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Appendix A

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Section 5.1

� C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Not applicable. Left blank.

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

2790

