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Abstract

Unpaired cross-lingual image captioning has
long suffered from irrelevancy and disfluency
issues, due to the inconsistencies of the seman-
tic scene and syntax attributes during transfer.
In this work, we propose to address the above
problems by incorporating the scene graph (SG)
structures and the syntactic constituency (SC)
trees. Our captioner contains the semantic
structure-guided image-to-pivot captioning and
the syntactic structure-guided pivot-to-target
translation, two of which are joined via pivot
language. We then take the SG and SC struc-
tures as pivoting, performing cross-modal se-
mantic structure alignment and cross-lingual
syntactic structure alignment learning. We
further introduce cross-lingual&cross-modal
back-translation training to fully align the cap-
tioning and translation stages. Experiments
on English<+Chinese transfers show that our
model shows great superiority in improving
captioning relevancy and fluency.

1 Introduction

Generating texts to describe images (a.k.a., image
captioning) has many real-world applications, such
as virtual assistants and image indexing (Fang et al.,
2015). Current image captioning models have
achieved impressive performance (Jia et al., 2015;
Gu et al., 2018a; Ji et al., 2021), yet are mainly
limited to the English language due to the large-
scale paired image-caption datasets. Subject to the
scarcity of paired captioning data, the development
of captioning in other languages is thus greatly hin-
dered. While manually crafting sufficient paired
data is prohibitively expensive, cross-lingual image
captioning (Miyazaki and Shimizu, 2016) offers a
promising solution, which aims to transfer a cap-
tioner trained at resource-rich language (e.g., En-
glish) to the resource-scarce language(s) without
paired captioning data at target language(s).
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A direct approach is to make use of the cur-
rent translation techniques, i.e., the pivot language
translation method. Here pivot language is the
resource-rich language, e.g., English. For example,
the pivot-side captioner first generates pivot cap-
tions for images, which are then translated into the
target-side captions. Or one can create the pseudo
image-caption pairs for directly training a target-
side captioner, by translating the pivot training cap-
tions into the target ones (Lan et al., 2017). How-
ever, the above translation-based method suffers
from two major issues (cf. 1(a)), including irrele-
vancy and disfluency (Song et al., 2019). On the
one hand, due to the lack of paired vision contexts,
a translated description can easily deviate from the
original visual semantics, leading to ambiguous or
inaccurate captioning. On the other hand, restricted
to the translation system itself, translated texts of-
ten suffer from disfluent language, especially for
the lengthy and complex descriptions.

Some previous efforts are carried out to rectify
the above two key errors for better cross-lingual
captioning. Lan et al. (2017) solve the transla-
tion disfluency issue by estimating the fluency of
translation texts, then rejecting those disfluent ones.
Yet their method dramatically sacrifices the paired
training data, and meanwhile suffers from low-
efficiency owing to the incremental screening pro-
cess. Song et al. (2019) propose to enhance the
relevance and fluency of translations by design-
ing some rewards via the reinforcement learning
technique. However, the REINFORCE algorithm
(Williams, 1992) is hard to train, and easily leads to
unstable results. We note that there are two critical
abilities a cross-lingual captioning system should
possess to solve the corresponding problems. For
content relevancy, the kernel lies in sufficiently
modeling the vision-language semantic alignment;
while for language fluency, it is key to effectively
capture the gaps of linguistic attributes and charac-
teristics between the pivot and target languages.
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Figure 1: We illustrate two issues in translation-based cross-lingual captioning (a), caused by the inconsistencies of
semantic scene structures (b) and syntax structures (c). We simplify the constituency trees for better understanding,
and the dotted grey box areas indicate the counterpart constituents across different languages. (Best viewed in color)

Besides the translation-based methods, the
pivoting-based cross-lingual captioning methods
have shown effectiveness, where the whole task
learning is broken down into two steps, image-
to-pivot captioning and pivot-to-target translation
(Gu et al., 2018b; Gao et al., 2022). The image-
to-pivot captioning learns to describe images in
the pivot language based on pivot-side paired cap-
tioning data, and the pivot-to-target translation is
performed based on parallel sentences. Two cross-
model and cross-lingual subtasks are trained on two
separate datasets, and aligned by the pivot language.
Although achieving improved task performances,
existing pivoting-based methods (Gu et al., 2018b;
Gao et al., 2022) still fail to fully address the two
major problems of cross-lingual captioning, due to
the insufficient alignment of either vision-language
semantics or pivot-target syntax.

To this end, we present a novel syntactic and
semantic structure-guided model for cross-lingual
image captioning. We build the framework based
on the pivoting-based scheme, as shown in Fig. 2.
For image-to-pivot captioning, we consider lever-
aging the scene graphs (SG) for better image-text
alignment. Intuitively, an SG (Johnson et al., 2015;
Yang et al., 2019) depicts the intrinsic semantic
structures of texts or images, which can ideally
bridge the gaps between modalities. For the pivot-
to-target translating, we make use of the syntactic
constituency (SC) tree structures for better pivot-
target language alignment. Syntax features have
been shown as effective supervisions for enhancing
the translation quality, e.g., fluency and grammar-
correctness (Schwartz et al., 2011; Xu et al., 2020;

Lietal., 2021).
Based on the above framework, we further per-

form cross-lingual cross-modal structure-pivoted
alignment learning. First of all, we introduce an
SG-pivoted cross-modal semantic structure align-
ment. Based on contrastive learning (Logeswaran
and Lee, 2018; Yan et al., 2021) we realize the
unsupervised vision-language semantic structure
alignment, relieving the scene inconsistency and
thus enhancing the relevancy. Similarly, an unsu-
pervised SC-based cross-lingual syntax structure
aligning is used to learn the shared grammar trans-
formation and thus mitigate the language disflu-
ency during translation. Finally, we perform the
cross-lingual cross-modal back-translation training,
fully aligning the two phrases of image-to-pivot
captioning and pivot-to-target translation.

On English—Chinese and Chinese—English
transfers of unpaired cross-lingual image caption-
ing, our method achieves significant improvement
over the existing best-performing methods. Further
in-depth analyses demonstrate that the integration
of both scene graph and syntactic structure features
is complementarily helpful in improving the cap-
tioning relevancy and disfluency of the transfer.

Our main contributions are two-fold:

o First, we for the first time enhance the cross-
lingual image captioning by leveraging both the
semantic scene graph and the syntactic constituent
structure information, such that we effectively ad-
dress the problems of content irrelevancy and lan-
guage disfluency.

e Second, we propose several cross-lingual cross-
modal structure-pivoted alignment learning strate-
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gies, via which we achieve effective cross-modal
vision-language semantic alignment and cross-
lingual pivot-target syntactic alignment.

2 Related Work

Image captioning has been an emerging task in the
past few years and received great research atten-
tion (You et al., 2016; Vinyals et al., 2017; Cor-
nia et al., 2020). Later, the task of cross-lingual
image captioning (Miyazaki and Shimizu, 2016;
Song et al., 2019) has been presented, to trans-
fer the knowledge from resource-rich language to
resource-poor language', so as to spare the burden
of manual data annotation for the minority lan-
guages. However, the task has been hindered and
received limited attention due to two key issues: ir-
relevancy and disfluency of captions. There are two
categories of cross-lingual captioning approaches:
the translation-based (Lan et al., 2017; Gu et al.,
2018b) and the pivoting-based (Gu et al., 2018b;
Gao et al., 2022) methods. The former employs
an off-the-shelf translator to translate the source
(pivot) captions into the target language for target-
side training or as the target-side captions. The lat-
ter reduces the noise introduction of the pipeline by
jointly performing the image-to-pivot captioning
step and pivot-to-target translation step, thus being
the current SoTA paradigm. This work inherits the
success of this line, and adopts the pivoting-based
scheme as a backbone, but we further strengthen it
by leveraging the semantic and syntactic structure
information to better solve the two issues.

Scene graphs depict the intrinsic semantic scene
structures of images or texts (Krishna et al., 2017;
Wang et al., 2018). In SGs, the key object and at-
tribute nodes are connected to describe the seman-
tic contexts, which have been shown useful as aux-
iliary features for wide ranges of downstream appli-
cations, e.g., image retrieval (Johnson et al., 2015),
image generation (Johnson et al., 2018) and image
captioning (Yang et al., 2019). Here we incorpo-
rate both the visual and language scene graphs to
enhance the cross-modal alignment learning.

Note that Gao et al. (2022) also leverage the SG
features for cross-lingual captioning, while ours
differs from theirs in three aspects. First, they con-
sider a fully unsupervised cross-lingual setup with
no image-caption pairs at pivot language, while
under such an unpaired assumption the visual and

'Without using target-side image-caption pairs, the task is
also known as unpaired cross-lingual image captioning.
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Figure 2: A high-level schematic of the cross-lingual
captioning model architecture.

language scene graphs are hard to align, and thus
limits the utility of SGs. Second, in this work we
sufficiently align the two cross-modal SGs via unsu-
pervised learning, such that the noises in SGs will
be effectively screened. Third, Gao et al. (2022)
align the pivot and target languages with also the
SG structure. We note that it could be ineffective
to perform cross-lingual alignment based on tex-
tual SGs because the scene structures in different
languages are essentially the same.

In fact, two languages can be different the most
in linguistic structures. Almost all the erroneous
sentences come with certain grammar or syntax er-
rors (Jamshid Lou et al., 2019, 2020). Also syntax
features have been extensively found to be effective
in improving the language quality (e.g., fluency
and grammatically-correctness) in cross-lingual
scenario (Nivre, 2015; Li et al., 2021; Zhang and
Li, 2022). For example, in machine translation,
different languages show great correspondences
in phrasal constituent structures (Zhang and Zong,
2013; Fang and Feng, 2022). Also, syntactic struc-
ture features have been integrated into a broad num-
ber of downstream applications (Wu et al., 2021;
Fei et al., 2021, 2022). Thus we consider mak-
ing use of the syntax structures as cross-lingual
supervision to enhance the captioning quality.

3 Syntactic Semantic Structure-guided
Cross-lingual Captioning Framework

The original task is to learn a mapping F;_ gt
from input images [ to target-language captions
St. Following Gu et al. (2018b); Song et al. (2019),
we decompose F_, gt into two mappings: 1) the
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image-to-pivot captioning F7_,s» training with the
paired data {(I, SP)}, and 2) the pivot-to-target
translation Fgp_, ¢ training with the parallel data
{(SP, S%)}. Note that {(1, S?)} and {(S?, S*)} are
two distinct datasets with possibly no intersection.

In our setting, we also leverage the SG and SC
structure features in two mappings. As shown in
Fig. 2, the semantic structure-guided captioning
phase (F<jsG>—s») takes as input the image [
and the visual SG encoded by a structure encoder,
yielding the pivot caption SP. Then, the syntactic
structure-guided translating phase (F . g» sc>—.5t)
takes as input the S? and the pivot SC, finally pro-
ducing the target caption S?. Note that the input
embeddings of the second step are shared with the
output embeddings from the first step so as to avoid
the isolation of the two parts. Also we impose a
residual connection from the SG feature representa-
tions to the SC feature representations to supervise
the final target captioning with scene features.

3.1 Semantic Structure-guided Captioning

Given an image, we obtain its SG from an off-the-
shelf SG parser, which is detailed in the experiment
setup. We denote an SG as SG=(V, E), where V is
the set of nodes v; € V' (including object, attribute
and relation types),” F is the set of edges e;,j be-
tween any pair of nodes v;. We encode a SG with
a graph convolution network (GCN; Marcheggiani
and Titov, 2017):

{hi} = GCN(SG), (1)
where h; is the representation of a node v;. We then
use a Transformer (Vaswani et al., 2017) decoder
to predict the pivot caption S? based on {h;}:

57 = Trm® ({h;}) . )

3.2 Syntactic Structure-guided Translation

In this step we first transform the predicted pivot
caption SP into the SC structure, SC=(V, F),
where V' are the phrasal&word nodes connected
by the compositional edge E. Different from the
dependency-like SG structure, SC is a tree-like hier-
archical structure, as depicted in Fig. 1. Similarly,
we encode SC trees with another GCN:

{r;} = GCNY(50), 3
where 7; is an SC node representation. Another
Transformer decoder is used to predict the target
caption St. To ensure the relevancy of target-side
generation, we create a shortcut between the prior
SG feature representations h and the SC features

2Appendix §A.1 details the SG and SC structures.
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Figure 3: Illustration of the cross-modal semantic and
cross-lingual syntactic structure alignment learning.

7, via the cross-attention mechanism:
St =Tm® ({r;}; {h:}). 4)

3.3 Two Separate Supervised Learning

The captioning and the translation steps are
performed separately based on {(I,S?)} and
{(SP, S%)} in a supervised manner:

Lep =— Y _log P(S”|1,SG), 5)
LTan = — Zlog P(S”SP7 SC) . (6)

4 Structure-Pivoting Cross-lingual
Cross-modal Alignment Learning

In the above supervised training, though lever-
aging the semantic and syntactic structure infor-
mation, the cross-modal image-text pair and the
cross-lingual pivot-target pair can be still under-
aligned in their own feature spaces, due to the
intrinsic structural gaps, e.g., noisy substructures.
To combat that, we further propose two structure-
pivoting unsupervised learning strategies (cf. Fig.
3): cross-modal semantic structure alignment and
cross-lingual syntactic structure alignment. Be-
sides, the two parts of our backbone captioner are
initially trained separately. This motivates us to fur-
ther align the two procedures in a whole-scale way,
with cross-lingual&cross-modal back-translation
training (cf. Fig. 4).

4.1 Cross-modal Semantic Structure Aligning

The basic idea is to encourage those text nodes
and visual nodes that serve a similar role in the vi-
sual SG" and language SG” to be closer, while for
those not we hope to repel them from each other,
so as to mitigate the scene inconsistency. We real-
ize this via the current popular CL technique. We
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Figure 4: Illustrations of the cross-modal and cross-lingual back-translation.

first obtain the node representations of visual SG
(h}/) and language SG (hJL) using one shared GCN
encoder as in Eq. (1), based on the ground-truth
{(1,SP)} data. We then measure the similarities
between all pairs of nodes from two SGs:
(h)" - hy
[RYIITRE]
A pre-defined threshold p,, will decide the align-
ment confidence, i.e., pairs with s"; > py, is con-
sidered similar. Then we have:
Lema = — > log
i€SGY, j*eSGF
where 7,,,>0 is an annealing factor. j* represents a
positive pair with ¢, i.e., s7".>py,. Z is a normal-
ization factor for probability calculation.

mo__
Sij =

(O]

exp(si«/Tm)

L @)

4.2 Cross-lingual Syntactic Structure Aligning

The idea is similar to the above one, while in the
cross-lingual syntactic structure space. We use the
shared SC GCN encoder to generate node repre-
sentations rlP and r]T of pivot-/target-side SCs on
the parallel sentences. CL loss is then put on the
similarity score sé’ ; to carry out the unsupervised
alignment learning, which we summarize as Lcy 4.

4.3 Cross-modal&lingual Back-translation

Drawing inspiration from unsupervised machine
translation, we leverage the back-translation tech-
nique (Sennrich et al., 2016; Edunov et al., 2018)
to achieve the two-step alignment over the over-
all framework. We present the cross-lingual
cross-modal back-translation training, including
the image-to-pivot back-translation and the pivot-
to-target back-translation.

Image-to-Pivot Back-translation With gold
image-caption pairs at hand, we can first obtain the
target caption prediction S? via our cross-lingual

captioner. We then translate the St into pseudo
pivot caption S” via an external translator Mi_sp.
This thus forms a path: SP-1—8t—S5P. And our
framework can be updated via:

Lipp = E[—log p(S"|Mip(Frose (D)) 9

Pivot-to-Target Back-translation There is a
similar story for the gold pivot-target parallel sen-
tences: St-SP—I—St. For SP—I we leverage an
external SG-based image generator (Johnson et al.,
2018; Zhao et al., 2022). The learning loss is:
Letg = E[—log p(5°|F1 5t (Msr1(SP)]. (10)

% Remarks on Training We take a warm-
start strategy to ensure stable training of our
framework. Initially we pre-train two parts sep-
arately via Lcyp&Lrans We then perform two
structure-pivoting unsupervised alignment learn-
ing via Leya&Lcpa. Finally, we train the overall
model via back-translation Lpp&Lprg. Once the
system tends to converge, we put them all together
for further overall fine-tuning:

L = Lcap + Lrans + Loma + Lera + L + Lpre - (11)
Here for brevity, we omit the item weights. Ap-
pendix §A.4 gives more training details.

S Experimental Setups

Datasets To align with existing work, we con-
sider the transfer between English (En) and Chi-
nese (Zh), and use the image caption datasets of
MSCOCO (Lin et al., 2014), AIC-ICC (Wu et al.,
2017) and COCO-CN (Li et al., 2019). We use
the training set of a language as image-pivot pairs
for the first part training, and test with the set of
another language. For the second part training, we
collect the paired En-Zh parallel sentences from
existing MT data, including UM (Tian et al., 2014)
and WMT19 (Barrault et al., 2019).
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Zh — En En — Zh Ave.
BLEU METEOR ROUGE CIDEr BLEU METEOR ROUGE CIDEr

o Translation-based methods
EarlyTranslation 48.3 15.2 27.2 18.7 43.6 20.3 30.3 14.2 27.2
LateTranslation 45.8 13.8 25.7 14.5 41.3 13.5 26.7 14.0 24.4
FG 46.3 12.5 253 15.4 43.0 19.7 29.7 15.7 25.9
SSRf 52.0 14.2 27.7 28.2 46.0 22.8 32.0 18.3 30.1

" e Pivoting-based methods oo oo

PivotAlign 52.1 17.5 28.3 27.0 47.5 23.7 32.3 19.7 31.1
UNISON 54.3 18.7 30.0 28.4 48.7 252 33.7 21.9 324
CROSS2STRA (Ours) 57.7 21.7 33.5 30.7 52.8 27.6 36.1 24.5 35.8
w/o SG 55.8 19.1 31.2 28.0 48.6 25.8 33.9 21.6 33.1
w/o SC 56.1 20.0 32.1 28.9 50.4 26.6 35.4 23.3 34.1
w/o ResiConn 56.4 21.2 329 294 51.8 27.1 35.9 24.1 349

Table 1: Transfer results between MSCOCO (En) and AIC-ICC (Zh). The values of SSR' are copied from Song
et al. (2019), while all the rest are from our implementations.

Baselines and Evaluations Our comparing sys-
tems include 1) the translation-based methods, in-
cluding the early translation and late translation
mentioned in the introduction, FG (Lan et al.,
2017), SSR (Song et al., 2019), and 2) the pivoting-
based methods, including PivotAlign (Gu et al.,
2018b) and UNISON (Gao et al., 2022). Follow-
ing baselines, we report the BLEU (Papineni et al.,
2002), METEOR (Denkowski and Lavie, 2014),
ROUGE (Lin, 2004) and CIDEr (Vedantam et al.,
2015) scores for model evaluation. Our results are
computed with a model averaging over 10 latest
checkpoints.

Implementations To obtain the visual SGs, we
employ the FasterRCNN (Ren et al., 2015) as an
object detector, and MOTIFS (Zellers et al., 2018)
as a relation classifier and an attribute classifier. For
language SGs, we first convert the sentences into
dependency trees with a parser (Anderson et al.,
2018), and then transform them into SGs based
on certain rules (Schuster et al., 2015). We obtain
the SC trees via the Berkeley Parser (Kitaev and
Klein, 2018), trained on PTB (Marcus et al., 1993)
for En texts and on CTB (Xue et al., 2005) for
Zh texts. In our back-translation learning, we use
the TS (Raffel et al., 2020) as the target-to-pivot
translator (M;_,,), and adopt the current SoTA
SG-based image generator (M gr_,1) (Zhao et al.,
2022). Chinese sentences are segmented via Jieba>.
We use Transformer to offer the underlying tex-
tual representations for GCN, and use FasterRCNN
(Ren et al., 2015) for encoding visual feature rep-
resentations. Our SG and SC GCNs and all other
embeddings have the same dimension of 1,024. All

3https://github.com/Fxsjy/jieba

Zh —-En En— Zh
Avg.
B R B R
CROSS?STRA 57.7 335 52.8 36.1 45.0
w/o Lema 544 297 50.1 349 42327
w/o Lepa 546 30.1 51.0 353 43.0¢2.0)
w/o Lipp 53.8 31.1 50.5 35.1 43.1¢-19
w/o Lptp 55.0 32.8 522 357 44.2(08)
" w/o Lema+Lora 51.8 277 475 337 40.8(42)
w/o Lipg+Lprs 527 30.1 499 342 42.2(28)

Table 2: Ablating different learning strategies. B:
BLEU, R: ROUGE.

models are trained and evaluated with NVIDIA
A100 Tensor Core GPUs.

6 Experimental Results and Analyses

Transfer between MSCOCO and AIC-ICC Ta-
ble 1 presents the Zh—En and En—Zh transfer
results. We first can observe that the EarlyTransla-
tion 18 more effective than LateTranslation, as the
former introduces lesser noises in training. Also,
we see that among all the translation-based meth-
ods, SSR shows the best performance. Further,
it is clear that the pivoting methods show overall
better results than the translation ones. This is
most possibly because the joint training in pivoting-
based models relieves the under-alignment between
the captioning and translation stages, reducing the
noise introduction of the pipeline.

Looking into the pivoting-based models, UNI-
SON exhibits the stronger capability of the trans-
fer in both directions, owing to the integration of
SG structure features, i.e., helping accurately cap-
ture the semantic relevances between vision and
language. Most importantly, our CROSS?STRA
outperforms all the other baselines with significant
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BLEU@1 BLEU@2 BLEU@3 BLEU@4 METEOR ROUGE CIDEr Avg.
o Translation-based methods
EarlyTranslationT 60.4 40.7 26.8 17.3 24.0 43.6 52.7 37.9
LateTranslation' 58.9 38.0 23.5 14.3 23.5 40.2 473 35.1
SSR 65.2 43.5 27.3 17.7 25.4 45.9 53.8 39.8

" e Pivoting-based methods oo oo

PivotAlign 66.5 45.0 203 18.2 27.0 46.3 55.0 41.0
UNISON*T 63.4 432 29.5 17.9 24.5 45.1 53.5 39.5
UNISON 68.3 46.7 30.6 19.0 294 48.0 56.3 42.7
CROSS2STRA 70.4 48.8 32.5 20.8 31.9 50.6 58.2 44.7

Table 3: Cross-lingual transfer from MSCOCO (En) to COCO-CN (Zh). The values with } are copied from Song
et al. (2019). UNISON*' is the raw version without using the paired image-caption(pivot) data for training.
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Figure 5: Influences of different threshold values in two
structure-guided alignment learning.

margins on all metrics consistently. For example,
we improve over UNISON by 3.4 (Zh—En) and
4.1 (En—Zh) BLEU scores respectively. We give
credit to the integration of both the semantic SG
and the syntactic SC structures, as well as the ef-
fective alignment learning strategies. The above
observations show the efficacy of our system for
cross-lingual captioning.

Influences of Learning Strategies In Table 2 we
quantify the contribution of each learning objec-
tive via ablation. As seen, each learning strategy
shows the impact to different extents. For example,
the cross-modal semantic alignment gives greater
influences than the cross-lingual syntactic align-
ment of the overall performances (i.e., 2.7 vs. 2.0).
In contrast to the two structure-pivoting learning
(Lema+Lcra), we can find that the back-translation
learning (Lpg+Lprg) shows slightly lower impacts.
Particularly the pivot-to-target back-translation con-
tributes limitedly, and we believe the quality of SG-
to-image generator should bear the responsibility.

Threshold Study In Fig. 5 we study the influ-
ences of threshold values on the two alignment
learning, by varying p,, and p;. As seen, when p,,
is 0.6 and 0.7 in two tasks respectively, the over-
all transfer results are the best, while p;=0.3 helps
give the best effects. Such a pattern distinction
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—+

S

Figure 6: The matchings of SG and SC structures.

between p,, and p; implies that the SGs between
vision and language have less discrepancy, while
the SC structures between two languages come
with non-negligible differences.

Transfer from MSCOCO to COCO-CN Table
3 further shows the transfer results from English
MSCOCO to Chinese COCO-CN. The overall ten-
dency is quite similar to the one in Table 1. We see
that translation methods are inferior to the pivoting
methods. Our CROSS?STRA model gives the best
performances on all metrics, outperforming UNI-
SON by an average 2.0(=44.7-42.7) score. This
again verifies the efficacy of our proposed method.

Probing Cross-modal and Cross-lingual Struc-
ture Alignment We integrate the semantic scene
structure and syntactic structures with the aim of
better cross-modal and cross-lingual alignment in
our two-stage pivoting transfer framework. Here
we directly assess to what extent our methods im-
prove the alignment. Fig. 6 shows the structure
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Figure 7: Qualitative results of cross-lingual captioning. The instances are randomly picked from AIC-ICC (Zh).

Relevancy{ Diversification{ Fluency

FG 5.34 3.75 7.05
SSR 7.86 5.89 7.58
PivotAlign 8.04 6.57 7.46
UNISON 9.02 9.14 7.89
CROSSZSTRA 9.70% 9.53% 9.22%

wlo SG 8.35 7.75 9.04

w/o SC 9.42 8.34 8.07

w/o LCMA+LCLA 7.80 7.24 8.15

Table 4: Human evaluations are rated on a Likert 10-
scale. I indicates significant better over the baselines
(p<0.03).

coincidence rate between the input image SG and
predicted target caption SG, and the SC structure
coincidence rate between the pivot and target cap-
tions.* We see that with the integration of semantic
scene modeling, both UNISON and our system ex-
hibit prominent cross-modal alignment ability, i.e.,
with higher structural overlaps. The same observa-
tion can be found with respect to syntactic structure
integration for enhancing cross-lingual alignment
learning. Either without the leverage of SG or SC
structure, the corresponding cross-modal or cross-
lingual alignment effect is clearly weakened.

Human Evaluation We further try to quantify
the improvements of the generated captions via hu-
man evaluation. In Table 4 we show the evaluation
results based on MSCOCO (En) to AIC-ICC (Zh)
transfer, on three dimensions: relevancy, diversi-
fication and fluency. We can see that our system
shows significantly higher scores than baseline sys-

*Appendix §B.2 details the measuring method.
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Figure 8: Evaluating the language quality of captions.

tems in terms of all three indicators. For those
methods with SG structure features, the content
relevancy and diversification of captions are much
better. Yet only our method gives satisfied language
fluency, due to the equipment of syntactic features.
With further ablation studies we can further confirm
the contributions of the SG and SC features.

Captioning Linguistic Quality Study We take
a further step, investigating how exactly our model
improves the linguistic quality of the target cap-
tions. Same to the human evaluation, we ask native
speakers to measure the errors that occurred in the
generated captions, in terms of wording, word or-
der and syntax correctness. Fig. 8 presents the
results of the transfer from MSCOCO (En) to AIC-
ICC (Zh). We see that our model has committed the
least errors, where the performances on syntax cor-
rectness are especially higher than baselines. Once
without using the syntactic features, the error rates
grow rapidly, which demonstrates the importance
to integrate the syntactic structures.

Qualitative Result Finally, we empirically show
some real prediction cases, so as to aid an intuitive
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understanding of our method’s strength. In Fig. 7
we provide four pieces of testing examples on the
En—Zh transfer, which we compare with different
baseline methods. As can be seen, the SSR model
often tends to generate target-side captions with
lower diversification, and meanwhile unsatisfac-
tory content relevancy, and thus inaccurate image
descriptions. On the contrary, the captions from
UNISON are much better, i.e., better relevancy and
diversification. We can give credit to the equipment
of scene graph-based alignment learning. However,
UNISON can fall short on language quality, i.e.,
problematic fluency. Since English and Chinese
differ much in linguistic and grammar characteris-
tics, without leveraging the syntactic structure fea-
tures, it leads to inferior language quality. Luckily,
our model can address all those issues, and gener-
ate captions with good relevancy, diversification,
and fluency. This again proves the effectiveness of
our proposed method.

7 Conclusion and Future Work

In this paper we investigate the incorporation of
semantic scene graphs and syntactic constituency
structure information for cross-lingual image cap-
tioning. The framework includes two phrases, se-
mantic structure-guided image-to-pivot captioning
and syntactic structure-guided pivot-to-target trans-
lating. We take the SG and SC structures as pivots,
performing cross-modal semantic structure align-
ment and cross-lingual syntactic structure align-
ment learning. A cross-lingual&cross-modal back-
translation training is further performed to align
two phrases. On English<+Chinese transfer experi-
ments, our model shows great superiority in terms
of captioning relevancy and fluency.

Bridging the gaps between the cross-modal and
cross-lingual transfer with external semantic and
syntactic structures has shown great potential. Thus
it is promising to extend the idea to other scenarios.
Also, exploiting the external structures potentially
will introduce noises, and thus a dynamical struc-
ture induction is favorable.

Limitations

In this work, we take the sufficient advantages of
the external semantic and syntactic structure knowl-
edge to improve our focused problem. But this
could be a double-edged sword to use such fea-
tures. Specifically, our paper has the following
two potential limitations. First of all, our method
closely relies on the availability of the resources

of scene graph structures and syntax structures.
While most of the languages come with these struc-
ture annotations to train good-performing structure
parsers (for example, the syntax structure annota-
tions of Penn TreeBank cover most of the exist-
ing languages), some minor languages may not
have structure resources. That being said, our idea
still works well even in the absence of the target-
side structure annotations. With only the structure
annotations at pivot-side (resource-rich) language
(in this case, the cross-modal semantic&syntactic
structure aligning learning are canceled), we can
still achieve much better performances than those
baselines without using the structural features. Be-
sides, our method will be subject to the quality of
the external structure parsers. When the parsed
structures of scene graphs and syntax trees are
with much noise, the helpfulness of our methods
will be hurt. Fortunately, the existing external
semantic and syntactic structure parsers have al-
ready achieved satisfactory performances, which
can meet our demands.
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A Model Details

A.1 Specification of Scene Graph and Syntax
Constituency Structures

In Fig. 9 and Fig. 10 we illustrate the complete
structures of the syntactic constituency tree and
scene graphs, respectively. We note that the scene
graph is a dependency-like structure, describing the
node-node inter-relation in an ‘is-a’ paradigm. And
the syntactic constituency tree is a compositional
structure, depicting how words constitute phrases
and then organize them into whole sentences.

A.2 Pivot-to-target Translation

In Eq. (4) we use a Transformer decoder to predict
the target caption St. A cross-attention mechanism
is first used to fuse the prior SG feature representa-
tions h and the SC features r. Specifically,
réh
)T,

Vd
where d is a scaling factor. Then, the Transformer
performs decoding over {e}:

St =Trm%({e}).

e = Softmax (

A.3 Specification on Contrastive Learning

Cross-modal Semantic Structure Aligning In
Eq. (8) we define the contrastive learning objective
of cross-modal semantic structure aligning, here
we unfold the equation:

exp(s}«/Tim)
Loma = — Z log 43 )
i€SGY, j*eSGL

>

i€SGY, keSGL, k#j*

eXp(SLk/Tm) ’

where 7,,,>0 is an annealing factor. j* represents a
positive pair with 4, i.e., 87"+ >pp,.

Cross-lingual Syntactic Structure Aligning We
detail the cross-lingual syntactic structure aligning
learning objective here:

l
exp(s; /1)
»CCMA - - § log # ’
iescP, jxescT

>

1€SCP  keSCT | k#j*

exp(sik/7),

where 7;>0 is an annealing factor. j* represents a
positive pair with ¢, i.e., " >pm.
A4 Specifying Overall Training Processing

The training of our framework is based on the
warm-up strategy, including four stages.
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Figure 9: Illustration of the full constituency syntax structure.

A boy in a white shirt
sitting at table in a park
is speaking to a group
of people.

VSG Parsing
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Figure 10: Illustration of the full scene graph structures.
The object nodes are the real entities of visual proposals
or textual words/phrases. The attribute nodes and rela-
tion nodes are the descriptive words, which, in VSG are
automatically generated, and in LSG are extracted from
sentences.

At the first stage, we use the paired image-
caption data {(I, S?)} at the pivot language side
(as well as the VSG structure features) to train the
captioning part of our model; and use the parallel
sentences {(SP, S)} (as well as the pivot-side syn-
tax tree features) to train the translation part of our
model, both of two training is supervised.

At the second stage, we perform two structure-
pivoting unsupervised alignment learning, by us-
ing the image-caption data {(/, SP)}, parallel sen-
tences {(S?, S*)}, and the two structure resource.

At the third stage, we perform the cross-modal
and cross-lingual back-translation learning. This is
a whole-framework-level training, aiming to suffi-

ciently align the captioning and translation parts.
At the fourth stage, the system tends to con-
verge, and we put all the above learning objects
together for further overall fine-tuning:
L = AcapLcap + Nrans Lrans
+ AcmaLoma + AcraLora

+ A Lips + Apre Lprs -

Here A, are the loss weights that dynamically
change by linearly learning scheduler (Huang et al.,
2020). The initial weights are given as: Acyp=1,
Arans=1, Acma=0.7, Acr.a=0.7, Aycg=0.3, Acpp=0.3.
Acap and Aqpans Will be linearly decreased from 1
to 0.7 along the training, Acma and Arge are kept
unchanged, while Aycp and Acpg Will be decreased
from 0.3 to 0.7.

B Extended Experiment Setups

B.1 Dataset Description

We use three image captioning datasets {(/, SP)}:
MSCOCO, AIC-ICC and COCO-CN. All the data
split follows the same practice as in prior cross-
lingual image captioning works (Wu et al., 2017;
Song et al., 2019). The MSCOCO dataset is anno-
tated in English, which consists of 123,287 images
and 5 manually labeled English captions for each
image. We utilize 113,287 images for training,
5,000 images for validation, and 5,000 images for
testing. The AIC-ICC dataset contains 238,354 im-
ages and 5 manually annotated Chinese captions
for each image. There are 208,354 and 30,000
images in the official training and validation set.
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Dataset Lang. Split #Image #Caption

Total 123287 616,435

Train 113287 566,435

MSCOCO — En ovelop 5,000 25,000

Test 5,000 25,000
777777777777 Total 238,354 1,191,770

Train 208,354 1,041,770

AlC-ICC 20 Develop 25000 125,000

Test 5,000 25,000
777777777777 Total ~ 20,342 27218

Train 18,342 25218

COCO-CN Zh  hyovelop 1,000 1,000

Test 1,000 1,000

Table 5: Statistics of image captioning datasets.

Since the annotations of the testing set are unavail-
able in the AIC-ICC dataset, we randomly sample
5,000 images from its validation set as our testing
set. The COCO-CN dataset contains 20,342 im-
ages and 27,218 caption texts in Chinese. We use
18,342 images for training, 1,000 for development,
and 1,000 for testing. Table 5 gives the detailed
statistics of the image captioning data.

For the translation data {(S?, S?)}, we collect
about 1M of raw paired En-Zh parallel sentences
from the UM (Tian et al., 2014) and WMT19 (Bar-
rault et al., 2019) machine translation corpus. We
filter the sentences in MT datasets according to an
existing caption-style dictionary and resulting in a
total of 400,000 parallel sentences. For the trans-
lation training, we use 390,000 sentence pairs for
training, 5,000 sentence pairs for validation, and
5,000 pairs for testing.

B.2 Specification on Structure Coincidence
Probing

In Fig. 6 we assess the ability of our model on the
cross-modal and cross-lingual structure alignment,
by measuring the structure coincidence between
the gold one and the one learned by our model.
Here we detail the evaluation setup.

For the semantic scene structures, we evaluate
the coincidence between the input images’ SGs and
the SGs of predicted target-side captions. These
SG structures are parsed by the same methods in-
troduced above. We then make statistics of the
overlapped node pairs between the two SGs as the
coincidence rate 5°.

46 — SGY N sG*
- SGY usGt’
where SG"" and SG* denote any word-pair struc-
ture of visual SG and target language SG, respec-
tively.
For the syntax structures, we evaluate the co-

incidence rate of the constituency tree structures
between the intermediate pivot captions and the
final predicted target-side captions. (Because the
input images come without the syntax trees.) The
SC structures of two languages are parsed using
the parsers introduced above. We note that the di-
vergences of syntax between two languages can
be much larger, compared with the divergences of
semantic scene structures. Different from the mea-
surement for SG structure to traverse the whole
graph equally, we measure the SC structure coinci-
dence rate ¢ in a top-down manner. Specifically,
we traverse the constituency trees in a top-down
order, and those matched phrasal nodes at a higher
level (lower traversing depth from the root node)
will have higher scores than those at a lower level.

50— (scPnsct).d
sc”usc?
where SC” and SC”' denote the phrasal constituent
structures of the pivot and target language, respec-
tively. d is a weight, which is defined as the recip-

rocal of a top-down traversing depth.

B.3 Specifications of Human Evaluation
Standards

Table 4 shows the human evaluation results. Specif-
ically, we design a Likert 10-scale to measure the
relevancy, diversification, and fluency of the gener-
ated target-side captions. The 10-scale metrics are
defined as: 1-Can’t be worse, 2-Terrible, 3-Poor,
4-Little poor, 5-Average, 6-Better than average, 7-
Adequate, 8-Good, 9-Very good, 10-Excellent. We
ask ten native Chinese speakers to score the results.
And for each result, we use the averaged scores.

In Fig. 8 we also measure the language quality
of captions in terms of wording, word order, and
syntax correctness. We ask the same ten native
Chinese speakers to score the error degree of these
metrics, each of which is defined as:

* Wording: Is the choice of words in the cap-
tions suitable and precise to describe the input
images?

* Word order: Are the words, phrases, and
components organized correctly and properly
in captioning sentences?

» Syntax correctness: Are there syntactic er-
rors in the caption texts? such as omitting
or repeating words, mixing up verb tenses or
verb conjugations, missing prepositions, etc.
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