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Abstract

Multi-task learning (MTL) has emerged as
a promising approach for sharing inductive
bias across multiple tasks to enable more ef-
ficient learning in text classification. How-
ever, training all tasks simultaneously often
yields degraded performance of each task than
learning them independently, since different
tasks might conflict with each other. Exist-
ing MTL methods for alleviating this issue is
to leverage heuristics or gradient-based algo-
rithm to achieve an arbitrary Pareto optimal
trade-off among different tasks. In this paper,
we present a novel gradient trade-off approach
to mitigate the task conflict problem, dubbed
GetMTL, which can achieve a specific trade-
off among different tasks nearby the main ob-
jective of multi-task text classification (MTC),
so as to improve the performance of each task
simultaneously. The results of extensive exper-
iments on two benchmark datasets back up our
theoretical analysis and validate the superior-
ity of our proposed GetMTL.

1 Introduction

Multi-task Learning (MTL), which aims to learn
a single model that can tackle multiple correlated
but different tasks simultaneously, makes multi-
ple tasks benefit from each other and obtain supe-
rior performance over learning each task indepen-
dently (Caruana, 1997; Ruder, 2017; Liu et al.,
2015; Mao et al., 2020). By discovering shared
information/structure across the tasks, it has gained
attention in many areas of research and industrial
communities, such as computer vision (Misra et al.,
2016; Gao et al., 2019; Yogamani et al., 2019; Sun
et al., 2020) and text classification (Liu et al., 2017;
Xiao et al., 2018; Mao et al., 2021, 2022).

However, it is observed in multi-task text clas-
sification (MTC) scenarios that some tasks could
conflict with each other, which may be reflected via
conflicting gradients or dominating gradients (Yu
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Figure 1: Graphical interpretation of existing Pareto
multi-task learning methods for a two-task learning
problem. (a) Pareto optimal solutions are arbitrary and
uncontrollable. (b) Our GetMTL can find the specific
solutions nearby the main objective (Average loss).

et al., 2020; Vandenhende et al., 2022), leading
to the degraded performance of MTL due to poor
training. How to make a proper trade-off among
jointing different tasks in MTC is a difficult prob-
lem. Recently, several methods have been proposed
to mitigate gradient conflicts issue via both loss
balance (linear weighted scalarization) such as ho-
moscedastic uncertainty (Kendall et al., 2018) and
task variance regularization (Mao et al., 2021), and
gradient balance like Pareto optimality (Sener and
Koltun, 2018; Mao et al., 2020). Existing meth-
ods devote to finding an arbitrary Pareto optimality
solution in the Pareto set, which achieve a single
arbitrary trade-off among all tasks. However, they
can only satisfy the improved performance on part
of tasks, not all tasks simultaneously. This means
that these methods can not converge to a minimum
average loss of all objectives.

To illustrate our idea, we give a two-task learn-
ing example shown in Figure 1. As shown in Fig-
ure (1a), it is observed that Pareto optimality-based
methods can generate a set of Pareto solutions for
a given two-task learning problem. However, some
of Pareto solutions can increase the task 1 error
while decreasing task 2 error, leading to unsatisfac-
tory overall performance for MTL model. This im-
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plies that not all Pareto solutions always satisfy the
goal of mitigating the tasks conflicts in MTL, and
thus failing to achieve a better trade-off between
tasks. Therefore, it is necessary to find a specific
trade-off between tasks that is beyond what only
using Pareto optimality can achieve.

To address this issue, inspired by multi-objective
optimization (Sener and Koltun, 2018), we argue
that a more efficient way to mitigate task conflicts
is to find a gradient trade-off between tasks in the
neighborhood of the average loss rather than ex-
haustively searching for a proper solution from the
set of Pareto solutions. As shown in Figure 1b,
the Pareto solutions nearby the average loss can
achieve a better trade-off between task 1 and task 2,
leading to better performance on both tasks at the
same time. Based on it, in this paper, we propose
a novel gradient trade-off multi-task learning ap-
proach, named GetMTL, to mitigate task conflicts
in multi-task text classification. Specifically, the
gradients of each task are utilized to derive an up-
date vector that can minimize the conflicts among
task gradients in the neighborhood of the average
gradient, so as to achieve a better trade-off perfor-
mance among joint training tasks. In summary, the
main contributions of our work are as follows:

• A novel multi-task learning approach based
on gradient trade-off between different tasks
(GetMTL) is proposed to deal with task con-
flict in multi-task text classification problems,
so as to improve the performance of all tasks
simultaneously.

• We give in-depth theoretical proofs and ex-
perimental analyses on establishing converge
guarantees of our GetMTL.

• We extensively verify the effectiveness of our
GetMTL on two real-world text classifica-
tion datasets, and the results show that our
GetMTL performs competitively with a vari-
ety of state-of-the-art methods under a differ-
ent number of task sets.

2 Related Works

Multi-task Learning methods jointly minimize all
task losses based on either loss balance meth-
ods (Kendall et al., 2018; Chen et al., 2018;
Mao et al., 2021, 2022) or gradient balance meth-
ods (Sener and Koltun, 2018; Mao et al., 2020).
The loss balance methods adaptively adjust the
tasks weights during training based on various
heuristic approaches, such as task uncertainty quan-

tification (Kendall et al., 2018), gradient normal-
ization (Chen et al., 2018), task difficulty pri-
oritization (Guo et al., 2018), dynamic weight
average (Liu et al., 2019), random loss weight-
ing (Lin et al., 2021), task variance regulariza-
tion (Mao et al., 2021), and meta learning-based
approach (Mao et al., 2022). These methods are
mostly heuristic and can have unstable performance
while ignoring the task conflicts among all tasks,
leading to the bad generalization performance of
MTL models.

Recently, some gradient balance based methods
have been proposed to mitigate task conflicts for im-
proving task performance. For example, Désidéri
(2012) leverages multiple-gradient descent algo-
rithm (MGDA) to optimize multiple objectives.
Due to the guarantee of convergence to Pareto sta-
tionary point, this is an appealing approach. Sener
and Koltun (2018) cast the multi-objective problem
as a multi-task problem and devote to finding an
arbitrary Pareto optimal solution. Mao et al. (2020)
propose a novel MTL method based Tchebycheff
procedure for achieving Pareto optimal without any
convex assumption. However, these methods only
consider achieving an arbitrary Pareto optimal solu-
tion while it is not the main objective. Unlike these
methods, we propose an MTL approach based on
multi-objective optimization and seek to find a set
of solutions that are Pareto optimality and nearby
the main MTC objective L0.

3 Preliminaries

Consider a multi-task learning problem with T 1

tasks over an input space X and a collection of
task spaces {Yt}t∈[T ], where each task contains a
set of i.i.d. training samples Dt = {xi, yti}i∈[nt],
T is the number of tasks, and nt is the num-
ber of training samples of task t. The goal of
MTL is to find parameters {θsh, θ1, ..., θT } of a
model F that can achieve high average perfor-
mance across all training tasks over X , defined
as F(X , θsh, · · · , θt) : X → Y , where θsh de-
notes the parameters shared between tasks and θt

denotes the task-specific parameters of task t. In
particular, we further consider a parametric task-
specific map as f t(·, θsh, θt) : X → Yt. We
also consider task-specific loss functions `t(·, ·) :
Yt×Yt → R+. We also denote the multi-task loss
asL(θ) =

∑T
i `i(θ), and the gradients of each task

1For ease of distinction, we denote the transpose of the
vector as the superscript T.
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as gi = ∇`i(θ) for the particular θ. In this paper,
we choose the average loss as main objective of
MTC problem, defined as L0(θ) = 1

T

∑T
i `i(θ).

3.1 MTL as Multi-objective Optimization
MTL can be formulated as a specific case of
multiple-objective optimization (MOO), which
optimizes a set of potentially conflicting objec-
tives (Sener and Koltun, 2018; Mao et al., 2020).
Given objective functions of T tasks, `1, . . . , `T ,
we formulate the optimization objective of MTL as
the vectors of objective values :

min
θsh,θ1,...,θT

(
`(θsh, θ1), . . . , `(θsh, θT )

)
(1)

Since there is no natural linear ordering on vectors,
it is not possible to compare solutions and thus no
single solution can optimize all objectives simulta-
neously. In other words, there is no clear optimal
value. Alternatively, we can achieve Pareto opti-
mality to obtain different optimal trade-offs among
all objectives to solve MOO problem.

Definition 1 (Pareto dominance). Given two points
{θ, θ} in Ω, a point θ Pareto dominates θ (θ 4 θ)
for MTL if two conditions are satisfied:

(i) No one strictly prefers θ to θ, that is, ∀i ∈
{1, . . . , T}, `i(θsh, θi) ≤ `i(θsh, θi).

(ii) At least one point strictly prefers θ to θ, that
is, ∃j ∈ {1, ..., T}, `j(θsh, θj) < `j(θ

sh
, θ
j
).

Definition 2 (Pareto optimality). θ∗ is a Pareto op-
timal point and `(θ∗) is a Pareto optimal objective
vector if it does not exist θ̂ ∈ Ω such that θ̂ 4 θ∗.
That is, a solution that is not dominated by any
other is called Pareto optimal.

The set of all Pareto optimal solutions is called
the Pareto set, and the image of Pareto set in the
loss space is called Pareto front (Lin et al., 2019).
In this paper, we focus on gradient-based multi-
objective optimization to achieve an appropriate
Pareto trade-off among all tasks, which can approx-
imate the Pareto front that minimizes the average
loss.

3.2 Gradient-based Multi-Objective
Optimization

Gradient-based MOO (Sener and Koltun, 2018)
aims to find a direction d that we can iteratively
find the next solution θ(t+1) that dominates the
previous one θ(t) (`(θ(t+1)) ≤ `(θ(t))) by moving

against d with step size η, i.e. θ(t+1) = θ(t) − ηd.
Désidéri (2012); Sener and Koltun (2018) propose
to use multiple gradient descent algorithm (MGDA)
that converges to a local Pareto optimal by itera-
tively using the descent direction d, which can be
obtained as follows:

d∗ = arg min
d∈Rm,α∈R

α+
1

2
‖d‖2

s.t. ∇`i(θ(t))Td ≤ α, i = 1, ..., T.

(2)

where d∗ is the direction that can improve all tasks.
Essentially, gradient-based MOO methods mini-
mize the loss by combining gradients with adaptive
weights, and obtaining an arbitrary Pareto optimal-
ity solution, ignoring the true objective (the average
loss) (Liu et al., 2021). In this paper, we generalize
this method and propose a novel gradient-based
approach to achieve a gradient trade-off among
tasks for mitigating task conflicts, as well as con-
strain the solution that can minimize the average
loss (L0(θ)).

4 Gradient Trade-offs for Multi-task
Text Classification

Following most MTL methods, as shown in Fig-
ure 2, we employ the hard parameter sharing MTL
architecture, which includes f sh parameterized by
heavy-weight task-shared parameters θsh and f t pa-
rameterized by light-weight task-specific parame-
ters θt. All tasks take the same shared intermediate
feature z = fsh(x; θsh) as input, and the t-th task-
specific network outputs the prediction as f t(z; θt).
Since task-shared parameters θsh are shared by all
tasks, the different tasks may conflict with each
other, leading to the degraded performance of MTL
model. In this paper, we hypothesize that one of the
main reasons for task conflicts arises from gradi-
ents from different tasks competing with each other
in a way that is detrimental to making progress.
We propose a novel gradient-based MOO optimiza-
tion to find a gradient trade-off among tasks in the
neighborhood of the average loss, so as to mitigate
task conflicts. Note that, we omit the subscript
sh of task-shared parameters θsh for the ease of
notation.

4.1 GetMTL
Given a task i, we define its gradient as gi =
∇`i(θ) via back-propagation from the raw loss `i,
and gi represents the optimal update direction for
task i. However, due to the inconsistency of the
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Figure 2: Overview of GetMTL. Left. The left part of
the figure is our MTL architecture. Right. We show
the update direction (red) d obtained by gradient-based
MOO method and our GetMTL on three gradients (g1,
g2 and g3) in R3, where gi denotes the gradient (black)
of i-th task, g0 is the average gradient, and blue arrows
denote the projections of update direction to each task
gradient.

optimal update direction of task-shared parameters
for each task, different task gradients may conflict
with each other, leading to the training of networks
being stuck in the over-training of some tasks and
the under-training of other tasks. Intuitively, it is de-
sirable to find a direction that can minimize the task
conflicts among different tasks as well as achieve
Pareto optimality to improve the performance of
MTL model.

We first achieve an arbitrary Pareto optimal via
finding a descent direction ddes by searching for
a minimum-norm point in the Convex Hull CH of
gradients, defined by,

CH := {Gβ | β ∈ ST }, (3)

s.t. ST =

{
β ∈ RT+

∣∣ ∑T

j=1
βj = 1

}
(4)

where G ∈ RT×m = {g1, ..., gT } is the matrix
of task gradient, ST is the T -dimensional regular
simplex. We use the multiple gradient descent algo-
rithm (MGDA) (Sener and Koltun, 2018) to obtain
an arbitrary Pareto optimal by iteratively using the
descent direction, defined by,

ddes = arg min
d∈CH

‖d‖22 (5)

In addition, the ddes can be reformulated as a linear
combination of all task gradients, defined by,

ddes =
∑T

i=1
βigi (6)

where gi = ∇`i(θ) is the i-th task gradient. It
implies that, when converges to an arbitrary Pareto
optimal, the optimal gradient value of each task via
back-propagation is βigi, defined as gβi = βigi.

However, moving against ddes does not guar-
antee that the solution meets the requirements of
multi-task text classification task (MTC), that is, to
alleviate the gradient conflict among tasks in MTC,
so as to improve the performance of all tasks. To
address this issue, we seek a direction that enables
us to move from a solution θ(t) to θ(t+1) such that
both θ(t+1) dominates θ(t) (L(θ(t+1)) ≤ L(θ(t)))
and alleviate the gradient conflict among all tasks.
Based on it, as shown in Figure 2(b), we propose
to search for an update direction d in the Convex
Hull CHβ of back-propagation gradients such that
it can improve any worst objective and converge
to an optimum of MTC objective L0(θ). We first
find the worst task gradient with respect to the up-
date direction d, that is, it has a maximum angle
with d, which can be formulated via the following
optimization problem,

min
i
〈gβi , d〉, s.t.− gTβid ≤ 0, i = 1, ..., T (7)

where gβi is the i-task gradient after optimizing by
MGDA algorithm.

To improve the worst gradient of any task and
achieve a trade-off between all task gradients in
a neighborhood of the average gradient (defined
as g0 = 1

T

∑T
i=1 gi), we formulate this gradient

trade-off optimization problem via the following
Maximin Optimization Problem (dual problem).

Problem 1.

max
d∈Rm

min
i∈[T ]
〈gβi , d〉

s.t. ‖d− g0‖ ≤ εgT0 d,
− gT0 d ≤ 0

(8)

where gβi = βigi is the back-propagation gradient
value of i-th task via solving Eq. (5), ε ∈ (0, 1] is a
hyper-parameter that controls the stability of MTC
model.

4.2 Solving Maximin Problem
Since the optimal direction d can also be defined in
the convex hull CHβ of gβi , we can get

CHβ := {Gβw | w ∈ WT }, (9)

where Gβ ∈ RT×m = {gβ1 , ..., gβT } is task gradi-
ent matrix,WT = {w ∈ RT+

∣∣ ∑T
j=1wj = 1} is

the T -dimensional probability simplex, and w =
(w1, ..., wT ). Therefore, we can get mini〈gβi , d〉 =
minw∈WT 〈

∑
iwigβi , d〉 and Problem 1 can be

transformed into the following form.
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Algorithm 1: GetMTL Algorithm.
Input: The number of task T , loss functions
{`i}Ti=1, network parameters θ(t) at t step, the
pre-specified hyper-parameter ε ∈ (0, 1] and
step size µ ∈ R+.

1: Task Gradients: gi = ∇`i(θ(t)), i ∈ [T ]
2: Main Objective: g0 =

∑T
i=1 gi

3: Obtain {β1, ...βT } by solving Eq.(5).
4: Compute gw =

∑
iwigβi , where gβi = βigi

5: Obtain {w1, ..., wT } by solving Eq.(14)
6: Find direction d∗ by using Eq.(13)

Output: θ(t+1) =

θ(t) − µ
(

g0
1−ε2‖g0‖2 + ε‖g0‖2gw

(1−ε2‖g0‖2)‖gw‖

)
.

Problem 2.

max
d∈Rm

min
w∈WT

〈gw, d〉

s.t. ‖d− g0‖ ≤ εgT0 d,
(10)

where gw =
∑T

i=1wigβi is the convex combina-
tion in CHβ . For a given vector λ ∈ R+ with
non-negative components, the corresponding La-
grangian associated with the Eq.(10) is defined as

max
d∈Rm

min
λ,w∈WT

gTwd− λ(‖d− g0‖2 − ε2(gT0 d)2)/2

(11)
Since the objective for d is concave with linear con-
straints and w ∈ WT is a compact set 2, according
to the Sion’s minimax theorem (Kindler, 2005), we
can switch the max and min without changing the
solution of Problem 2. Formally,

min
λ,w∈WT

max
d∈Rm

gTwd−λ‖d−g0‖2/2+λε2(gT0 d)2/2

(12)
We get the optimal solution of primal problem

(Problem 1) by solving the dual problem of Eq.(12)
(See the Appendix A for a detailed derivation pro-
cedure). Then we have

d∗ =
gw + λ∗g0

(1− ε2g20)λ∗
,where λ∗ =

‖gw‖
ε‖g0‖2

(13)

where λ∗ is the optimal Lagrange multiplier, d∗ is
the optimal update direction of MTC model. We
can reformulate the problem of Eq.(12) as follow-
ing optimization problem w.r.t. w.

min
w∈WT

J (w) =
gT0 gw + ε‖g0‖2‖gw‖

1− ε2‖g0‖2
(14)

2Compact set: a set that is bounded and closed.

TASKS NEWSGROUPS

COMP GRAPHICS, OS.MS-WINDOWS.MISC,
SYS.MAC.HARDWARE, WINDOWS.X

REC AUTOS, SPORT.BASEBALL,
MOTORCYCLES, SPORT.HOCKEY

SCI CRYPT, SPACE,
MED, ELECTRONICS

TALK POLITICS.MISC, POLITICS.GUNS,
POLITICS.MIDEAST, RELIGION.MISC

Table 1: Tasks of topic classification dataset.

where gw is defined as gw =
∑T

i=1wigβi . The
detailed derivation is provided in Appendix A. Al-
gorithm 1 shows all the steps of GetMTL algorithm
in each iteration.

4.3 Theoretical Analysis
In this section, we analyze the equivalence of so-
lutions to dual problem and then give a theoretical
analysis about convergence of GetMTL algorithm.
We define the Lagrangian of problem in Eq.(10),

L(d, λ, w) = gTwd−
λ

2
(‖d− g0‖2 − ε2(gT0 d)2)

Theorem 4.1 (Equivalence of Optimal Value
of Dual Problem). Assume that both pri-
mal problem and dual problem have optimal
values, let p∗ = maxd minλ,w L(d, λ, w)
and q∗ = minλ,w maxd L(d, λ, w).
Then, p∗ = maxd minλ,w L(d, λ, w) ≤
minλ,w maxd L(d, λ, w) = q∗.

Proof. The proof is provided in Appendix B. �

Theorem 4.2 (Convergence of GetMTL). Assume
loss functions `i are convex and differential, and
∇`i(θ(t)) is L-lipschitz continuous with L>0. The
update rule is θ(t+1) = θ(t) − µ(t)d, where d is
defined in Eq.(13) and µ(t) = mini∈[k]

‖d−g0‖
c·L·d2 . All

the loss functions
(
`1(θ

(t)) · · · `T (θ(t))
)

converges
to (`1(θ

∗) · · · `T (θ∗)).

Proof. The proof is provided in Appendix C. �

5 Experimental Setup

5.1 Experimental Datasets
We conduct experiments on two MTC benchmarks
to evaluate the proposed GetMTL. 1) Amazon Re-
view dataset (Blitzer et al., 2007) contains prod-
uct reviews from 14 domains (See Details in Ap-
pendix D), including apparel, video, books, elec-
tronics, DVDs and so on. Each domain gives rise to
a binary classification task and we follow Mao et al.
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Figure 3: Experimental results on Amazon Review dataset. We plot the classification accuracy of all baselines for
all 14 tasks and average performance. Each colored cluster illustrates the classification accuracy performance of a
method over 10 runs.
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Figure 4: Experimental results on topic classification dataset. We plot classification accuracy of all baselines for
all 14 tasks and avg_acc. Each colored cluster illustrates classification accuracy of a method over 10 runs.

(2021) to treat 14 domains in the dataset as distinct
tasks, creating a dataset with 14 tasks, with 22180
training instances and 5600 test instances in to-
tal. 2) Topic classification dataset, 20 Newsgroup3,
consists of approximately 20,000 newsgroup docu-
ments, partitioned evenly across 20 different news-
groups. We follow Mao et al. (2021) to select 16
newsgroups from 20 Newsgroup dataset shown in
Table 1 and then divide them into four groups. Each
group gives rise to a 4-way classification task, cre-
ating a dataset with four 4-way classification tasks,
which is a more challenging dataset than amazon
review dataset.

3http://qwone.com/ jason/20Newsgroups/

5.2 Experimental Implementation

We follow the standard MTC setting and adopt the
same network architectures with the most recent
baselines for fair comparisons (Mao et al., 2021).
We adopt the hard parameter sharing MTL frame-
work shown in Figure 2, where task-shared network
is a TextCNN with kernel size of 3,5,7 and task-
specific network is a fully connected layer with a
softmax function. Adam is utilized as the optimizer
to train the model over 3000 epochs with a learning
rate of 1e-3 for both sentiment analysis and topic
classification. We set the batch size to 256.
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Figure 5: Learning curve of comparison methods in both amazon review and topic classification datasets.
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Figure 6: Evolution of task variance during training of baseline methods and GetMTL on the amazon review and
topic classification datasets.

5.3 Comparison Models

We compare the proposed GetMTL with a series of
MTC baselines, including

Single-Task Learning (STL): learning each
task independently.

Uniform Scaling: learning tasks simultaneously
with uniform task weights.

Uncertainty: using the uncertainty weighting
method (Kendall et al., 2018).

GradNorm: learning tasks simultaneously with
gradient normalization method (Chen et al., 2018).

TchebycheffAdv: using adversarial Tcheby-
cheff procedure (Mao et al., 2020).

MGDA: using gradient-based multi-objective
optimization method (Sener and Koltun, 2018).

BanditMTL: learning tasks simultaneously
with multi-armed bandit method (Mao et al., 2021).

MetaWeighting: using adaptive task weighting
method (Mao et al., 2022).

6 Experimental Results

6.1 Main Results

The main comparison results of GetMTL on two
benchmark datasets are shown in Figure 3 and 4. It
is clear that (See detailed numerical comparison re-
sults in Appendix D), our proposed GetMTL model
performs consistently better than the all compar-
ison methods on all tasks of both amazon review
and topic classification datasets, and its average per-
formance is superior to that of all baselines. This
verifies the effectiveness of our GetMTL method
in MTC problem. More concretely, in compar-
ison with the gradient-based MOO optimization
model (MGDA), our GetMTL achieves significant
improvement across all datasets. This indicates
that achieving a gradient trade-off nearby average
loss to mitigate task conflicts can better improve
all task performance and generalization ability of
MTC model.
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Figure 7: Task weights of comparison methods on four tasks (including comp, rec, sci, and talk tasks) in topic
classification dataset. Task weights obtained from MGDA, BanditMTL and GetMTL throughout the optimization
process. For better visualization, we plot points every 30 epochs.
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Figure 8: Impact of different values of ε.

6.2 Empirical Analysis on Convergence

In Section 4.3, we theoretically prove the con-
vergence of our proposed GetMTL. Furthermore,
we conduct extensive experiments about the con-
vergence to better demonstrate the advantages of
GetMTL shown in Figure 5. It is clear that the
learning curve of GetMTL is constantly decreasing
as the number of iterations increases and converges
to the lowest loss value compared with other base-
lines. It indicates that GetMTL can guarantee the
convergence of the objective value and obtain better
performance of all learning tasks.

In addition, we also conduct extensive experi-
ments to investigate how GetMTL mitigates task
conflict during training. We plot the task variance
(variance between the task-specific losses) of all
baselines on both amazon review and topic clas-
sification datasets shown in Figure 6. It can be
observed that all MTL baselines have lower task
variance than STL method, which illustrates that
MTL methods can indeed boost the learning of
all tasks compared with STL method. Moreover,
GetMTL has the lowest task variance and smoother
evolution during training than other MTL baselines.
This implies that our proposed GetMTL indeed
mitigates task conflicts compared with other MTL
methods.

6.3 The Evolution of Task Weight w

In this section, we visualize the task weights of
our GetMTL and two weight adaptive MTL meth-
ods (MGDA and BanditMTL) throughout the train-
ing process using the topic classification dataset
shown in Figure 7. It can be observed from these
four figures that the weight adaption process of our
GetMTL is different from that of MGDA and Ban-
ditMTL. GetMTL can automatically learn the task
weights without pre-defined heuristic constraints.
The weights adaption process of GetMTL is more
stable and the search space is more compact com-
pared with other MTL baselines.

6.4 Impact of the Values of ε

To investigate the impact of using different values
of ε on the performance of our GetMTL, we con-
duct experiments on two datasets, and the results
are shown in Figure 8. Noting that model with
ε = 0.0075 and ε = 0.025 perform overall better
than other values on these two datasets, respec-
tively. The model with larger value of ε performs
unsatisfactorily overall all tasks on two datasets,
one possible reason is that larger ε makes d pull far
away from the average loss g0 (see the conditions
in Eq. (9)). That is, Pareto optimality found by
GetMTL is getting further and further away from
MTC objective L0, which can be quite detrimental
to some tasks’ performance, leading to degraded
average performance.

7 Conclusion

In this paper, we propose a novel gradient trade-
off multi-task learning approach to mitigate the
task conflict problem, which can achieve a specific
trade-off among different tasks nearby the main
objective of multi-task text classification problem.
Moreover, we present a series of theoretical proofs
to illustrate the effectiveness and superiority of our
GetMTL. Experimental results on two benchmark
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datasets show that our GetMTL achieves state-of-
the-art performance in Multi-task Text Classifica-
tion problem.

Limitations

Our GetMTL needs to compute the gi for each
task i at each iteration and requires a backward-
propagation procedure over the model parameters.
Every iteration requires one forward-propagation
followed by T backward-propagation procedure
and computation of backward-propagation is typi-
cally more expensive than the forward-propagation.
Here, we define the time of one forward pass and
one backward pass as Ef and Eb, respectively.
The time of optimization process is defined as Eo.
Therefore, the total time E of GetMTL is defined,

E = Ef + TEb + Eo

≈ TEb + Eo

For few-task learning scenario (T < 100), usually
Eo � Eb and GetMTL still works fine. How-
ever, for large-scale task set (like T � 100), usu-
ally Eo � Eb or Eo � TEb. Consequently, our
GetMTL may get stuck in the optimization and
backward-propagation process at each iteration.
Therefore, the major limitation of our work is that
it can not be applied to scenarios with large-scale
task sets.
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A Derivations of GetMTL Algorithm

Lemma A.1. Let d∗ be the solution of

max
d∈Rm

min
i∈[T ]
〈gβi , d〉 , s.t. ‖d− g0‖ ≤ εgT0 d, (15)

where ε ∈ (0, 1], {gi ∈ Rm | ∀i ∈ {0, 1, ..., T}},
and gβi = βigi ∈ Rm. Then we have

d∗ =

(
g0

1− ε2‖g0‖2
+

ε‖g0‖2gw∗

(1− ε2‖g0‖2)‖gw∗‖

)
,

(16)
where g0 = 1

T

∑T
i=1 gi, and gw∗ =

∑T
i=1w

∗
i gβi .

The w∗ is the solution of

minw∈WTJ (w) =
gT0 gw + ε‖g0‖2‖gw‖

1− ε2‖g0‖2
, (17)

where WT = {w ∈ RT+
∣∣ ∑T

j=1wj = 1}. We
have,

min
i
gTi d

∗ =
gT0 gw∗ + ε‖g0‖2‖gw∗‖

1− ε2‖g0‖2
. (18)

Proof. We first construct Lagrange function of the
objective in Eq.(10),

L(d, λ, w) = gTwd− λ(‖d− g0‖2 − ε2(gT0 d)2)/2
(19)

According the Lagrange duality and Sion’s mini-
max theorem (Kindler, 2005), we can switch the
max and min without changing the solution and
then the primal problem can be reformulated as
following form,

min
λ,w∈WT

max
d∈Rm

gTwd− λ(‖d− g0‖2 − ε2(gT0 d)2)/2

(20)
With λ,w fixing, we first solve the max of
L(d, λ, w) w.r.t. d,

max
d
L(d, λ, w) = gTwd−

λ

2
(‖d−g0‖2−ε2(gT0 d)2)

(21)
We set the gradient of L(d, λ, w) with respect to d
equal to zero,

∇dL(d, λ, w) = gw−λ(d−g0)+λε2‖g0‖2d = 0,
(22)

We can get the optimal d∗,

d∗ =
gw + λg0

(1− ε2g20)λ
, (23)

and we plug the solution d∗ in L(d,w, λ) to obtain
L̂(d, λ, w),

min
w,λ

L̂(λ,w) =
(‖gw‖+ λ‖g0‖)2
2λ(1− ε2‖g0‖2)

− λ

2
‖g0‖2,

(24)

Then, we set the gradient of L̂(λ,w) with respect
to λ equal to zero,

∇λL̂(λ,w) =− ‖gw‖2
2λ2(1− ε2‖g0‖2)

− ‖g0‖
2

2

+
‖g0‖2

2(1− ε2‖g0‖2)
= 0

(25)
We can get the optimal λ∗,

λ∗ =
‖gw‖
ε‖g0‖2

. (26)

We then plug the λ∗ in d∗ to obtain,

d∗ =

(
g0

1− ε2‖g0‖2
+

ε‖g0‖2gw
(1− ε2‖g0‖2)‖gw‖

)
,

(27)
Finally, plugging d∗ and λ∗ into the objective in
Eq.(20), we can obtain the following optimization
problem J (w),

min
w∈WT

J (w) =
gT0 gw + ε‖g0‖2‖gw‖

1− ε2‖g0‖2
, (28)

We can obtain w∗ by solving following optimiza-
tion problem J (w) w.r.t. w, formally,

w∗ = arg min
w∈WT

J (w) =
gT0 gw + ε‖g0‖2‖gw‖

1− ε2‖g0‖2
,

(29)
�

B Proof of Theorem 4.1

Following the proof of Lemma A, we use same
Lagrangian function in Eq.(19) for simplicity,

L(d,w, λ) = gTwd− λ(‖d− g0‖2 − ε2(gT0 d)2)/2
(30)

Proof. Let PD(λ,w) = maxd L(d, λ, w) and
PP (d) = minλ,w L(d, λ, w). Then we can get,

min
λ,w

L(d, λ, w) ≤ L(d, λ, w) ≤ max
d
L(d, λ, w)

(31)
Thus, we have,

PP (d) ≤ PD(λ,w) (32)

Since both primal problem and dual problem have
optimal solutions, we have,

maxPP (d) ≤ minPD(λ,w) (33)
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Finally, we get

p∗ = max
d

min
λ,w

L(d, λ, w) ≤ min
λ,w

max
d

L(d, λ, w) = q∗

(34)

Since the dual problem is a convex programming
and the solutions d∗, λ, and w meet Karush-Kuhn-
Tucker (KKT) (Bertsekas, 1997; Désidéri, 2012)
conditions, we can get,

p∗ = q∗ = L(d∗, λ∗, w∗) (35)

That is, the optimal value defined by Eq. (14) is
equal to optimal value defined by Eq. (9). There-
fore, we can solve complex Maximin Optimization
Problem in Eq.(9) by solving its dual problem. �

C Proof of Theorem 4.2

Lemma C.1. If ` is differential and L-smooth,∇`
is L-Lipschitz continuous, then

`(θ′) ≤ `(θ)+∇`(θ)T(θ′−θ)+
L

2
‖θ′−θ‖2 (36)

Proof. Using the fundamental theorem of calculus
with the continuous function∇`, we can get,

`(θ′) = `(θ) +

∫ 1

0
∇`(θ + t(θ′ − θ))T(θ′ − θ) dt

= `(θ) +∇`(θ)T(θ′ − θ)

+

∫ 1

0
(∇`(θ + t(θ′−θ))−∇`(θ))T(θ′−θ)dt

≤ `(θ) +∇`(θ)T(θ′ − θ)

+

∫ 1

0
‖∇`(θ + t(θ′−θ))−∇`(θ)‖‖θ′−θ‖dt

(Using the definition of Lipschitz-continuous)

≤ `(θ) +∇`(θ)T(θ′−θ)+

∫ 1

0
tL‖θ′−θ‖2dt

= `(θ) +∇`(θ)T(θ′−θ) +
L

2
‖θ′ − θ‖2

(37)

�

Proof of Theorem 4.2

Proof. Let {θ(t)}∞t=1 be model parameters se-
quence generated by using update rule θ(t+1) =
θ(t) − µ(t)d where d is defined in Eq.(13). Since
all ∇`i are Lipschitz continuous, for each loss

{`i}i∈[T ], we have using Lemma C.1,

`i(θ
(t+1))≤`i(θ(t))+∇`i(θ(t))T(θ(t+1)−θ(t))

+
L

2
‖θ(t+1) − θ(t)||2

=`i(θ
(t))−µ(t)∇`i(θ(t))Td+

L

2
‖µ(t)d‖2

(Using the constraint‖d− g0‖ ≤ εgT0 d)

≤ `i(θ(t))−
µ(t)‖d− g0‖

ε
+

(µ(t))2

2
L‖d‖2

=`i(θ
(t))−µ

(t)‖d−g0‖
ε

+
µ(t)

2
min
j

‖d−g0‖
ε

≤ `i(θ(t))−
µ(t)‖d− g0‖

2ε
≤ `i(θ(t))

(38)
This inequality implies that the objective function
value of all tasks strictly decreases with each it-
eration when using the GetMTL algorithm. We
next analyze the rationality of step size µ(t) in
Lemma C.2.

�
Lemma C.2. The convergence of Gradient De-
scent with step size µ is guaranteed only if the
step size µ > 0 is carefully chosen such that
µ < 1/L (Nesterov, 1998; Ward et al., 2020) where
L > 0 is the e Lipschitz smoothness constant. Then
we have,

0 < µ < 1/L (39)

Proof. (1) Proof of left part of inequality.

µ = min
i∈[k]
‖d− g0‖
ε · L · d2 , s.t. ε ∈ (0, 1], L > 0 (40)

Therefore, we can get µ > 0.
(2) Proof of right part of inequality.

µ = min
i∈[k]

‖d− g0‖
ε · L · ‖d‖2 (using ‖d− g0‖ ≤ ε · gT0 d)

≤ min
i∈[k]

εgT0 d

ε · L · ‖d‖2 =
gT0 · d
L · ‖d‖2

=
‖g0‖ · ‖d‖ cosϕ

L · ‖d‖2 =
‖g0‖ cosϕ

‖d‖ · 1

L

where ϕ ∈ [0◦, 90◦) denotes the angle of d and
g0. In general, we all penalize gradient norm for
improving the generalization and stability. We thus
can get ‖d‖2 − ‖g0‖2 > 0 when ε ∈ (0, 1]. Then,

µ ≤ ‖g0‖‖d‖ cosϕ

L · ‖d‖2 =
|g0| cosϕ

‖d‖ · 1

L
<

1

L
,

Then, we can get 0 < µ < 1/L.
�
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Tasks STL Uniform Uncertainty GradNorm MGDA TchebycheffAdv BanditMTL MetaWeighting GetMTL(Ours)

COMP 87.36 86.84 86.76 86.26 87.88 87.36 88.06 87.99 89.67
REC 94.48 96.21 96.02 95.63 96.25 95.84 96.16 95.9 96.39
SCI 94.45 96.26 96.35 96.08 95.78 95.82 95.66 96.08 96.56

TALK 85.04 86.08 86.27 85.94 86.56 85.96 85.93 85.82 86.84

AVG 90.43 90.93 90.87 90.7 91.2 90.87 91.26 91.25 92.09

Table 2: The complete performance of 4 tasks in topic classification dataset with our GetMTL and other MTL
baselines.

Tasks STL Uniform Uncertainty GradNorm MGDA TchebycheffAdv BanditMTL MetaWeighting GetMTL(Ours)

Apparel 87.57 89.18 89.59 88.69 88.63 87.98 88.95 89.83 90.03
Baby 87.14 89.91 89.96 89.33 89.05 88.65 90.02 90.01 90.32
Books 87.02 87.64 87.09 87.14 85.66 86.65 87.09 86.82 87.77

Camera 90.54 91.49 91.54 90.84 91.05 91.44 91.54 91.54 92.26
Dvd 84.61 88.17 87.35 87.32 87.65 87.24 87.08 88.02 89.30

Electronics 85.42 88.09 88.68 88.88 87.94 86.80 87.60 86.99 89.49
Health 89.07 90.82 91.50 90.59 90.86 90.55 91.81 91.85 91.85
Kitchen 85.16 89.51 89.65 89.33 88.69 87.67 90.07 89.25 90.81

Magazines 93.32 93.61 92.54 93.35 93.21 93.40 93.36 94.30 94.43
Music 83.92 84.27 86.25 84.97 85.01 83.90 86.37 86.88 87.04

Software 89.97 92.44 92.59 93.24 92.82 92.77 92.95 92.71 93.93
Sports 87.52 90.52 90.42 90.88 90.65 89.85 89.72 89.96 91.81
Toys 87.02 88.73 89.89 88.10 88.30 88.49 88.47 89.11 90.62
Video 88.8 89.65 89.28 88.92 89.33 89.06 89.62 89.88 89.55

Avg 86.52 88.47 88.74 88.01 88.30 87.71 88.78 89.14 89.80

Table 3: The complete performance of 14 tasks in amazon review dataset with our GetMTL and other MTL
baselines.

D Complete Performance of Each Task
for Amazon Dataset

Amazon review dataset includes 14 domains, such
as Apparel, Baby, Books, Camera, Dvd, Electron-
ics, Health, Kitchen, Magazines, Music, Software,
Sports, Toys, and Video. Each domain is treated as
a 14 binary classification task.

We provide the full comparison on the amazon
review and topic classification datasets in Table 3
and Table 2 respectively. Table 2 shows that our
GetMTL can achieve the best average classification
accuracy of 92.09%, outperforming the second-best
model BanditMTL by a margin of 0.83%. More-
over, our GetMTL can also beat other baselines on
each individual tasks. Table 3 reports the perfor-
mance of all 14 tasks on amazon review dataset.
Our proposed GetMTL achieves the best perfor-
mance on 13 out of 14 tasks and obtain best average
classification accuracy.
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