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Abstract

We study semantic construal in grammatical
constructions using large language models.
First, we project contextual word embeddings
into three interpretable semantic spaces, each
defined by a different set of psycholinguistic
feature norms. We validate these interpretable
spaces and then use them to automatically de-
rive semantic characterizations of lexical items
in two grammatical constructions: nouns in sub-
ject or object position within the same sentence,
and the AANN construction (e.g., ‘a beautiful
three days’). We show that a word in subject
position is interpreted as more agentive than
the very same word in object position, and that
the nouns in the AANN construction are inter-
preted as more measurement-like than when
in the canonical alternation. Our method can
probe the distributional meaning of syntactic
constructions at a templatic level, abstracted
away from specific lexemes.

1 Introduction

There are now several paradigms for the linguisti-
cally oriented exploration of large neural language
models. Major paradigms include treating the
model as a linguistic test subject by measuring
model output on test sentences (e.g., Linzen et al.,
2016; Wilcox et al., 2018; Futrell et al., 2019) and
building (often lightweight) probing classifiers on
top of embeddings, to test whether the embeddings
are sensitive to certain properties like dependency
structure (Tenney et al., 2019; Hewitt and Man-
ning, 2019; Rogers et al., 2020; Belinkov, 2022;
Manning et al., 2020). 1

Here, we consider another approach: project-
ing contextual, token-level embeddings into inter-
pretable feature spaces defined by psycholinguistic
feature norms (Binder et al., 2016; Buchanan et al.,

1Code and data for all experiments in this paper are
available at https://github.com/gchronis/features_
in_context.

Figure 1: (top) Models are trained by using multi-
prototype embeddings in LLM space to predict gold
feature vectors derived from psycholinguistic feature
norms. (bottom) These same models are used to project
contextual word embeddings to interpretable contextual
feature space (model=BUCHANAN-PLSR-MIL).

2019; McRae et al., 2005). By learning a map-
ping to these spaces, as illustrated in Figure 1, we
attain context-sensitive, interpretable, real-valued
lexical-semantic features.

After experimenting to determine best practices
for contextual-feature projection, we use these fea-
tures to explore whether contextual embeddings
are sensitive to subtle semantic construals in differ-
ent grammatical constructions. Specifically, we ob-
serve how even seemingly similar constructions can
impart a different semantics on their component
parts or ‘slot fillers’ (Trott et al., 2020; Goldberg,
2019). Consider the Article + Adjective + Numeral
+ Noun (AANN) construction: e.g., “a beautiful
three days in London,” where the normally singu-
lar “a” precedes a plural noun and the adjective
precedes the numeral (Solt, 2007; Dalrymple and
King, 2019; Keenan, 2013). This construction of-
ten occurs with units or measure phrases (e.g., days,
feet), but can also occur with non-measure nouns
(e.g., “a lucky three students”).

While it is tempting to think of “a lucky three
students” as semantically equivalent to “three lucky
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students,” it has a different construal. Specifically,
the AANN construction is acceptable only when
the noun behaves as a single collective unit and
is, in effect, more semantically similar to a unit
of measurement than it would be in the unmarked
construction. Evidence for a difference in meaning
between the two variants is seen in their divergent
distributions. For example, the AANN construction
is unavailable in contexts like (1) and (2) (#-ed
cases; adapted from Solt, 2007).

(1) The essay consisted of (a few eloquent
paragraphs / # an eloquent few paragraphs)
separated by pages of gibberish.

(2) He played (five boring songs / # a boring
five songs), but in between he played one
really good one.

The AANN construction cannot occur in contexts
where the referent of the noun is split into non-
contiguous parts. This distributional pattern is
taken as evidence that the AANN construction con-
strues its argument as a single, measure-like unit.

In this paper, we study distributional evidence
on a larger scale, using a contextualized large lan-
guage model as a ‘compressed corpus’ that captures
observed statistical regularities over utterances of
many speakers. We analyze this compressed corpus
by mapping embeddings to interpretable feature
spaces based on psycholinguistic feature norms.
When we do this for the embedding of the noun
days in “I spent a beautiful three days in London,”
we find the most salient difference with the “I spent
three beautiful days in London” to be a higher
value for features like measure and unit when it
is in an AANN construction. We argue that this
is because human speakers construe the AANN
construction as being “measure-ish”, and that this
construal is reflected in their language use in a way
that the contextual language model can pick up.

We conduct two case studies, one about AANNs
and the other about grammatical subjecthood.
Specifically, we show that a word in subject po-
sition is interpreted as more agentive than the
very same word in object position (consistent
with findings from psycholinguistics, e.g., Kako,
2006), and that a noun in the AANN construc-
tion is interpreted as more measurement-like
than when in the canonical alternation. Our re-
sults demonstrate that construals can be inferred
from statistical usage patterns. While we here use
constructions with known construals, our positive

results indicate that we may be able to analyze con-
structions where the construal is less clear in the
theoretical literature.

While feature norms have been used to interpret
distributional semantic models (Baroni and Lenci,
2010; Herbelot and Vecchi, 2015; Fagarasan et al.,
2015; Rosenfeld and Erk, 2023), we emphasize the
linguistic value of reliable, reusable, interpretable
semantic spaces, which we use to interrogate the
semantic properties of language in use. The abil-
ity of our method to characterize subtle semantic
differences using language models offers a point
of connection between linguistically oriented deep
neural network analysis (Baroni, 2021) and top-
ics in formal linguistics. In particular, this work
empirically demonstrates the potential alignment
between LMs and feature-based theories of lexi-
cal semantics (as illustrated by Petersen and Potts,
2023).

Our main goal is to use interpretable feature
spaces for understanding the semantic construal
of words in context, specifically the AANN con-
struction and the transitive construction.

In Section 2, we lay out our method for con-
structing interpretable feature spaces for tokens in
context. Then, in Section 3, we evaluate the suc-
cess of our method on a sense differentiation task, a
homonym feature prediction task, and a qualitative
analysis. The idea is that, if the method for map-
ping from embedding space to context-sensitive
feature space is successful, we will predict unique
semantic features for different senses. Having es-
tablished and validated our method, we then turn
to our key constructions in Section 4.

2 Methods

The task is to learn a mapping from contextual
word embedding space to an interpretable space
defined by feature norms (Section 2.1), where every
dimension corresponds to a semantic feature. We
construct the training data by pairing feature norms
with embeddings derived from contextual word
vectors. We train models at the type-level, e.g., to
map the embedding vectors for the word ring to
the set of feature norms for ring, as shown in the
top half of Figure 1. But ultimately, we use the
model to predict semantic features for individual
tokens. That is, we project the token vector of
a single occurrence of the word “ring” into the
feature space learned at the type-level, as shown in
the bottom half of Figure 1.
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2.1 Psycholinguistic feature norms
We construct three semantic spaces, trained from
three datasets of psycholinguistic feature norms.

The McRae et al. (2005) feature norms com-
prise 541 concrete English nouns and 2,526 fea-
tures. Participants were asked to list definitional
properties of cue words. The features are full pred-
icates; for example, a brush ‘has_bristles’ and
is ‘used_on_hair’.

The Buchanan et al. (2019) feature norms
consist of over 4000 English words and 3,981 dis-
tinct features, from all open-class parts of speech,
and include abstract words. The authors collect
new norms and collate them with McRae norms
and the Vinson and Vigliocco (2008) verb feature
norms. The features are tokenized and lemmatized.
If a participant said ‘found in kitchens,’ this yields
the features ‘found’ and ‘kitchen’.

The Binder et al. (2016) data consists of 535
English words rated for the relevance of 65 pre-
defined features. The features were chosen to cor-
respond to known neural activation regions in the
human brain, and to domains of cognition and per-
ception; they are more coarse grained than the other
norms. The word song might have a high rating for
‘Audition’ but a lower rating for ‘Vision’.

Feature norms as feature spaces Feature norms
can be interpreted as vectors, with a real-valued
dimension for each feature in the dataset. The dif-
ferences between the feature norm data sets lead
to differences in the feature inference problems.
For MCRAE and BUCHANAN, values along each
feature-dimension correspond to the number of par-
ticipants who named that feature—zero in the ma-
jority of cases. These spaces are thus sparse and
high-dimensional. For these two spaces, we treat
the output as a ranked list of features, where the
lower ranks are not relevant. The BINDER space
is dense and low-dimensional, and the goal is to
predict the value of each feature. Here, a low value
on a feature does not indicate lack of relevance.

The norms differ in what they say about a word.
The McRae and Buchanan norms are fine-grained,
and represent salient or prototypical meanings.
McRae norms are limited in their applicability be-
cause they only cover concrete nouns. Buchanan
norms have a coverage that is wider but still some-
what ad-hoc. The Binder norms are high-level and
were designed to be comprehensive.

Past and concurrent work on feature prediction
has explored the utility of McRae (Fagarasan et al.,

2015; Herbelot and Vecchi, 2015; Rosenfeld and
Erk, 2023) and Binder (Utsumi, 2020; Turton et al.,
2021) norms for probing distributional models and
language models.

2.2 Embeddings
The feature norms serve as our gold feature labels
that we map our type-level embeddings onto. For
these type-level embeddings, we use embeddings
derived from BERT (Devlin et al., 2019), either in a
vanilla variety (one vector representation per word)
or using multi-prototype embeddings, which have
multiple embedding clusters per word (roughly cor-
responding to distinct usages). Specifically, we
use the embeddings from Chronis and Erk (2020),
which are generated by performing K-means clus-
tering on BERT embeddings of tokens from the
British National Corpus (BNC). This procedure
collects up to 200 occurrences of each cue word in
the British National Corpus, and generates token
vectors for each occurrence with the HuggingFace
bert-base-uncased model. For multi-prototype
embeddings, these representations are clustered us-
ing K-means, using their best-performing setting of
K=5 clusters per word at Layer 8. For vanilla em-
beddings, we generate BERT vectors through the
same procedure, but simply average the token vec-
tors together (K=1) to get one vector per word. See
Appendix A for more detail on the multi-prototype
vectors.

Though the mapping is trained from type-level
(or sense-level) embeddings, contextual word vec-
tors at the token level can be projected into the
interpretable space using the resulting model.

2.3 Mapping from embeddings to feature
norms

Though feature prediction is well explored for
static embeddings (Baroni and Lenci, 2010; Herbe-
lot and Vecchi, 2015; Fagarasan et al., 2015; Rosen-
feld and Erk, 2023; Utsumi, 2020) and gaining pop-
ularity as a method to probe contextual embeddings
(Chersoni et al., 2021; Turton et al., 2021; Apidi-
anaki and Garí Soler, 2021; Proietti et al., 2022),
there is no consensus as to which models work best
for which datasets. We experiment with several
mapping methods used previously for feature pre-
diction. The first is a feed forward neural network
(FFNN, with a single hidden layer, tanh activation,
and dropout applied after the final output layer;
Turton et al., 2020). The dropout parameter, hid-
den layer size, learning rate, and number of epochs
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were grid-searched, as described in Appendix B
(which also includes implementation details for
the other models described). The second is partial
least squares regression (PLSR, using the scikit-
learn implementation; Herbelot and Vecchi, 2015;
Fagarasan et al., 2015; Utsumi, 2020), whereby
we run a partial least squares regression that pre-
dicts the feature space from the (potentially multi-
prototype) embeddings. The third is label propa-
gation (PROP; Rosenfeld and Erk, 2023), which
percolates labels through a graph from labels to
unlabeled nodes.

In all cases, the goal is to predict a real-valued
semantic feature vector. Thus, the task is formu-
lated as a multi-output regression problem. In the
vanilla setting, the above methods can straightfor-
wardly map from a particular word embedding
into feature space. But, in order to map from
a multi-prototype embedding into feature space,
the problem is trickier—especially since the multi-
prototype embeddings may capture meanings that
are entirely absent in interpretable feature space.

Therefore, we test versions of each model us-
ing techniques inspired by multi-instance learning
(MIL; Dietterich et al., 1997). The implementa-
tion of these MIL-inspired models is different for
each of the three methods. For the FFNN, we use
an attention mechanism that allows the model to
learn a weighted average over instances, as in Ilse
et al. (2018). For PLSR and Label Propagation,
we simply construct a separate training example
for each prototype drawn from the multi-prototype
embedding That is, for a 5-prototype vector, we
construct 5 training examples, where each of the
5 examples consists of a (unique) single prototype
vector paired with the same type-level feature vec-
tor. See Appendix C for more detail on adaptations
for the multi-prototype setting.

3 Evaluating Contextual Feature Norms
for Interpreting Semantic Space

We first evaluated the models on their ability to
fit the type-level feature norms they are trained
on. We do not go into detail here, as it is context-
dependent meanings we are most interested in. See
Appendix D for full results. Overall, BERT-derived
models were comparable to those we trained with
static GloVe (Pennington et al., 2014) embeddings,
and to the best static models in the literature. This
initial evaluation established that models using
BERT-derived embeddings are just as good as static

McRae Buchanan Binder

MIL Vanilla MIL Vanilla MIL Vanilla

PLSR .41 .39 .41 .42 .28 .26
FFNN .36 .36 .42 .40 .30 .30
PROP -.03 -.03 .10 .10 -.03 -.03

Table 1: Results of Sense Differentiation experiment.
Pearson correlation of cosine similarities of predicted
features vectors with Wu-Palmer similarity between
senses. Data: pairs of tokens of the same noun lemma in
SemCor. # Lemmas = 8021, # Token-pairs = 1,045,966,
p < 0.0001 in all cases.

embeddings for predicting semantic features.
To evaluate our models on in-context feature

prediction, we conduct two quantitative experi-
ments: one on a sense differentiation task, one
on a homonym disambiguation task, as well as a
qualitative analysis for a representative word (fire).
The goal of this section is to explore whether the
contextual feature norm method successfully cap-
tures contextual modulation of word meaning. For
these experiments, we select the hyperparameters
for each model that performed the best at type-level
feature prediction under 10-fold cross-validation
(Appendix D).

3.1 Exp. 1: Sense Differentiation

Token-level evaluation is tricky because there are
no existing datasets for in-context feature norms.
Noting this obstacle, others utilize indirect meth-
ods like word-sense disambiguation and qualitative
analysis, (Turton et al., 2020), or forego in-context
evaluation (Chersoni et al., 2021).

Turton et al. (2020) evaluate the Binder fea-
ture prediction model using the Words in Context
Dataset (Pilehvar and Camacho-Collados, 2019),
which only labels token pairs as ‘same meaning’ or
‘different meaning’. We devise a sense differentia-
tion experiment using the SemCor corpus, (Miller
et al., 1994), which lets us do a more fine-grained
analysis in terms of close and distant polysemy.

The logic of this experiment is that, if two senses
of a word are semantically distant, we expect the
feature vectors in projected space to also be dis-
tant. We test the quality of our predicted feature
vectors by testing how well the cosine distance be-
tween vectors for polysemous words corresponds
to the distance between their senses in WordNet
(Fellbaum, 2010).

To build this dataset, we collect examples of
noun lemmas in the SemCor corpus, which is an-
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notated with WordNet senses for words in context.
In SemCor, “Water is a human right,” is labeled
right.n.02, an abstract idea due to a person,
while “He walked with a heavy list to the right,” is
labeled right.n.01, the side to the south when fac-
ing east. To counteract data imbalance, we collect
only up to 30 instances of a particular word from
any one WordNet sense. We determine degrees
of similarity between WordNet senses using Wu-
Palmer similarity (Wu and Palmer, 1994), which
measures the degrees of separation between them.
Then, each token in the dataset is projected into in-
terpretable semantic space. We compute the cosine
similarity between pairs of tokens and compare
them to the Wu-Palmer similarity of their word
senses. The key hypothesis is that we should see
highly similar predicted features for tokens of the
same sense, somewhat divergent features when the
senses are different but related, and very different
features for distant senses.

Table 1 shows the results. Regardless of whether
we use Multi-Instance Learning, both PLSR and
FFNN models show a significant correlation be-
tween the sense similarity and similarity of pre-
dicted features. We interpret this to mean that
PLSR and FFNN reflect degree differences of simi-
larity between word senses.

Comparison to frozen BERT embeddings The
results in Table 1 suggest that, at least to some
extent, the projected semantic features capture in-
formation about different word senses. But to what
extent? We take it as a given that the hidden layer
embeddings of bert-base, because they are sensi-
tive to context, reflect differences in word senses.
Therefore, we run an additional baseline where
we run the same correlational analysis using the
frozen weights of bert-base, instead of the pro-
jected semantic feature. That is, we compute a
correlation between the cosine distance between
bert-base vectors from Layer 8 and the WordNet-
derived Wu-Palmer similarity metric. The corre-
lation between cosine distance and WordNet dis-
tance for plain BERT vectors is as high as our best
models (Pearson’s r = 0.41, p < .0001), which
suggests that, even though the feature projection
method is trained on word types, our training pro-
cedure does not lead to catastrophic information
loss about word tokens. More precisely, for McRae
and Buchanan datasets, PLSR learns a projection
that is as contextual as the original BERT space.
Our best Binder space (FFNN) is less contextual

McRae Buchanan

MIL Vanilla MIL Vanilla

PLSR .50 .50 .42 .42
FFNN .50 .50 .33 .25
PROP .30 .30 .58 .25

Table 2: Results of Homonym Disambiguation Exper-
iment. Performance on gold contextual feature predic-
tion for homonyms (McRae and Buchanan only). Re-
sults reported are MAP@k. (n = 1093)

than the original BERT space, though it still differ-
entiates senses. This evaluation also demonstrates
that Label Propagation, which is good at fitting
norms at the type level (as shown in Appendix D
and Rosenfeld and Erk, 2023) is not an effective
method for generating contextual features.

Performance varies across words Performance
on this task is not necessarily uniform across all
words. For instance, as discussed in Appendix
E, performance on the sense differentiation task
(using our interpretable feature projections or the
original BERT embeddings) is better for concrete
words, relative to abstract words. We leave it to
future work to further explore this, as well as other
sources of heterogeneity in performance.

3.2 Exp. 2: Homonym Disambiguation

The previous experiment considered many lem-
mas, with widely distinct as well as closely related
senses. However, it is an indirect evaluation: it does
not let us directly compare our projected context-
dependent features to known context-dependent fea-
ture norms. But the MCRAE dataset offers a natu-
ral experiment, since it contains 20 homonymous
words in disambiguated format. That is, separate
norms exist in the MCRAE dataset (and per force
the BUCHANAN dataset, which is a superset) for
‘hose (water)’ and ‘hose (leggings)’. We treat these
disambiguated norms as gold contextual features
for tokens of these senses. That is, we treat the
MCRAE features for ‘hose (water)’ as a gold label
for the token “hose” in a sentence like “I watered
my flowers with the hose.” As SemCor only con-
tains a few sense-annotated tokens for each of the
relevant homonyms, we use CoCA (Davies, 2018),
a large corpus that of largely American English
news text, to collect a dataset of tokens for each
homonym. See Appendix G for details. Models
were re-trained on all words in the feature norm
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dataset except the held-out homonyms.2

On this task, performance is measured as
mean average precision (MAP@k) over the gold
homonym features from McRae and Buchanan,
where k is the number of gold features specific
to each concept (Derby et al., 2019; Rosenfeld
and Erk, 2023). Table 2 shows results. For both
sets of norms, we see strong performance. The
best-performing models achieve a precision of 0.50
(on McRae) and 0.42 (on Buchanan). Though we
cannot directly compare performance, feature pre-
diction is generally understood to be a very hard
task, with SOTA performance for static McRae fea-
ture prediction at 0.36 (Rosenfeld and Erk, 2023).
This is because models will often predict plausi-
ble features that aren’t in the gold feature set, like
has_teeth for cat (Fagarasan et al., 2015).

3.3 Qualitative Analysis

In order to get a better sense of our in-context pre-
dictions, we now explore predicted features for
clusters of token embeddings, extracted using the
clustering procedure described in Erk and Chronis
(2023) (which use the same kind of multi-prototype
embeddings as described in Section 2.2), for the
representative word fire. Focusing on a single,
highly polysemous word allows us to build fine-
grained intuition as to the kind of information each
of our feature norms can offer. In addition, charac-
terizing token embedding clusters may be useful in
itself: Giulianelli et al. (2020) use the term usage
types (UTs) for clusters of token embeddings, and
note that they reflect word senses and other regular-
ities such as grammatical constructions. UTs have
proven useful for the study of semantic change.
However, while UTs are created automatically by
clustering, researchers usually manually design la-
bels for UTs to make their interpretation clear. An
automatic labeling of token clusters with projected
semantic features, as we demonstrate here, could
hence be useful for studying UTs.

Our goal in this section is to take 5 UTs for
the word fire from Erk and Chronis (2023) and
project them into our interpretable semantic spaces
(BINDER, MCRAE, and BUCHANAN). These UTs
are: destructive fire (e.g., “There was a fire at Mr’s
store and they called it arson.”), cooking/cozy fire
(e.g., “They all went over to the fire for plates of
meat and bread.”), artillery fire (e.g., “a brief burst

2Because Binder norms do not contain any homonymous
pairs, this evaluation is unavailable for BINDER space.

Buchanan

1. figurative animal, color, light, fire, burn
2. destructive destroy, build, cause, break, person
3. artillery act, weapon, kill, loud, human
4. cooking hot, food, wood, burn, heat
5. N-N compounds person, place, work, office, law

McRae

1. figurative has_legs, is_hard, different_sizes,
has_4_legs, is_large

2. destructive different_colors, a_mammal,
made_of_paper, made_of_cement,
inbeh_-_explodes

3. artillery a_weapon, used_for_killing,
made_of_metal, is_loud,
used_for_war

4. cooking found_in_kitchens,
used_for_cooking, requires_gas,
an_appliance, is_hot

5. N-N compounds has_doors,
used_for_transportation, a_bird,
has_feathers, beh_-_eats

Binder

1. figurative Color, Needs, Harm, Cognition,
Temperature

2. destructive Unpleasant, Fearful, Sad, Conse-
quential, Harm

3. artillery UpperLimb, Communication, So-
cial, Audition, Head

4. cooking Pleasant, Needs, Happy, Near,
Temperature

5. N-N compounds Biomotion, Face, Speech, Body,
Unpleasant

Table 3: The most distinctive features for each prototype
of fire multi-prototype embeddings, in each of the three
interpretable semantic spaces.

of machine-gun fire”), and noun compounds (e.g.,
“fire brigade,” “fire hydrant”). These UTs are rep-
resented as the centroids of K-means clusters of
token vectors for the word fire.

Then, we project these usage type vectors into
interpretable semantic spaces, using PLSR+MIL
for McRae and Buchanan, and FFNN+MIL for
Binder. Predictably, the models predict similar
features values in many cases, as the senses of fire
have a lot in common. For example, in BUCHANAN

space, all UTs except artillery have a high rating
for ‘hot’ (Appendix F). To avoid this issue and
get at how the usage types differ, for each UT we
average over the features predicted for the other
four embedding centroids and select the features
with the greatest positive difference to the target UT.
Table 3 shows the features that most distinguish
each UT.

The most distinctive features in Binder space are
reasonable—destructive fire is indeed unpleasant,
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fearful, full of consequences, sad, and capable of
causing harm. The MCRAE features are reason-
able for the more concrete senses, which have syn-
onyms that appear in the dataset (like ‘gun’ for 3
and ‘oven’ for 4). However, in contrast to BINDER

and BUCHANAN, the distinctive MCRAE features
predicted for the more abstract UTs (1, 2, and 5)
have no ready interpretation.

3.4 Discussion

Mapping method Looking at both experiments,
PLSR obtained the overall best results for predict-
ing both Buchanan and McRae features. For Binder
features, where the model must predict the best fit
along every dimension, FFNN does better. Based
on these experiments, we recommend using PLSR
to predict definitional features like McRae and
Buchanan, and FFNN to predict comprehensive
features like Binder.

MIL Aside from a few instances, the multi-
instance framework does not drastically improve
model performance. Though the positive effect is
marginal, we use MIL in the case studies below.

Choice of feature norms The experiments above
also give us insight into which feature space to use
when. Experiment 1 shows that different senses are
very distinct in McRae (r = 0.41) and Buchanan
(r = 0.41) space, but not as distinct in Binder space
(r = 0.28).

The qualitative look at feature predictions indi-
cates that Buchanan and Binder models produce
reasonable features for the word fire in different
contexts, including when used in a more abstract
sense. Though the best McRae model scores well
overall on quantitative tasks, the qualitative analy-
sis suggests that it does not extend well to abstract
senses. This conclusion aligns with expectations,
given that Buchanan and Binder norms contain fea-
tures for verbs and abstract nouns, whereas the
McRae norms only contains concrete nouns.

Binder feature vectors are comprehensive and
good for examining abstract meanings, but
Buchanan feature vectors can pinpoint more pre-
cise meanings. The case studies that follow use
these feature spaces according to their strengths.
To get an idea of the overarching differences be-
tween two constructions, we use BINDER (4.2). To
generate specific descriptions of lexical meaning in
context, we use BUCHANAN (4.1).

4 Evaluating Constructions in Context

Having validated that our method works for ex-
tracting meaningful, context-dependent semantic
information from large language models, we turn to
two target constructions: the AANN construction
(described in the Introduction) and the basic tran-
sitive construction. Crucially, in both studies, the
word types are largely controlled between condi-
tions (e.g., comparing “The family spent a beautiful
three days in London." vs. "The family spent three
beautiful days in London.”), and so we compare
context-dependent features derived from minimally
different sentences. This design lets us study the ef-
fect of context in a highly controlled way, without
being influenced just by the identity of the words
in the sentences.

4.1 Construction 1: ‘A Beautiful Three Days’
Method Using a 1,000 sentence sample from Ma-
howald (2023)’s dataset of sentences templatically
constructed with varying nouns, adjectives, numer-
als, and templates from a variety of subtypes, we
compared AANN head nouns to their equivalent
“default” forms (e.g., “The family spent a lovely
three days in London.” vs. “The family spent three
lovely days in London”). Crucially, these form a
near minimal pair.

We extracted the embeddings for the head noun
token in each sentence. We projected the token
embeddings into BUCHANAN space (using PLSR –
MIL) and examined the delta between each feature,
for each token, in the AANN construction vs. in
the default construction.

Results The top 5 features associated with the
AANN construction (relative to default) were: mea-
sure, one, green, unit, grow. The features most as-
sociated with default (relative to AANN) were: an-
imal, leg, child, human, please. The bolded AANN
features suggest that nouns in the AANN alterna-
tion are more measure-like, and treated as more
singular. These are consistent with observations in
the literature. Animacy-oriented words (e.g., ani-
mal, child, human) seem to be more associated with
the default construction. Though this is not pro-
posed outright in the literature, it’s been observed
that AANN’s are more likely to be ungrammatical
when the head noun is agentive (Solt, 2007).

Focusing in on a representative sentence pair
that shows a particularly sharp difference, the word
meals in “They consumed an ugly five meals.” is
rated much higher on the MEASURE (.18) and UNIT
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Figure 2: We plot the average predicted value of each
feature for naturally occurring subjects and objects
(points), and show how that probability shifts when we
instead use swapped sentences (arrows). We show only
those features which differ significantly for either over-
all subjectness vs. objectness (marked with a *), or for
contextual swapping (caret). For example, Natural Ob-
jects have low values for the Biomotion feature; when
swapped to subject position, their Biomotion value in-
creases. Norms are centered but not normalized.

(.13) feature than the word meals in “They con-
sumed five ugly meals.” (.05 and .04, respectively).
We interpret these results as evidence that projec-
tion into the Buchanan space detects a meaning-
ful and attested semantic difference between the
AANN construction and the default construction.
Specifically, we can meaningfully detect that the
construal associated with the AANN construction
is more associated with measurement/units, com-
pared to a non-AANN sentence matched on lexical
content, even when the noun is not itself inherently
a unit or measurement noun.

4.2 Construction 2: Grammatical Roles

Understanding grammatical roles like subject and
object is crucial for natural language understand-
ing. “The dog chased the cat.” means something
different from “The cat chased the dog.” English re-
lies largely on SVO word order for discriminating
subjects vs. objects. Arguments that are animate,
sentient, cause an event or a change of state in
another participant, or move relative to another par-
ticipant tend to be realized as subjects. Arguments
that undergo a change of state, or are affected by

another participant, tend to be realized as objects
(Levin et al., 2005; Dowty, 1991). Most of the time,
just knowing the two nouns in a transitive sentence
is enough to know which is the subject and which
is the object: If the nouns are “dog” and “bone”,
you can guess that “dog” is the subject and “bone”
the object (Mahowald et al., 2022).

There is evidence that contextual language mod-
els like BERT represent subjecthood (Linzen et al.,
2016; Papadimitriou et al., 2021; Hewitt and Man-
ning, 2019). But do these models actually represent
abstract grammatical subject, or do they rely on
lexical information? One way to tease this apart
is to study sentences where grammatical context
and lexical heuristics come apart. Papadimitriou
et al. (2022) showed that BERT can reliably dis-
tinguish between grammatical subject and object,
even for sentences with non-prototypical arguments
like, “The onion chopped the chef”, but only in the
higher levels of the model after more information
has been shared. At lower layers, the model seems
to rely on lexical information (e.g., would classify
“chef” as the subject and “onion” as the object).

While prior work has explored the subject/object
classification question by training bespoke probes,
here we use projections into BINDER space. We
focus on the set of English sentences studied in
Papadimitriou et al. (2022), which are extracted
from the Universal Dependencies Treebank (Nivre
et al., 2016) and appear in two forms: the original
form and a form in which the subject and object
are swapped. For instance: compare the NATURAL,
“Finally a chambermaid stuck her head around the
corner” vs. the SWAPPED, “Finally a head stuck her
chambermaid around the corner.” The Treebank
from which the sentences are sampled contains data
from a number of different English corpora.

We project the subject and object in each of the
486 NATURAL sentences into BINDER space, using
the FFNN-MIL method (which is best for token-
level BINDER prediction), and then do the same
for each of their SWAPPED counterparts. We first
ask whether naturally occurring subjects tend to
be more animate than objects. But we then ask
whether, merely by virtue of being a subject, the
lexical item takes on a more animate construal.
Such a result would be consistent with psycholin-
guistic findings in humans: Kako (2006) shows
that, even with nonce sentences like “The rom
mecked the zarg,” the subject word “rom” is rated
as more animate.
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Words that tend to appear in subject posi-
tion are associated with higher animacy ratings.
Given that there are known to be systematic differ-
ences between subjects and objects, will the Binder
features for subjects and objects systematically dif-
fer in the NATURAL sentences? As can be seen
in Figure 2, the answer is clearly yes. Animacy-
associated features like Biomotion, Body, and Hu-
man are higher for naturally occurring subjects than
for objects. We ran a linear regression predicting
the Binder value from the subject/object status of
the word, the Binder feature, and their interaction.
The interaction term is the one we care about: how
does the predicted value for that feature change
when we are dealing with a subject or object? After
Bonferroni correction for multiple comparisons, we
find several features significantly correlated with
subjecthood and a few with objecthood, starred in
Figure 2.

The same token is construed as more animate
when it appears in subject position. The preced-
ing analysis could have been done using type-level
Binder features: the upshot is that word types that
appear in subject position get animacy-associated
features. The highest rated words in this data set,
for the Biomotion category, are: animals, reptiles,
cat, dog, and they all occur as subjects in the corpus.
But merely knowing that naturally occurring sub-
jects and objects differ in Binder features does not
tell us the whole story. Using the contextual feature
projections, we can explore whether two tokens of
the same type are construed as differing in animacy,
based on whether they appear as a subject. We can
do this in a controlled way by comparing the same
word in the natural sentences and the swapped ones.
For instance, in the sentence above, “chambermaid”
appears as a subject but is an object in the swapped
version. How does its Binder rating change? To
assess that, we compare natural subjects vs. those
same words moved to object position of the same
verb in the same sentence. And we compare nat-
ural objects to those same words swapped to be
subjects. Figure 2 shows that subject-oriented fea-
tures like Biomotion, Body, and Human lose their
large values and become more neutral. The careted
features in the figure show significant effects of
being swapped, after Bonferroni correction.

To assess whether our contextual feature predic-
tions are sufficient for predicting whether a noun is
a subject, no matter if natural or swapped, we run
a forward-stepwise logistic regression on a portion

of the data (300 sentences) to predict whether a par-
ticular token is a subject or an object based on its
Binder ratings. The forward-stepwise part picks the
set of Binder features that give the best prediction.
We then test its k-fold cross-validation accuracy on
the held-out test set. For NATURAL sentences, this
method achieves 80% accuracy, compared to 73%
accuracy for SWAPPED sentences. Thus, while
natural sentences are easier, even the swapped sen-
tences can be categorized better than chance using
the feature norms—despite the fact that the words
in question naturally occurred in the opposite roles.

We then performed the same procedure, but in-
stead predicted whether a particular token was from
a NATURAL or SWAPPED sentence. We did this
separately for subjects and objects. Performance
was above chance, at 70% and 71% respectively.

So a model can, with better than chance accuracy,
use projected Binder features to identify which
nouns are subjects in swapped sentences. But we
can also predict which nouns are from swapped
sentences. This result suggests that the predicted
Binder features reflect contextual information, but
also retain type-level information.

The results of our study align with Lebani and
Lenci (2021) who investigate semantic proto-roles
using distributional models and with Proietti et al.
(2022), who investigate semantic proto-roles by
projecting BERT into an interpretable space (simi-
lar to our method). Both show that transitive verbs
have more proto-agent properties than their intran-
sitive counterparts. The present analysis confirms
and expands on their finding that BERT captures
semantic role information and that projecting into
interpretable space is a fruitful way of gaining in-
sight into grammatical and thematic roles.

5 Conclusion

In this paper, we honed techniques for predicting
semantic features for token embeddings. These
projections are versatile. Once created, one and
the same model can be used to study a wide ar-
ray of phenomena. We explored their utility for
studying semantic construal in syntactic construc-
tions. We emphasize the potential of this method to
answer linguistic questions about meaning differ-
ences in constructions that are less well-understood
and well-theorized than the ones studied here. As
such, we hope it will be possible to use this method
to generate linguistic insight.
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Limitations

One limitation of our study is that interpretable fea-
ture spaces are at times only semi-interpretable.
We infer from patterns of model behavior that
Buchanan features such as ‘human’, ‘child’, and
‘animal’ can be signals for animacy more broadly
construed. The need to conjecture about what a fea-
ture means points to a weakness in our approach.
Some interpretation will always be necessary, and
with a more heavy-handed probing method like
ours, it can’t be certain what effects are coming
from the model and which are coming from the
probe.

One way to get around this need for subjective
interpretation is to train a separate classifier for an-
imacy more broadly understood, and then use the
feature prediction model to examine what features
are most relevant to the classifier (Chersoni et al.,
2021). However, this method is not foolproof either.
The classification distinction is wholly determined
by the labeled data used to train the animacy probe,
and the judgments are subjective. Even for a seem-
ingly straightforward feature, the correct label is
not always clear. Is a clock that sings the hour
animate? What about a stony face?

Subjective interpretation is an important and un-
avoidable component of both linguistic and neu-
ral language model analysis. The goal of data-
driven research is to extend the sphere of concern
beyond self-reflexive subjective judgments of the
researcher to the shared subjectivities of a language
community. Information about animacy reflected
in an annotated dataset still reflects subjectivities,
but shared ones. It is important to always be clear
about where interpretation is happening, whose in-
terpretations are taken into account, and how they
affect what conclusions may be drawn.

On that note, there are a few places where design
decisions affect our analysis of lexical variation.
Linguistic data enters the modeling pipeline in at
least four places: BooksCorpus and Wikipedia data
used to pre-train BERT, the BNC corpus which
we use to derive multi-prototype embeddings, the
feature norm datasets which tend to capture the
subjectivities of American college students, and the
texts we analyze in our case studies (both natural
language text and constructed examples). These
resources all cover English, but necessarily reflect
different varieties of English, given that they were
collected in different places at different times. For
example, usage types in the BNC often differ from

those derived from Wikipedia data.
Not only do the corpora we use represent poten-

tially disjoint varieties (English spoken by college
students in Vermont, English in newswire and fic-
tion genres, English in reference texts). They also
all represent the semantics of the unmarked, nor-
mative varieties of English. Normative English
dominates all data collection contexts upon which
our study rests. Consequently, to the extent that our
model is a proxy for English semantic judgments,
it is a proxy for dominant semantic associations
among the composers of these texts and partici-
pants in the feature norm studies.

Though it is interesting and useful to study the
English language as a whole, care must be taken to
ensure that the sample is representative of all speak-
ers; and ideally, our approach supports linguistic
approaches which aim to describe and explain the
semantics of smaller language communities. This
would require language models trained on corpora
at the level of communities of practice, as well as
feature norms specific to these communities. We
are hopeful that the future of statistical methods in
lexical semantic analysis moves in this direction.

Ethics Statement

Our models are developed and published in order
to encourage academic research in descriptive lin-
guistics. In the future, we plan to use our method to
study the inherent non-neutrality of language mod-
els by examining the influence of training corpus
composition on the semantic representation of so-
cial meanings, as represented by cultural keywords.
Because they are built on top of an unpredictable
language model, the feature prediction methods, as
well as the models we publish, are recommended
for descriptive research only. Researchers should
take into account the potential for language models,
like language, to reflect of harmful ideologies such
as sexism, racism, homophobia, and other forms of
bigotry.
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A Embedding Details

For training, we use the multi-prototype embed-
dings of Chronis and Erk (2020). They are gener-
ated by performing k-means clustering on BERT
embeddings of tokens from the British National
Corpus (BNC). This procedure collects up to 200
occurrences of each cue word in the BNC and gen-
erates tokens vectors for each occurrence with the
HuggingFace bert-base-uncased model. These
representations are then clustered using K-means,
using the authors’ best-performing setting of K=5
clusters per word at layer 8. These multi-prototype
vectors are unordered, ‘bag-of-senses’ representa-
tions.

For the static embedding baseline, we use the
pretrained Wikipedia 2014 + Gigaword 5 pre-
trained GloVe with 300 dimensions, which is
trained on 6B tokens with 400K vocabulary word
(Pennington et al., 2014).

For token-level evaluations in Section 3 above,
it does not make sense to compare to GloVe be-
cause GloVe embedding space is not contextual. In-
stead, we compare the multi-prototype, MIL mod-
els to single prototype (vanilla) versions of each
model. Embeddings for the vanilla models are gen-
erated using the same procedure described above
for multi-prototype, but all tokens are averaged into
a single vector representation (K=1) rather than
clustering them into prototypes.

B Model Implementation Details

For all models, we train using ten-fold cross-
validation with an 80-10-10 train-dev-test split. For
the MIL models, no prototypes of the same word
are repeated between train and test sets. For each
prediction task, we tune model hyperparameters
using a sampled grid search (see uploaded code
and data for details). The chosen hyperparameter
settings are the ones with the best average perfor-
mance on the dev set across folds.

The FFNN model is implemented in PyTorch
and trained using the Adam optimizer with stochas-
tic gradient descent. We search over number of
epochs (30, 50); dropout (0, .2, .5), learning rates
(1e-5, 1e-4, 1e-3), and hidden layer size (50, 100,
300).

Partial Least Squares regression is a statistical
method to find the fundamental relations between
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two matrices (semantic spaces). PLSR is useful in
this case because it allows for correlations among
the independent variables (embedding dimensions).
We use the PLSR implementation from scikit-learn.
We grid search over the number of PLSR dimen-
sionality components (50, 100, 300).

Label propagation uses code from Rosenfeld and
Erk (2023). Models were trained on a 2.3 GHz 8-
Core Intel Core i9 processor with 16 GB of RAM.
In label propagation, each labeled training example
is embedded as a node in a graph along with unla-
beled training data. Training takes place iteratively;
in each iteration, labels spread through the graph.
In this method, word embeddings are labeled with
their corresponding features, withholding labels
from the test set. Unlabeled nodes receive features
of labeled nodes which are nearby in embedding
space. Johns and Jones (2012) first applied this
method to feature prediction from distributional
models. In their model, the features of an unlabeled
word are calculated as a weighted sum of the fea-
ture values that labeled words have—the weights
are determined by cosine distance in distributional
semantic space. Rosenfeld and Erk (2023) evaluate
more sophisticated approaches to label propaga-
tion, called modified absorption. With modified
absorption, labels do not propagate under certain
conditions. For instance, features won’t propagate
to words that are very unfamiliar, or to words which
are already well-labeled with properties.

C Predicting with Multi-Prototype
Embeddings

The classic MIL problem is a classification task.
The input is an unordered bag of instances, and the
output is a binary classification label. The label of
the whole bag is 1 if at least one of the instances in
the bag has the label 1. However, the labels of the
individual instances are unknown—only the bag
labels are available. We take this as inspiration
for our scenario, where we have a multi-prototype
representation, along with a feature vector that may
reflect only one of the prototypes (as in the ring
example above).

To make the FFNN suitable for MIL, the FFNN
is extended by an attention mechanism without
ordering, as in Ilse et al. (2018). This method
computes a weighted average over the instances.
Code for the attention module was adapted
from their implementation, and can be found
at https://github.com/AMLab-Amsterdam/

AttentionDeepMIL. It was used in combi-
nation with the attention module defined in
this blog post: https://medium.com/swlh/
multiple-instance-learning-c49bd21f5620.

To adapt PLSR for MIL, we construct one train-
ing example for each prototype. That is, for a 5-
prototype vector, we construct 5 training examples,
one for each vector, labeled with the type-level fea-
tures. Thus, we conduct PLSR on a dataset with
noisy labels. No prototypes of the same word are
repeated between train and test sets.

Similar to PLSR, to adapt Label Propagation for
multi-prototype embedding inputs, we represent
each prototype as an independent node that maps
to a type-level feature vector.

D Type-level Evaluation Results

Results are reported on the type-level training task.
These evaluations show how well the different mod-
els are able to fit the different feature norms. We
find that all models are on par with the performance
reported in the existing literature on inferring static
semantic features (Fagarasan et al., 2015; Herbelot
and Vecchi, 2015; Derby et al., 2019).

Our goal is to predict semantic feature norms
from words in context. We define a mapping prob-
lem from contextual-language-model-derived em-
beddings to an interpretable semantic space defined
by psycholinguistic feature norms. The training
data are experimentally collected semantic features
for word types. Each consists of a cue word and
a feature vector. We compare MIL and vanilla
versions of FFNN, PLSR, and Label Propagation
models.

The literature on feature prediction uses different
evaluation methods. For MCRAE and BUCHANAN

prediction, where the goal is to produce the most
important features, we report Mean Average Pre-
cision at K (MAP@K), where K is the number of
gold features for a concept (Derby et al., 2019). For
Binder vectors, every feature is valued for every
word, MAP@k is always equal to 1. For BINDER,
where the goal is to capture the relative importance
of each feature, precision is not an appropriate met-
ric. In this case, we use mean squared error (MSE)
to measure the best overall fit.

Performance overall matched the best results in
the literature for static feature prediction, and mod-
els that used the BERT embeddings performed as
well or better compared to training on static GloVe
embeddings (Table 4). On the MCRAE prediction
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Model MCRAE BUCHANAN BINDER
MAP@k (↑) MAP@k (↑) MSE (↓)

PLSR

BERT MIL 0.33 0.37 2.32
BERT Vanilla 0.34 0.29 2.37
GloVe 0.33 0.23 2.37

FFNN

BERT MIL 0.32 0.26 0.82
BERT Vanilla 0.32 0.26 0.88
GLoVe 0.30 0.26 1.14

PROP

BERT MIL 0.31 0.32 0.96
BERT Vanilla 0.32 0.30 0.10
GloVe 0.30 0.26 0.89

Table 4: Type-level performance of models trained
with BERT-derived and GloVe embeddings on MCRAE
BUCHANAN and BINDER feature norm prediction tasks.
Bolded cells indicate the highest-performing models for
each feature prediction task.

task, PLSR and label propagation perform the best,
but the scores are more or less similar across the
board. The best performance was within range of
the best MAP@k scores reported in the literature
(MAP@k = .36 on MCRAE, per Rosenfeld and
Erk, 2023). BERT embeddings produce features
comparable in performance to GloVe vectors. For
BUCHANAN, BERT models do not improve over
GloVe vectors. MIL did not fare any better than
single-instance learning at the type level, with the
exception of PLSR for BUCHANAN which led to a
large performance gain.

These results confirm the finding of Rosenfeld
and Erk (2023) that Label Propagation with modi-
fied absorption does very well at the task of feature
prediction (or property inference, as they call it).

However, as described in the main text, our im-
plementation of Label Propagation is not good at
modeling context-sensitive lexical-semantic phe-
nomena unless it is supplied with unlabeled nodes
for different senses at training time. Label Propa-
gation under the MIL condition did a particularly
good job at disambiguating homonyms (Table 2),
provided that the different senses were given as
unlabeled nodes during training. However, Label
Propagation does very poorly on the sense differen-
tiation task (Table 1), showing that this model does
not predict different features for different senses
when it is not exposed to unlabeled nodes for these
senses during training. We believe this is a conse-
quence of the number of nodes in our graph. At

Figure 3: Pearson correlation of cosine similarities be-
tween predicted feature vectors with Wu-Palmer simi-
larity between senses. Data: pairs of tokens of the same
lemma in SemCor, broken down by lemma concreteness
according to Brysbaert.

test time, PROP is limited to a fixed number of
potential features—given any context vector, it re-
trieves the closest vector in the graph and gives
those labels. Unless there are very many nodes in
the graph for each word, PROP will often return the
same features for different senses, because there is
a high pairwise similarity in BERT space among
tokens of the same type (Mickus et al., 2020).

Performance for Label Propagation should im-
prove with the number of unlabeled nodes included
during training, but this increases runtime and is
not feasible for large datasets or convenient for ad
hoc linguistic analyses like those we wish to apply
the feature prediction model to.

E Concreteness Analysis

In all spaces, concrete polysemous senses are more
clearly separated than abstract senses. This is
shown in Figure 3, which breaks down sense dif-
ferentiation results by their concreteness ratings
according to Brysbaert et al. (2014). The prob-
lem is worst for McRae, and least pronounced for
Binder. This may be due to even more variation
in meaning for abstract words, which tend to be
highly polysemous. Indeed, the same pattern is
observed in the frozen BERT space: for concrete
words, cosine similarity of token vectors is not
strongly correlated with WordNet distance.

Qualitative examination of predicted features
reveals that the models are not bad at abstract
meanings. For example, consider the sentence
“People travel many miles to gaze upon this nat-
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Usage Type 1 Usage Type 2 Usage Type 3 Usage Type 4 Usage Type 5
(transformative) (destructive) (artillery) (cooking) (N-N compounds)

fire fire act fire fire
hot hot fire hot person
burn burn danger burn hot
light light kill light burn
danger destroy weapon heat light
heat danger human wood red
cook heat metal cook danger
red cook loud danger heat
wood hurt light warm cook
act red hurt food destroy

Table 5: Top 10 predicted Buchanan features for the centroids of 5-k-means clustering on BERT token embeddings
from the BNC. (model = PLSR - MIL)

Homonym Sentence Gold Feature Norms

bat (animal) I was particularly surprised to see a tame golden fruit bat,
hanging upside down on a tree branch in the morning sun-
shine.

wing, fly, nocturnal, black, cave, fur, animal

bat (baseball) I was at the plate. He threw; I swung the bat. The ball
rocketed into left field.

hit, wood, ball, metal, long, sport

Table 6: Example data for the Buchanan homonym disambiguation task. Sentences from COCA containing
homonyms are paired with a feature norm that targets the disambiguated sense.

ural wonder, though few are willing to approach it
closely, since it is reputed to be the haunt of var-
ious demons and devils.” Our Buchanan model
predicts plausible features for the rather abstract
‘haunt’: ‘one’, ‘face’, ‘dead’, ‘bad’, ‘body’, ‘place’,
‘person’. But the McRae model, which did not
see abstract words in training and whose features
only cover very concrete nouns, does not produce
plausible features: ‘is_expensive’, ‘is_smelly’,
’made_of_wood’, ‘is_large’. Predicted Binder fea-
tures are also plausible: ‘Vision’, ‘Harm’, ‘Un-
pleasant’, ‘Sad’, ‘Consequential’, ‘Attention’, ‘An-
gry’.

This analysis does not reflect model performance
on abstract words so much as it points to a po-
tentially interesting relationship between abstract
words in BERT space and in WordNet. Do con-
textual vectors primarily reflect different kinds of
meaning for abstract words besides word sense?

F Top predicted features for sense
clusters

Table 5 shows the top 10 Buchanan features for
each centroid of the usage type clusters for fire
(k=5, tokens taken from the BNC). Many of the
most salient features are the same across the differ-
ent usage types. Meanings specific to each sense
and usage type are more evident when one focuses

on the most distinctive features for each cluster
(Table 3).

G McRae Homonym Dataset Collection
Procedure

We train our contextual model at the type level
because of the present lack of in-context feature
norms to use for training and evaluation. To evalu-
ate at the token level directly, as described in Sec-
tion 3, we use the features that McRae et al. (2005)
collected for disambiguated homonyms.

For this evaluation, we construct a test set of sen-
tences containing these homonyms, each labeled
with the feature vector for that homonym. Sem-
Cor, the sense-annotated dataset used for the sense-
differentiation evaluation, does not contain enough
tokens of each of the homonyms. So, we turned
to the Corpus of Contemporary American English
(Davies, 2018). The data were collected using the
following procedure:

For each homonym, (1) Search for the target
word. (2) Read through a random sample of oc-
currences of the word, highlighting sentences that
unambiguously use the target sense. (3) The same
researcher double-checks the list to filter out acci-
dental sense mismatches.

At least 20 tokens of each homonym were col-
lected, stopping at 50 (with an average of 40 con-
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texts per sense). Table 6 shows two examples from
the resulting dataset. The list of homonyms and the
number of tokens for each one is given in Table 7,
and the full dataset is available in the supplemental
data.

Word Sense # Tokens

bat animal 52
bat baseball 51
board black 28
board wood 56
bow ribbon 43
bow weapon 52
cap bottle 20
cap hat 207
crane animal 14
crane machine 101
hose tube 42
hose leggings 55
mink animal 32
mink coat 33
mouse animal 64
mouse computer 78
pipe plumbing 27
pipe smoking 20
tank army 35
tank container 83

Table 7: List of cue words used in homonym disam-
biguation experiment along with the number of tokens
of each homonym collected from CoCA for the dataset.

H Licenses

Dataset/Model License

McRae Feature Norms unknown
Buchanan Feature Norms GPL 3.0
Binder Feature Norms CC BY-NC-ND 4.0
Multi-Prototype Embeddings CC BY-NC 4.0
BNC http://www.natcorp.

ox.ac.uk/docs/
licence.html

bert-base-uncased Apache 2.0
SemCor Apache 2.0
Brysbaert Concreteness Norms CC BY-NC-ND 3.0
AANN Sentences CC BY-NC-ND 4.0
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