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Abstract

Multimodal sarcasm detection is an impor-
tant research topic in natural language process-
ing and multimedia computing, and benefits
a wide range of applications in multiple do-
mains. Most existing studies regard the in-
congruity between image and text as the in-
dicative clue in identifying multimodal sar-
casm. To capture cross-modal incongruity,
previous methods rely on fixed architectures
in network design, which restricts the model
from dynamically adjusting to diverse image-
text pairs. Inspired by routing-based dynamic
network, we model the dynamic mechanism
in multimodal sarcasm detection and propose
the Dynamic Routing Transformer Network
(DynRT-Net). Our method utilizes dynamic
paths to activate different routing transformer
modules with hierarchical co-attention adapt-
ing to cross-modal incongruity. Experimental
results on a public dataset demonstrate the ef-
fectiveness of our method compared to the state-
of-the-art methods. Our codes are available at
https://github.com/TIAN-viola/DynRT.

1 Introduction

Sarcasm is a widely used figurative language to
give the ironic expression in our daily life, which
typically means the opposite of what it really wants
to express (Joshi et al., 2017). As an important
step to analyze people’s opinions and sentiments in
communication, sarcasm detection benefits a wide
range of applications such as natural language di-
alogue (Tepperman et al., 2006), public opinion
mining (Riloff et al., 2013) and social media anal-
ysis (Tsur et al., 2010). With the rapid growth
of multimodal user-generated content, multimodal
sarcasm detection has gained increasing research
attention in recent years (Cai et al., 2019; Xu et al.,
2020; Pan et al., 2020; Wang et al., 2020; Liang
et al., 2021; Pramanick et al., 2022; Liang et al.,
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(a) hey <user> look at this 
really full bag of chips I got

(c) great park job ! (d) what a wonderful 
weather !

(b) well that looks 
appetising ... #ubereat

Figure 1: Examples of Twitter data with sarcasm. (a)
A handful of chips in the picture is contrastive to the
meaning of “full bag of chips” in the text. (b) There
is a contrast between sick pizza in the image and the
expression “looks appetising” in the text. (c) The angry
feeling evoked by the park job in the picture is inconsis-
tent with the pleasant feeling conveyed by “great park
job” in the text. (d) The gloomy mood evoked by the
rainy weather in the picture is inconsistent with the joy-
ful mood conveyed by “what a wonderful weather” in
the text.

2022; Liu et al., 2022), and has become an impor-
tant research topic in natural language processing
and multimedia computing.

The sarcastic clues of multimodal contents are
mainly relevant to the incongruity across image and
text (Xu et al., 2020; Pan et al., 2020; Wang et al.,
2020; Liang et al., 2021; Pramanick et al., 2022;
Liang et al., 2022; Liu et al., 2022). Existing stud-
ies model this characteristic of incongruity between
image and text with various approaches, includ-
ing decomposition and relation network (Xu et al.,
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2020), attention mechanisms (Wang et al., 2020;
Pan et al., 2020), graph-based methods (Liang et al.,
2021, 2022), and optimal transport method (Pra-
manick et al., 2022). In addition, external knowl-
edge is also introduced to boost the performance of
multimodal sarcasm detection (Liu et al., 2022).

As it is shown in multimodal samples in Figure 1,
there are diverse kinds of sarcastic image-text pairs.
In some cases, the image and text express the incon-
gruous meaning with local segments, where visual
regions or objects are contrastive to the meaning of
words or phrases in the text, as those in Figure 1
(a) and (b). In other cases, the feelings implied in
the image and text respectively are totally opposite,
as those in Figure 1 (c) and (d). To detect these sar-
castic image-text pairs, current approaches mainly
focus on modeling the cross-modal incongruity.
However, these methods rely on static networks to
capture the characteristic of incongruity, which use
fixed architectures on different kinds of inputs, thus
lacking the flexibility to adapt to diverse image-text
pairs.

To tackle this problem, the dynamic aspect of
incongruity between image and text should be con-
sidered. One possible solution is to model dy-
namic mechanism with a routing-based dynamic
network, where a series of modules can capture the
incongruity between image and text dynamically
via selecting one or more most suitable modules
according to different image-text pairs. Existing
routing-based method in multimodal dynamic net-
works (Zhou et al., 2021) performs routing only on
single-modality data, which is insufficient to model
the dynamic image-text incongruity in cross-modal
sarcasm detection. Therefore, we extend the ex-
isting routing scheme to multimodal setting with
dynamic network design, aiming to better model
the dynamic mechanism for multimodal sarcasm
detection.

In this paper, we propose a novel Dynamic
Routing Transformer Network, namely DynRT-
Net, whose router helps model route on dynamic
routing transformer modules with hierarchical
co-attention adapting to cross-modal incongruity
prevalent in diverse image-text pairs. The main
contributions of our work are as follows:

• We identify the diversity of image-text sarcas-
tic pairs, and for the first time, model cross-
modal incongruity with dynamic network de-
sign, which focuses on the dynamic mecha-
nism for multimodal sarcasm detection.

• We propose a dynamic routing transformer
network via adapting dynamic paths to hier-
archical co-attention between image and text
conditioned on multimodal samples, which is
capable of capturing cross-modal incongruity
dynamically.

• Experimental results on a public dataset
demonstrate the effectiveness of our proposed
method for multimodal sarcasm detection.

2 Related Work

2.1 Image-text Sarcasm Detection

Traditional sarcasm detection mainly studies the
sarcastic information in textual utterances (Zhang
et al., 2016; Tay et al., 2018). With the prevalence
of social media, many people tend to express their
thoughts with sarcasm using both textual and visual
messages online. Early studies utilize simple fusion
methods of visual and textual information for mul-
timodal sarcasm classification, such as concatena-
tion of textual and visual embeddings (Schifanella
et al., 2016) or hierarchical fusion representation
of modalities (Cai et al., 2019). As multimodal
sarcasm is often associated with an implicit incon-
gruity between image and text, some studies cap-
ture this basic characteristic to detect multimodal
contrast from various perspectives, such as model-
ing cross-modality contrast and semantic associa-
tion simultaneously (Xu et al., 2020) or modeling
intra-modality and inter-modality incongruity us-
ing attention mechanisms (Wang et al., 2020; Pan
et al., 2020).

To represent more explicit incongruous relations,
recent studies employ graph convolution networks
to construct in-modal and cross-modal graphs for
this task (Liang et al., 2021, 2022). Furthermore,
Pramanick et al. (2022) utilize self-attention to
model the intra-modal relation and optimal trans-
port to model the cross-modal relation for multi-
modal sarcasm detection. In addition, Liu et al.
(2022) explore external knowledge resources like
image captions to enhance the model performance
for image-text sarcasm detection.

Despite the promising results achieved for image-
text sarcasm detection, existing approaches rely on
fixed architectures in network design. And thus, the
computation mechanism to capture the cross-modal
incongruity is static, which hinders the model from
dynamically adjusting to diverse multimodal sam-
ples.
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Figure 2: Overall architecture of our proposed DynRT-Net for multimodal sarcasm detection. Cylinders in different
colors denote hierarchical co-attentions between textual tokens and visual patches in dynamic routing transformer
layers.

2.2 Multimodal Dynamic Networks

Multimodal dynamic networks have shown good
performance on multimodal tasks (de Vries et al.,
2017; Perez et al., 2018; Zhou et al., 2021; Qu
et al., 2021), which can be roughly divided into
two categories: dynamic parameters and dynamic
architectures. A typical model with dynamic pa-
rameters adapts its weights based on different in-
puts in the inference stage. For example, Perez
et al. (2018) propose a model to adjust the param-
eters of ResNet conditioned on the text informa-
tion for visual reasoning. Dynamic architectures
adapt the network depth and width or perform rout-
ing according to different inputs. For example,
Zhou et al. (2021) design a data-dependent rout-
ing scheme called Transformer Routing (TRAR)
to dynamically select image attentions for visual
question answering.

Routing-based method has the potential to dy-
namically identify cross-modal incongruity via ac-
tivating different modules dynamically conditioned
on different image-text inputs. However, the cur-
rent work TRAR only performs routing on single-
modality data. To better model the dynamic mech-
anism in cross-modal sarcasm detection, we extend
the existing routing scheme to multimodal setting
with dynamic network design.

3 Method

Figure 2 shows the overall architecture of our
proposed dynamic routing transformer network

DynRT-Net, which is composed of three compo-
nents: encoding, dynamic routing transformer, and
classification. We first encode the text and a paired
image into multimodal features respectively via
two pre-trained models. Then, we feed them into
the dynamic routing transformer to route on hier-
archical co-attention dynamically and learn cross-
modal incongruity, resulting in the routed features
with cross-modal information. Finally, we feed the
routed features and image features into the classi-
fier for multimodal sarcasm classification.

3.1 Encoding
Text Encoder To train our model from a good
start of text embeddings, we use the pre-trained
model RoBERTa (Liu et al., 2019) as the text
encoder, which has implicitly acquired world
knowledge from the large-scale dataset. We first
split the text into a sequence of tokens Text =
{[CLS] , w1, . . . , wn−1}, where [CLS] denotes
the global token and n is the length of all the to-
kens. After that, we feed Text into RoBERTa and
get text features T ∈ Rn×dt , which are represented
by

T = RoBERTa (Text) = [t1, t2, . . . , tn] , (1)

where ti ∈ Rdt is the text embedding of i-th to-
ken wi in the text and dt is the dimension of text
embedding.

Image Encoder To train our model from a good
start of image embeddings, we use a pre-trained Vi-
sion Transformer (ViT) model (Dosovitskiy et al.,
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Figure 3: Comparison among the standard multimodal
transformer layer, TRAR layer, and our DynRT layer. I
and T denote the features of image and text modalities
respectively. TRAR employs routing on different atten-
tion grids on I before the interaction of two modalities.
Our DynRT performs routing on the co-attention of two
modalities. Add & Norm denotes addition and layer
normalization. FFN denotes the feed-forward network.

2021) as the image encoder, which has recently
achieved excellent performance. We first split an
Image ∈ RH×W×C into a sequence of m flat-
tened 2D patches, where H , W and C denote the
height, width, and the number of channels of the
image. After that, we feed Image into ViT and get
image features I ∈ Rm×dv of patches, which are
represented by

I = ViT (Image) = [e1, e2, . . . , em] , (2)

where ej ∈ Rdv is the image embedding of j-th
patch in the image and dv is the dimension of image
embedding.

3.2 Dynamic Routing Transformer
Previous approaches (Xu et al., 2020; Pan et al.,
2020; Wang et al., 2020; Liang et al., 2021; Praman-
ick et al., 2022; Liang et al., 2022; Liu et al., 2022)
capture the incongruity between image and text for
multimodal sarcasm detection in a static manner,
and thus are unable to dynamically adjust to diverse
image-text pairs. To fill this gap, we propose the
Dynamic Routing Transformer (DynRT), which
performs routing on hierarchical co-attention of
two modalities to capture cross-modal incongruity
adapting to different image-text inputs.

3.2.1 Routing Space
In the Dynamic Routing Transformer, we feed the
textual and visual embeddings to several DynRT

layers, which can be calculated as

Tk = DynRTk(Tk−1, I), k ∈ [1,K], (3)

where Tk is the output of k-th DynRT layer, T0 =
T is the input of the first layer, K is maximum
index of DynRT layers, and the output of the last
DynRT layer TK is the final routed features.

3.2.2 Dynamic Routing Transformer Layer
Unlike the previous dynamic method TRAR (Zhou
et al., 2021), which performs routing on attention
grids of one modality, our DynRT layer routes on
hierarchical co-attention of image and text con-
ditioned on different inputs (see Figure 3 for a
detailed comparison). Our DynRT layer is com-
posed of a multi-head co-attention routing (MH-
CAR) module (pink rectangle in Figure 3 (c)), a
multi-head self-attention (MHA) module and a
feed-forward network (FFN), where a residual con-
nection and a normalization layer (LN) (Ba et al.,
2016) follow each module. The k-th DynRT layer
can be formulated as

T r
k−1 = LN(MHCARk(Tk−1, I) + Tk−1), (4)

T a
k−1 = LN(MHAk(T

r
k−1) + T r

k−1), (5)

Tk = LN(FFNk(T
a
k−1) + T a

k−1), (6)

where k ∈ [1,K] is the index of DynRT layers,
Tk ∈ Rn×dt is the output of k-th DynRT layer,
T r
k−1 ∈ Rn×dt and T a

k−1 ∈ Rn×dt are the output of
MHCAR module and MHA module respectively.

The MHCAR in k-th DynRT layer performs h
heads of attention functions in parallel with the
hidden dimension dh (dh = dt/h) which are con-
catenated and then projected, resulting in the final
values of the MHCAR, which is calculated as

MHCARk(Tk−1, I) = concat
(
[headki ]

h
i=1

)
Ok

T ,

(7)
where concat(·) is the concatenation operation,
Ok

T ∈ Rdt×dt is the projection matrix and ev-
ery head headki ∈ Rn×dh is calculated by a co-
attention routing (CAR) function, which routes
on co-attention (CA) functions with different co-
attentions:

headki = CARk
i (Tk−1, I)

=

pk−1∑

j=0

αk
j CA

k
i,j(Qi,j,k,Ki,j,k, V

k
i,j , A

j)

=

pk−1∑

j=0

αk
jσ

(
Qi,j,kK

�
i,j,k√

dh
⊗Aj

)
V k
i,j ,

(8)
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where σ(·) denotes the softmax function, αk
j is

the routing probability weight of j-th CA func-
tion with one kind of co-attention mask Aj be-
tween image and text, pk is the number of CA
functions in k-th layer (we set pk = k in our
model), Mi,j,k = Qi,j,kK

�
i,j,k ∈ Rn×m is the at-

tention matrix between two modalities in headki ,
Qi,j,k = Tk−1W

Q
i,j,k,Ki,k = IWK

i,j,k, V k
i,j =

IW V
i,j,k, WQ

i,j,k ∈ Rdt×dh , WK
i,j,k ∈ Rdv×dh and

W V
i,j,k ∈ Rdv×dh are parameter matrices, K�

i,j,k de-
notes the transpose of matrix Ki,j,k, and ⊗ denotes
element-wise matrix product. The hierarchical co-
attention mechanism and construction of Aj will
be presented in the following section 3.2.3. The
prediction of αk

j is controlled by a router, which
will be presented in the following section 3.2.4.

To reduce the computation of the routing process
in Eq. (8), we follow Zhou et al. (2021) to redefine
the headki as

headki = σ

⎛
⎝Qi,kK

�
i,k√

dh
⊗

pk−1∑

j=0

αk
jA

j

⎞
⎠V k

i . (9)

3.2.3 Hierarchical Co-attention
We first describe how to construct the co-attention
mask matrix Aj in Eq. (8)(9). Aj restricts the re-
gion of the image that text can see in the CA func-
tion. The s-order sliding window with a small patch
of (2s+1)× (2s+1) grid traverses every patch of
the image to get mask vector vsl ∈ Rm (l ∈ [1,m]),
whose visualization is shown in Figure 4. We con-
struct As by stacking the vector vsl for n times (n
is the length of tokens) from vs1 to vsm circularly:

As = [vs1, v
s
2, . . . , v

s
n] ∈ Rn×m. (10)

Specifically, A0 is an empty mask matrix, i.e. a
matrix of all the ones, which gives words or global
token [CLS] the opportunity to see the whole im-
age.

To model the cross-modal incongruity in di-
verse image-text pairs gradually, we then design
the hierarchical co-attention via making the kinds
of co-attention masks diverse progressively with
the increase of DynRT layers, the architecture of
which is shown in Figure 2. In the k-th layer
of DynRT, the group of co-attention mask ma-
trices in Eq. (8)(9) that router can route on is
Gk = [A0, A1, . . . , Apk−1], where pk = k is the
number of mask matrices in k-th DynRT layer
(pk also equals to the number of CA functions in
Eq. (8)(9)).

]0,0,0,1,1,1,1,1,1[1
2v ]0,0,0,1,1,0,1,1,0[1

3v

]0,1,1,0,1,1,0,1,1[1
4v ]1,1,1,1,1,1,1,1,1[1

5v ]1,1,0,1,1,0,1,1,0[1
6v

]0,1,1,0,1,1,0,0,0[1
7v ]1,1,1,1,1,1,0,0,0[1

8v ]1,1,0,1,1,0,0,0,0[1
9v

]0,0,0,0,1,1,0,1,1[1
1v

Figure 4: Visualization of the mask vectors with 1-order
sliding window. In this example, the size of the sliding
mask patch is 3 × 3 and the dimension of the mask
vector m is 9. The red cross denotes the center of the
sliding mask patch.

3.2.4 Router
The routing probability αk = [αk

0 , α
k
1 , . . . , α

k
pk−1]

for k-th DynRT layer can be obtained by the router
conditioned on the input, which is calculated as

αk = σg (MLP (APool (I))) ∈ Rpk , (11)

where σg(·) is Gumble Softmax (Zhou et al., 2021)
with temperature t, APool(·) is a 1D adaptive aver-
age pooling over all the embeddings of patches in
the image, MLP is a two-layer multilayer percep-
tron with hidden dimension dm, and pk is also the
number of co-attention mask matrices in the k-th
DynRT layer where αk works in Eq. (8)(9).

3.3 Classification
Finally, we project the image features I and routed
features TK into global embeddings and predicts
sarcastic tendency, which can be formulated as

Ig = Mean(I), (12)

Tg = Mean(TK), (13)

yg = Wg(LN(Ig + Tg)) + bg, (14)

ŷ = Softmax(Woyg + bo), (15)

where Mean(·) is the average function on all the
patch embeddings in I and all the token embed-
dings in TK , Ig ∈ Rdv and Tg ∈ Rdt denote global
embeddings of image and text respectively, LN(·)
is the layer normalization , yg ∈ Rd is the global
multimodal embedding (considering dv = dt = d
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Training Development Testing

Sarcastic 8642 959 959
Non-sarcastic 11174 1451 1450
Total 19816 2410 2409

Table 1: The statistics of the MSD dataset

in our model, we omit the process of projecting
embeddings of two modalities into the same di-
mension), Wg ∈ Rd×d, bg ∈ Rd, Wo ∈ Rdp×d

and bo ∈ Rdp are trainable parameters, Softmax(·)
is the softmax function, ŷ ∈ Rdp is the predicted
probability of all the possible labels, and dp is the
number of possible labels (i.e. sarcastic and non-
sarcastic).

3.4 Optimization

We optimize our model with cross-entropy loss,
which is most commonly used in classification:

L = −
N∑

i=1

y�
i log ŷi, (16)

where y is the ground truth and ŷi is the probability
of predicted label for i-th image-text pair.

4 Experiments

4.1 Dataset

We evaluate our method on the Multimodal Sar-
casm Detection (MSD) dataset (Cai et al., 2019),
which is the only benchmark dataset for multi-
modal sarcasm detection. Cai et al. (2019) col-
lect original image-text pairs from Twitter and
randomly divide this dataset into the training set,
development set, and test set with the ratio of
80%:10%:10%. The statistics of the MSD dataset
are shown in Table 1. Cai et al. (2019) further dis-
card tweets with regular words (sarcasm, sarcastic,
reposting, irony, ironic, jokes, humor, humour and
exgag) and URLs, and replace mentions with a cer-
tain symbol 〈user〉. For a fair comparison, we use
the MSD dataset after the above data preprocessing
for experimentation, following the convention of
all the previous studies.

4.2 Experimental Settings

The values of hyper-parameters are shown in Ta-
ble 2. More information about experimental set-
tings is shown in Appendix B.

Notation Value Description

n 100 maximum length of text tokens
m 49 number of image patches
K 4 number of DynRT layers
h 2 number of heads in MHCAR
dm 384 hidden dimension of MLP
dv 768 dimension of image embedding
dt 768 dimension of text embedding
d 768 dimension of multimodal embedding
t 10 temperature of Gumble Softmax

Table 2: The hyper-parameter values in our model.

4.3 Baseline Methods
We compare our method with existing unimodal
baselines and representative methods for multi-
modal sarcasm detection.

Image-modality methods. The baseline meth-
ods using the image information for sarcasm detec-
tion are as follows:

• ResNet (Cai et al., 2019) uses the image em-
bedding of the pooling layer of ResNet (He
et al., 2016) for sarcasm classification;

• ViT (Dosovitskiy et al., 2021) is a pre-trained
vision model based on Transformer architec-
ture, which achieves excellent results.

Text-modality methods. The baseline methods
using text information for sarcasm detection are as
follows:

• TextCNN (Kim, 2014) is a network based on
CNN for textual classification;

• Bi-LSTM (Liang et al., 2022) is a Bi-LSTM
network for textual classification;

• SIARN (Tay et al., 2018) employs the atten-
tion mechanism for textual sarcasm detection;

• SMSD (Xiong et al., 2019) proposes a self-
matching network for sarcasm detection;

• BERT (Devlin et al., 2019) is a classical pre-
trained language model;

• RoBERTa (Liu et al., 2019) is an optimized
BERT pre-trained language model.

Multimodal methods. The representative meth-
ods employing both image and text for sarcasm
detection are as follows:

• HFM (Cai et al., 2019) fuses the information
of text, image, and image attributes with a
hierarchical network;
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• D&R Net (Xu et al., 2020) uses a decomposi-
tion network and a relation network to exploit
the contrastive and relative relationship be-
tween image and text;

• IIMI-MMSD (Pan et al., 2020) utilizes self-
attention and co-attention mechanisms to
model the intra-modality and inter-modality
incongruity between image and text;

• Bridge (Wang et al., 2020) proposes a bridge
layer based on RoBERTa and ResNet to cap-
ture the relationship between two modalities;

• InCrossMGs (Liang et al., 2021) utilizes a
graph-based model to capture sarcastic rela-
tions between image and text;

• MuLOT (Pramanick et al., 2022) employs
self-attention to learn intra-modal correspon-
dence and optimal transport to learn cross-
modal correspondence;

• CMGCN (Liang et al., 2022) proposes cross-
modal graphs based on attribute-object pairs
of image objects to capture sarcastic clues;

• Hmodel (Liu et al., 2022) models both atomic-
level incongruity and composition-level con-
gruity with attention mechanism and graph
neural networks respectively;

• HKEmodel (Liu et al., 2022) incorporates
image captions as the external knowledge to
enhance the ability of Hmodel to detect mul-
timodal sarcasm, which is the state-of-the-art
model in multimodal sarcasm detection.

4.4 Main Results

Following Liang et al. (2022), we use accuracy and
macro-average F1-score as the evaluation metrics.
Table 3 shows the comparative results of the repre-
sentative methods and our method, which demon-
strate that our proposed method outperforms all
the baseline methods and achieves significant gains
compared with the state-of-the-art method. For
unimodal methods, text-modality methods achieve
better performances than image-modality meth-
ods, which shows that textual information provides
more sarcastic clues within modality than visual in-
formation. Compared with unimodal methods, mul-
timodal methods perform better, which indicates
that cross-modal interaction is important to capture

Modality Method F1 Acc

Image
ResNet (Cai et al., 2019) 61.53∗ 64.76∗

ViT (Dosovitskiy et al., 2021) 66.90 ± 0.09 68.79 ± 0.17

Text

TextCNN (Kim, 2014) 78.15∗ 80.03∗

SIARN (Tay et al., 2018) 79.57∗ 80.57∗

SMSD (Xiong et al., 2019) 79.51∗ 80.90∗

Bi-LSTM (Liang et al., 2022) 80.55∗ 81.09∗

BERT (Devlin et al., 2019) 81.09∗ 83.85∗

RoBERTa (Liu et al., 2019) 83.42 ± 0.22 83.94 ± 0.14

HFM (Cai et al., 2019) 80.18∗ 83.44∗

D&R Net (Xu et al., 2020) 80.60∗ 84.02∗

IIMI-MMSD (Pan et al., 2020) 82.92∗ 86.05∗

Bridge (Wang et al., 2020) 86.05 88.51
Image InCrossMGs (Liang et al., 2021) 85.60∗ 86.10∗

+ MuLOT (Pramanick et al., 2022) 86.33 87.41
Text CMGCN (Liang et al., 2022) 87.00∗ 87.55∗

Hmodel† (Liu et al., 2022) 88.92 ± 0.51 89.34 ± 0.52
HKEmodel† (Liu et al., 2022) 89.24 ± 0.24 89.67 ± 0.23
DynRT-Net† 93.21 ± 0.06� 93.49 ± 0.05�

Table 3: Results of the comparative methods and DynRT-
Net on the MSD dataset. The results of baselines with
∗ are retrieved from (Liang et al., 2022). † indicates
that these methods use the same RoBERTa and ViT as
backbones. � represents that our method is statistically
significantly different from the Hmodel and HKEmodel
(p < 0.001).

multimodal sarcastic meanings in image-text pairs.
The pre-trained models, which have learned large
world knowledge related to background informa-
tion of the multimodal sarcasm, help recent meth-
ods achieve significant improvements compared
with HFM and D&R Net, which use shallow net-
works to model the interaction between image and
text. IIMI-MMSD, Bridge, InCrossMGs, MuLOT,
CMGCN and Hmodel provide multiple perspec-
tives to capture the implicit incongruity in image-
text pairs for cross-modal sarcasm detection and
achieve gradually improved performances. How-
ever, their architectures are static and inflexible,
leading to computing redundancy and lacking the
adaptability to diverse image-text pairs. In contrast,
our method gains a great increase via adapting dy-
namic paths to hierarchical co-attention of image
and text with dynamic network design. In addi-
tion, our method also performs better than HKE-
model, which uses external knowledge to enhance
the performance. This result further verifies the
effectiveness of our simple and dynamic method
in capturing the cross-modal incongruity between
image and text.

4.5 Ablation Study
We conduct the ablation study to evaluate the
impact of different components in our proposed
model, using the following variants:

• DynRT-Net (pk = K): sets the pk in each
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Variant Evaluation Metric
F1 Acc Δ F1 Δ Acc

DynRT-Net 93.21 93.49 - -

DynRT-Net (pk = K) 91.08 91.40 -2.13 -2.09
DynRT-Net (pk = K − k + 1) 91.21 91.50 -2.00 -1.99

- DynRT, + TRAR 89.67 90.07 -3.54 -3.42
- DynRT, + Standard Transformer 87.83 88.22 -5.38 -5.27
- DynRT, + Concatenation 66.57 68.89 -26.64 -24.60

- Dynamic attention, + mean attention 84.91 85.44 -8.30 -8.05
- Dynamic attention, + fixed attention 75.81 76.54 -17.40 -16.95

Table 4: Results of the ablation study.

DynRT layer as K, which connects the same
four DynRT layers with four co-attention
mask matrices to replace DynRT layers with
hierarchical co-attention in our model;

• DynRT-Net (pk = K − k + 1): sets pk as
K − k + 1, which reduces the number of the
types of co-attention mask matrices from four
to one with the increase of DynRT layers;

• - DynRT, + TRAR: replaces the DynRT
layer in our model with another routing-based
scheme TRAR layer;

• - DynRT, + Standard Transformer: replaces
the DynRT layer with the standard multimodal
transformer layer;

• - DynRT, + Concatenation: removes DynRT
layers in our model and feeds the concatena-
tion of classification vectors of text encoder
and image encoder to the final classifier;

• - Dynamic attention, + mean attention: re-
places the dynamic attention scores predicted
by the router with the average distribution of
attention scores in every DynRT layer;

• - Dynamic attention, + fixed attention: re-
places the dynamic attention score for the
empty co-attention mask matrix with 1 and re-
places the dynamic attention scores for other
types of co-attention mask matrices with 0 in
every DynRT layer.

Table 4 shows the results of the ablation study.
We first extensively explore different ways of ar-
rangement of co-attention mask matrices which
are controlled by the parameter pk in k-th DynRT
layer. In our model, the kinds of co-attention mask
matrices increase progressively with the rising of
DynRT layers (pk = k). When we connect the

Figure 5: Results of our model with different DynRT
layers.

same four DynRT layers with four types of co-
attention mask matrices, the performance reduces
on both metrics. When the number of the types
of co-attention mask matrices decreases with the
increase of DynRT layers, the performance drops.
The above variants show the effectiveness of our
hierarchical co-attention, as increasing the types
of co-attention mask matrices with the rising of
DynRT layers gradually increases the degree of di-
versity of the model, which benefits the process of
learning the cross-modal incongruity according to
diverse image-text pairs.

To evaluate the effectiveness of DynRT, which
we design for multimodal sarcasm detection, we
replace DynRT with other multimodal modules.
Replacing DynRT with another routing-based dy-
namic scheme TRAR leads to a drop in perfor-
mances, indicating that performing dynamic rout-
ing on unimodality only is insufficient to detect
multimodal sarcasm. Using the standard multi-
modal transformer layer to replace our DynRT
layer gets rid of the dynamic ability, thus perform-
ing worse, which further shows the advancement of
our proposed dynamic module in modeling cross-
modal incongruity. Ablating all the DynRT layers
with the concatenation of classification vectors of
text encoder and image encoder sharply slashes the
results, which directly shows the advantage of our
proposed DynRT.

To verify the effectiveness of dynamic attention
predicted by the router in our model, we directly re-
place the dynamic attention scores with average
probability or use fixed attention only focusing
on empty mask matrices, leading to poorer per-
formances, as the router predicts dynamic attention
scores to balance the co-attention between image
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(b) thanks for the awesome , leaky , cup <user> … 
making my morning just so much better …

 (a) great park job !

awesome cupleakythanksgreat jobpark !Layer 1 Layer 1

awesome cupleakythanks!great park jobLayer 2 Layer 2

awesome cupleakythanks!great park jobLayer 3 Layer 3

thanks leaky cupawesomegreat park job ! Layer 4Layer 4

Figure 6: Visualization of attentions between every text token and image patches in different DynRT layers.

and text for detecting sarcastic incongruity accord-
ing to different inputs. Besides, we can see that the
variants with dynamic design perform better com-
pared with the variants with static design, which
further verifies the necessity to model cross-modal
incongruity with the dynamic mechanism adjusting
to diverse inputs for multimodal sarcasm detection.

4.6 Hyperparameter Analysis

To analyze the impact of the number of DynRT
layers in our model, we experiment on varying the
layer of DynRT from 1 to 6. The results are shown
in Figure 5. In Figure 5, we can see that our model
performance improves with the increase of DynRT
layers in the first three layers, and then the perfor-
mances drop slightly in the layers 4-6. The results
indicate that, with more layers of DynRT, the abil-
ity of our model improves first, but with the further
increase of layers, DynRT-Net encounters the per-
formance bottleneck. Thus, we use the model with
4 layers of DynRT in the main experiment, which
is relatively stable and achieves the best results for
multimodal sarcasm detection.

4.7 Case Study

To further verify the adaptability of DynRT-Net, we
visualize the learned attentions between text tokens
and image patches in different DynRT layers. From
the results in Figure 6, we can see that the tokens
of objects are unable to focus on corresponding
image regions in the first few layers, while their
attentions move to corresponding image regions

gradually with the increase of layers, which shows
that our model learns semantic alignment relations
between the image and text gradually. Specifically,
in the 4th layer, the tokens of objects, such as park
in Figure 6 (a) and cup in Figure 6 (b), can focus
on the related image regions.

Moreover, the tokens which express sarcastic
meanings can concentrate on the image regions
which express inconsistent concepts in the 4th
layer, thus verifying that our model can dynam-
ically capture the incongruity between image and
text. Specifically, in Figure 6 (a), the car takes two
parking spaces, and great in the text expresses the
sarcastic meaning, which has a higher attention
score for the parking space in the image. Likewise,
in Figure 6 (b), thanks and awesome in the text
have higher attention scores with the region of the
leaky cup in the picture.

5 Conclusion

To model the cross-modal incongruity that is ad-
justable to diverse image-text pairs, we propose the
dynamic routing transformer network DynRT-Net
to activate different modules with hierarchical co-
attention for multimodal sarcasm detection. This
dynamic mechanism in network design can help
capture the sarcastic clues in accordance with dif-
ferent image-text inputs. Experimental results on a
public dataset demonstrate the effectiveness of our
proposed method. Our future work shall explore di-
verse types of co-attention between image and text
to further improve the adaptability of our method.
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Limitations

Our work has some limitations. The design of the
co-attention in our method can be improved. Cur-
rently the design of co-attention in our method is
limited to four types, which affects its adaptability.
In addition, due to the fact that there is only one
publicly available dataset in multimodal sarcasm
detection, we conduct our experiments based on it.
This has limited the evaluation of the generalization
of our method.
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A License of Scientific Artifacts

The license for RoBERTa is MIT License. The
license for ViT is Apache-2.0 license. We were un-
able to find the license for the Multimodal Sarcasm
Detection dataset from the original paper (Cai et al.,
2019) and the online resources1.

B More Details of Experimental Settings

We train all the models on GeForce RTX 2080 Ti
GPUs. For each run, the model giving the best
performance of macro-F1 in the development set
is used for the test set. We provide details of the
best model parameters in Table 2. We resize the
image to the resolution of 224 × 224 pixels and
use vit-base-patch32-2242 with 7× 7 grids for the
visual embedding. We use the first layer of roberta-
base3 for the text embedding. The dropout rate
for classifier is 0.5. We optimize our model by
Adam (Kingma and Ba, 2015) with learning rate
e−6 and weight decay 0.01, we train our models for
15 epochs with mini-batch size of 32. All experi-
mental results reported are the averaged scores of
five runs with different random seeds. The number
of total parameters in our model is 238,289,140.
The training time for our model is about 40 min-
utes.

1https://github.com/headacheboy/data-of-multimodal-
sarcasm-detection

2https://github.com/rwightman/pytorch-image-models
3https://huggingface.co/roberta-base
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