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Abstract

The task of web information extraction is to ex-
tract target fields of an object from web pages,
such as extracting the name, genre and actor
from a movie page. Recent sequential model-
ing approaches have achieved state-of-the-art
results on web information extraction. How-
ever, most of these methods only focus on ex-
tracting information from textual sources while
ignoring the rich information from other modal-
ities such as image and web layout. In this
work, we propose a novel MUltimodal Struc-
tural Transformer (MUST) that incorporates
multiple modalities for web information ex-
traction. Concretely, we develop a structural
encoder that jointly encodes the multimodal
information based on the HTML structure of
the web layout, where high-level DOM nodes,
low-level text, and image tokens are introduced
to represent the entire page. Structural atten-
tion patterns are designed to learn effective
cross-modal embeddings for all DOM nodes
and low-level tokens. An extensive set of ex-
periments has been conducted on WebSRC and
Common Crawl benchmarks. Experimental re-
sults demonstrate the superior performance of
MUST over several state-of-the-art baselines.

1 Introduction

The world wide web has grown explosively in the
past decades, with millions of new web pages be-
ing created everyday. Web pages and documents
have been widely used and become a powerful re-
source for humans to obtain information. For exam-
ple, Figure 1 shows a movie page from the IMDB
website, which contains structured movie infor-
mation including movie name, description, genre,
etc. This information is essential to facilitate new
experiences in applications like web search and
retrieval (Crescenzi and Mecca, 2004; Yan et al.,
2009). There has been an enduring demand for au-
tomatic information extraction from unstructured

∗Corresponding authors.

Figure 1: An example of a movie page from the IMDB
website. The extractions of movie name, description,
genre, duration, director, actor and release date are high-
lighted with colored bounding boxes on the web page.

or semi-structured web pages to create structured
knowledge bases (Chang et al., 2006; Hao et al.,
2011). Therefore, it is an important research prob-
lem to extract structured information from web
pages (Carlson and Schafer, 2008).

Web information extraction (Manabe and Tajima,
2015; Wu et al., 2018) poses a lot of challenges to
researchers in both academia and industry, due to
the unstructured nature and the diverse layout pat-
terns of the web documents (Xiong et al., 2019;
Lockard et al., 2019). Moreover, web data often
contains multiple modalities such as texts, tables,
and images. A substantial amount of research
(Katti et al., 2018; Zhang et al., 2021) has been
proposed for automatic web information extraction,
including early works of template-based extrac-
tion (Dalvi et al., 2011). However, these methods
clearly do not scale up to billions of websites. Deep
learning models (Gogar et al., 2016; Zhou et al.,
2021) attempt to use supervisions from markup
pages (Tempelmeier et al., 2018) to build different
extractors for different fields.

With the recent development of natural language
processing (Vaswani et al., 2017), language models
have been successfully applied to web informa-
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tion extraction. These methods first convert the
web document to a text sequence by concatenat-
ing all the text nodes (Gupta et al., 2020) or to a
connected graph by using the rendered page (Qian
et al., 2019), and then adopt sequential modeling
such as LSTM (Lin et al., 2020) or attention net-
works (Hwang et al., 2021) to extract the target
fields from the web. More recently, several mul-
timodal language models (Dong et al., 2020; Xu
et al., 2020) have been proposed to extract web
information from both textual and visual signals.
Despite achieving promising results on web infor-
mation extraction, there are several major limita-
tions for existing natural language models. First,
they encode each modality of the web document in-
dependently with an individual encoder, which fails
to capture the connections among different modali-
ties, resulting in a less effective web representation.
Second, they do not fully encode the semi-structure
HTML layout, which carries important knowledge
about the correlations between different fields. For
example, in Figure 1, the DOM nodes correspond-
ing to the movie ‘name’ usually appear directly
after the image node in the HTML, while the ‘re-
lease date’ and ‘duration’ nodes are often siblings.
Therefore, encoding the structural HTML would
benefit the information extraction. Third, the texts
and images from individual modalities are simply
concatenated, making existing Transformer models
incapable of handling large web documents.

To address these challenges, in this work, we
propose a novel MUltimodal Structural Trans-
former (namely MUST), which incorporates multi-
ple modalities for web information extraction. In
particular, we design a multimodal encoder with a
structural attention mechanism to jointly encode all
the DOM nodes from multiple modalities, and learn
the cross-modal embeddings for them. Intuitively,
MUST leverages the web layout structure that nat-
urally connects DOM nodes from all modalities for
more effective attention weight computation. The
information of the target fields is then extracted
from the learned node embeddings. We conduct
evaluations of our model on WebSRC and Com-
mon Crawl benchmarks, and show the superior
performance of MUST over several state-of-the-art
methods. The experimental results also demon-
strate the effectiveness of the structural attention
in modeling web documents with multimodal data.
The main contributions are summarized as follows:

• We propose a unified Multimodal Structural

Transformer for web information extraction,
which effectively models the multimodal data
with the HTML layout and jointly extracts the
information for the target fields.

• We design a structural attention mechanism to
capture the correlation among different modal-
ities of the web document for learning effec-
tive cross-modal embeddings.

• We conduct an extensive set of experiments
on two benchmarks and demonstrate the ef-
fectiveness of the proposed approach.

2 Related Work

Web Information Extraction Early works in
web information extraction are wrapper induction
methods (Kim and Shim, 2011; Lockard et al.,
2018), which construct templates by learning the
desired patterns from the web documents. Several
deep learning methods (Sleiman and Corchuelo,
2013; Wang et al., 2019) are proposed to extract
or classify a text node to a set of fields using its
textual and visual features, e.g., classify whether a
text node is the ‘name’ field.

With the recent advancement in natural language
processing (NLP) (Devlin et al., 2019), an increas-
ing number of language models (Appalaraju et al.,
2021; Wang et al., 2020a; Yang et al., 2022; Zhao
et al., 2022) have been developed for web infor-
mation extraction. These methods can be further
divided into three main groups. The first group con-
tains the sequential modeling approaches (Herzig
et al., 2020; Majumder et al., 2020), which con-
struct a text sequence by concatenating all the text
nodes from the web and performing the extraction.
Form2Seq (Aggarwal et al., 2020) designs a seq-to-
seq model with an RNN. WebFormer (Wang et al.,
2022a) merges all the text nodes from the HTML
and trains a model with hierarchical attention. The
second group includes the graph learning models
(Qian et al., 2019; Lockard et al., 2020), which treat
the web document as a graph connecting multiple
rendered components and directly learn the web
representation on the graph. FormNet (Lee et al.,
2022) generates a structure-aware graph from the
rendered web document and uses the graph con-
volutional network (GCN) for obtaining the node
embeddings. The third group consists of the multi-
modal methods (Gong et al., 2017; Liu et al., 2019;
Wang et al., 2020b; Li et al., 2021), which learn
to extract field information from both textual and
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Figure 2: Overview of MUST model. The embedding layer generates the embeddings for all the input DOM nodes,
texts and images. The MUST encoder constructs structural attention to jointly encode the entire web and capture the
information among different modalities. The extraction layer outputs the final extractions of the text field.

visual clues on the web. LayoutLMv2 (Xu et al.,
2021) adopts a two-stream multimodal Transformer
encoder to model the interaction among text and
image.

Structure and Efficient Transformers Our
work is also related to those Transformer models
(Tay et al., 2022; Rae et al., 2020; Wang et al.,
2022b) that focus on efficiently encoding structure
and large sequences. ETC (Ainslie et al., 2020)
and Longformer (Beltagy et al., 2020) describe a
method to use a global memory with a relative
attention pattern (Shaw et al., 2018, 2019) to rep-
resent the structure text input. Transformer XL
(Dai et al., 2019) develops an approach to encode
long text sequences beyond a fixed size. HIBERT
(Zhang et al., 2019) uses hierarchical attention on
the equally divided input blocks. Random sparse
attention is utilized in BigBird (Zaheer et al., 2020)
to reduce the quadratic computations to linear time.
These methods achieve promising results in deal-
ing with structure and large input. However, they
cannot be directly applied to encode HTML layout
with multiple modalities.

3 Multimodal Structural Transformer

3.1 Problem Setting

In this section, we formally define the problem of
web information extraction. A web document can
be essentially represented as a HTML DOM tree

H . It usually contains information from multiple
modalities, such as texts and images, which are
naturally the leaf nodes in the DOM tree (see Figure
2). In order to encode the target field, we create
a special DOM node ‘Field’ under the root of the
DOM tree, with a leaf node representing the text
field attached to it. Similarly, for ‘<img>’ DOM
nodes, we apply Optical Character Recognition
(OCR) to obtain the texts from the image and add
these OCR nodes under the image node. We denote
the leaf nodes as C = (C1, C2, . . . , Cn), where Ci

represents the i-th leaf node in the DOM tree. For
each leaf node, it is either a text sequence or an
image, i.e., Ci = (wi

1, . . . , w
i
ni
), where wi

j is the
j-th word or image token in Ci.

The goal of web information extraction is that
given a target field T , extract its corresponding
information from the web document. For exam-
ple, for the text field ‘Director’, we aim to obtain
‘Steven Spielberg’. And for the target field ‘Name’,
‘Jurassic Park’ would be the correct extraction.

3.2 Overview

The overall model architecture of MUST is shown
in Figure 2, which consists of three key compo-
nents, the embedding layer, the MUST encoder
and the extraction layer. The embedding layer ini-
tializes the embeddings of both the text and image
tokens (referred to as TI tokens in the rest of the
paper), as well as the DOM nodes. The MUST en-
coder jointly encodes the multimodal information
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from the DOM tree with structural attention pat-
terns to capture the correlations among DOM nodes
and text/image tokens. The extraction layer extracts
the answer from the embedding of the ‘Field’ with
a Transformer decoder.

There are several advantages to our modeling.
(1) The multimodal information on the web is
jointly encoded through a unified structural en-
coder, where the information from different modal-
ities effectively communicates with each other. (2)
We directly encode the HTML DOM tree instead
of sequentializing the document (Chen et al., 2021;
Wang et al., 2022a) which does not fully capture the
structure information, or generating a graph from
the web (Qian et al., 2019; Lee et al., 2022) which
requires careful design of the nodes and edges. (3)
Our model does not concatenate all the inputs, al-
lowing it to scale to large documents.

3.3 Embedding Layer
Existing multimodal approaches (Xiong et al.,
2019; Li et al., 2021) encode textual and visual fea-
tures separately with individual encoders. Different
from previous works, we jointly encode texts and
images together with the DOM tree from the web
document in a multimodal structural Transformer.

In the embedding layer, we initialize the embed-
dings for all DOM nodes and TI tokens with a d-
dimensional vector. The embedding of each DOM
node can be viewed as a summarization of the sub-
tree under it. For example, in Figure 2, the DOM
node ‘<head>’ represents the whole web document
and can be used for document-level classification.
The ‘<img>’ DOM node essentially contains all the
information about that image. For a DOM node, its
embedding is constructed by adding a node embed-
ding, a type embedding and a tag embedding. For a
TI token, it is constructed by a word/patch embed-
ding and a type embedding. The word embedding
(Zou et al., 2013) is widely used in language mod-
els. The patch embedding is obtained by a linear
projection of the visual feature from ResNet101
(He et al., 2016). The type embedding is used to
indicate the type of the token, i.e., DOM node, text
or image. The tag embedding represents the HTML
tag of the DOM node such as ‘<div>’ and ‘<img>’.
All these embeddings are trainable.

3.4 MUST Encoder
The MUST encoder contains a stack of L identical
layers, which connects the DOM nodes, texts and
images from multiple modalities with a structural

attention mechanism, and learns cross-modal con-
textual representations of the web document and
field. In each encoder layer, there are four different
attention patterns. First, structural attention among
DOM nodes, which transfers the knowledge across
the DOM tree. Second, bottom up attention from
text/image token to DOM node. Third, top down
attention that passes the information from DOM
nodes to the text/image token. Fourth, local atten-
tion that learns contextual embeddings from other
TI tokens in the same leaf node.

DOM-to-DOM Attention The DOM-to-DOM
attention is designed to propagate the information
from one DOM node to another, which essentially
calculates the attention weights among the DOM
nodes. We utilize the connections in the DOM
tree H to compute the DOM-to-DOM attention,
i.e., we allow each DOM node to attend to a set
of DOM nodes in the DOM tree, including itself,
its parent, children and siblings. For instance, the
DOM node ‘<img>’ will attend to (besides itself)
the parent node ‘<div>’, the children ‘<alt>’ and
two ‘<OCR>’ nodes, and the sibling node ‘<div>’.
Formally, given the DOM nodes embedding XD,
the DOM-to-DOM attention is defined as:

eNN
ij = xDi W

NN
Q (xDj W

NN
K + tNN

ij )T /
√
d

αNN
ij =

exp(eNN
ij )∑

ℓ∈S(xD
i

)
exp(eNN

iℓ )
, for xj ∈ S(xDi )

where S(xDi ) denotes the set of DOM nodes that
xDi can attend to. WNN

Q and WNN
K are learnable

weight matrices, and tNN
ij are learnable vectors

representing the connection type between the two
nodes, i.e. self, parent, child or sibling. d is the
embedding dimension.

Bottom-Up Attention There are several choices
for designing the Bottom-Up attention. For ex-
ample, allowing full attention from TI tokens to
a DOM node. However, the computation grows
linearly with the total number of the TI tokens,
which is costly for large web documents. There-
fore, in the Bottom-Up attention, we only enable
attention from TI tokens to the DOM node they
belong to. Note that for Bottom-Up attention, only
leaf nodes are involved. For instance, in Figure 2,
the ‘<h1>’ DOM node only directly receives infor-
mation from the text tokens within it, i.e., ‘Jurassic’
and ‘Park’. The information contained in other TI
tokens will be propagated to the ‘<h1>’ DOM node
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through DOM-to-DOM attention. Denote the TI to-
ken embeddings as XTI , the restricted Bottom-Up
attention for a leaf node Ci is defined as:

eBU
ij = xDi W

BU
Q (xTI

j WBU
K )T /

√
d

αBU
ij =

exp(eBU
ij )∑

ℓ∈Ci
exp(eBU

iℓ )
, for j ∈ Ci

where WBU
Q and WBU

K are weight matrices in
Bottom-Up attention.

Top-Down Attention In Top-Down attention,
each TI token directly connects with every DOM
node, absorbing the high-level representation from
these DOM nodes. For example in Figure 2, the
text token ‘Jurassic’ from leaf node ‘<h1>’ attends
to all DOM nodes in the DOM tree. The defini-
tion of the Top-Down attention is similar to the
above Bottom-Up attention except that each TI to-
ken attends to all DOM nodes. Full details are in
Appendix A.

Local Attention The local attention is the tradi-
tional attention mechanism used in various existing
Transformer models (Devlin et al., 2019; Dosovit-
skiy et al., 2021), which learns contextual token
embeddings from the input sequence. Again, in
our design, we only restrict local attention between
two TI tokens from the same leaf DOM node to
further reduce the computational cost.

The final representation of the DOM nodes and
TI tokens can be achieved by merging the above
structural attention patterns. The output embed-
dings for DOM nodes and TI tokens ZD, ZTI are
calculated as follows:

zDi =
∑

j∈S(xD
i ) α

DD
ij xDj W

D
V +

∑
ℓ∈Ci

αBU
iℓ xTI

ℓ W TI
V

zTI
i =

∑
ℓ∈Ci

αLA
iℓ xTI

ℓ W TI
V +

∑
j α

TD
ij xDj W

D
V

where all the attention weights αij are described
above. WD

V and W TI
V are the learnable matrices to

compute the values for DOM nodes and TI tokens
respectively. Intuitively, these structure attention
patterns effectively connect the DOM nodes and
TI tokens on the web from different modalities,
enabling efficient interactions across the DOM tree.

3.5 Extraction Layer

The extraction layer of MUST outputs the final an-
swer for the target field from the web document.
We use a Transformer decoder (Vaswani et al.,

2017) on the output embeddings of the DOM node
‘Field’ to generate the extraction word by word:

w̄t = argmax
wt

(softmax(WdeX
t
de))

where Xt
de is the decoder output at word position

t. Wde is the output matrix which projects the final
embedding to the logits of vocabulary size. A copy
mechanism (Zhao et al., 2018) is employed into the
decoder to allow both copying words from the text
nodes, and generating words from a predefined vo-
cabulary during decoding. To further improve the
embedding learning, we supplement two auxiliary
tasks as shown in Figure 2. (1) extracting the text
spans from the text nodes via sequential tagging
(Xu et al., 2019; Chen et al., 2021). (2) classifying
the web document using the embedding from the
‘<head>’ node. The total loss is defined as:

L = LD + αLSeq + βLCls

where α and β are hyper-parameters to balance
among different losses.

4 Experiments

4.1 Datasets

We evaluate our method on two multimodal bench-
marks, WebSRC (Chen et al., 2021) and Common
Crawl (Wang et al., 2022a; Li et al., 2022).
WebSRC1 is designed for structural reading com-
prehension and information extraction on the web.
It contains 6.5K web pages with their HTML
sources and images from 10 domains, e.g. “Jobs”,
“Books”, “Autos”, etc. We use the KV-type pages in
our experiment, resulting in a subset of 3214 pages
with 71 unique fields. These pages are all single
object pages containing multiple key-value pairs,
e.g. (“genre”, “Science Fiction”). The keys are
used as the fields, while the values are the answers
to be extracted from the web page.
Common Crawl2 is commonly used in various
web information extraction tasks. It contains more
than 3 billion web pages from various domains,
and we choose three domains Movies, Events and
Products in the experiments. We further select
web pages with schema.org annotations3, which
contain the full markup information about the ob-
ject and are used as the ground-truth labels. The

1https://x-lance.github.io/WebSRC/
2https://commoncrawl.org/the-data/
3https://schema.org/
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Models
WebSRC Common Crawl

Movies Events Products
EM F1 EM F1 EM F1 EM F1

GraphIE (Qian et al., 2019) 66.34 ± 0.27 73.15 ± 0.22 81.85 ± 0.21 86.01 ± 0.19 79.11 ± 0.16 83.86 ± 0.17 73.94 ± 0.24 77.62 ± 0.19
FreeDOM (Lin et al., 2020) 68.24 ± 0.35 74.64 ± 0.29 81.64 ± 0.35 86.28 ± 0.17 79.52 ± 0.29 84.98 ± 0.16 74.83 ± 0.31 78.29 ± 0.22

SimpDOM (Zhou et al., 2021) 70.18 ± 0.24 76.35 ± 0.14 82.87 ± 0.25 87.66 ± 0.12 81.47 ± 0.26 86.05 ± 0.14 75.21 ± 0.23 78.40 ± 0.25
V-PLM (Chen et al., 2021) 73.25 ± 0.23 76.20 ± 0.21 83.04 ± 0.25 88.53 ± 0.14 82.29 ± 0.15 87.34 ± 0.16 77.18 ± 0.13 81.05 ± 0.24

WebFormer (Wang et al., 2022a) 73.57 ± 0.18 80.04 ± 0.31 85.81 ± 0.11 90.75 ± 0.26 85.36 ± 0.26 90.41 ± 0.13 80.24 ± 0.17 83.85 ± 0.21
MarkupLM (Li et al., 2022) 74.43 ± 0.23 80.52 ± 0.22 85.33 ± 0.15 89.84 ± 0.16 85.93 ± 0.30 91.12 ± 0.25 78.67 ± 0.29 82.28 ± 0.26

MUST 75.68 ± 0.18 81.13 ± 0.24 87.79 ± 0.24 92.34 ± 0.18 87.67 ± 0.20 93.37 ± 0.23 82.30 ± 0.19 85.41 ± 0.24

Table 1: Performance comparison results with standard deviation on all datasets. Results are statistically significant
with p-value < 0.001.

fields are {“Name”, “Description”, “Genre”, “Du-
ration”, “Director”, “Actor”, “Published Date”}
for Movies, {“Name”, “Description”, “Date”, “Lo-
cation”} for Events and {“Name”, “Description”,
“Brand”, “Price”, “Color”} for Product pages. We
downsample the web pages by allowing at most 2k
pages per website to balance the data. More details
are provided in Appendix B.

4.2 Baselines

Our model is compared with six state-of-the-art
web information extraction methods.

GraphIE (Qian et al., 2019) propagates infor-
mation between connected nodes through graph
convolutions.

FreeDOM (Lin et al., 2020) proposes a two-
stage neural network to extract the information
from text nodes.

SimpDOM (Zhou et al., 2021) treats the problem
as a DOM node tagging task and uses a LSTM to
jointly encode XPath with the text features.

V-PLM (Chen et al., 2021) models the HTML,
text and visual signal together by concatenating
their embeddings with individual encoders.

WebFormer (Wang et al., 2022a) concatenates
the HTML and the text sequence and builds a se-
quential tagging model.

MarkupLM (Li et al., 2022) designs a multi-
modal pre-training model with text, layout, and
image, and fine-tunes it for information extraction.

4.3 Settings

We implement MUST using Tensorflow and trained
on a 32 core TPU v3 configuration. During train-
ing, we use the gradient descent algorithm with
Adam optimizer. During inference, we conduct
beam search with beam width 6. The details of
all hyper-parameters are reported in Appendix C.
Following previous works (Li et al., 2022), we use

Exact Match (EM) and F1 as the evaluation metrics.
We repeat each experiment 10 times and report the
metrics based on the average over these runs.

5 Results

5.1 Main Results

MUST outperforms the state-of-the-art web in-
formation extraction methods on all datasets.
We report the performance comparison result on all
datasets in Table 1. It is not surprising to see that
the node-level extraction methods FreeDOM and
GraphIE do not perform well, as they only extract
the text from each text node independently or with
local information based on the text features. Simp-
DOM uses a LSTM to jointly encode the XPath in-
formation with the text feature, and thus boosts the
performance. V-PLM, WebFormer and MarkupLM
achieve even stronger results compared to these
methods due to the explicit modeling of the HTML.
Nevertheless, it can be seen that MUST achieves
the best performance over all the compared meth-
ods on all datasets. For example, the EM score
of MUST increases over 2.57% and 4.61% com-
pared with WebFormer and MarkupLM on Prod-
ucts. The reason is that these sequential modeling
and multimodal methods separately encode HTML,
text and image with individual encoders, and con-
catenate them into a single sequence for learning
their embedding. In contrast, MUST jointly en-
codes the multimodal information from the web in
a structural manner, which effectively transfers the
knowledge among different modalities, leading to
better cross-modal embeddings. We also report a
field level results of MUST on the Products data
in Table 2. We can see that MUST achieves higher
performance on ‘Name’ and ‘Brand’ compared to
the fields ‘Price’ and ‘Description’. More detailed
analysis is provided in Appendix ??.
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Name Desc Brand Price Color

EM 87.34 79.57 86.36 77.15 82.68
F1 92.27 83.78 88.72 79.37 84.46

Table 2: Field level results of MUST on Products.

Models WebSRC Common Crawl
Movies Events Products

GraphIE (Qian et al., 2019) 62.29 74.37 73.21 63.64
FreeDOM (Lin et al., 2020) 63.54 74.68 74.72 64.34

SimpDOM (Zhou et al., 2021) 63.98 75.54 75.37 64.46
V-PLM (Chen et al., 2021) 67.46 80.37 80.14 72.57

WebFormer (Wang et al., 2022a) 70.58 82.35 82.59 74.68
MarkupLM (Li et al., 2022) 71.73 84.36 84.92 78.16

MUST 73.42 84.81 85.31 77.87

Table 3: Low-resource performance comparison results
(F1 scores) on all datasets.

5.2 Results on Low-resource Scenario

MUST performs reasonably well in low-
resource scenarios. We further evaluate the per-
formance of MUST and all other baselines in a
low-resource setting. Specifically, we randomly
sample 20% and 10% training data from WebSRC
and Common Crawl respectively and retrain the
models. The F1 scores are reported in Table 3.
There are several observation from these results.
First, it is clear that all methods suffer from large
performance drop. However, the performance gap
between the low-resource and full-resource sce-
narios is relatively small for those methods that
encode the HTML information, e.g., V-PLM, Web-
Former, MarkupLM and MUST. Our hypothesis is
that in the low-resource training, the HTML lay-
out provides additional knowledge beyond the text
for information extraction, which is particularly
importance under low-resource settings. Second,
MUST still outperforms the baselines in most cases.
We also observe that MarkupLM achieves even
stronger result than MUST on Products. We be-
lieve this is due to their large pretraining on web
documents, which learns certain common knowl-
edge in the HTML.

6 Analysis and Discussion

6.1 Importance of Different Modalities

HTML layout plays an important role for web
information extraction, while OCR texts and vi-
sual information from the web images are also
valuable sources that boost the extraction per-
formance. To understand the impact of different
modalities from the web document, i.e., HTML
layout, OCR texts and visual signals, we conduct
an ablation study by removing each modality from
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Figure 3: Importance of different modalities.
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Figure 4: Field level importance of different modalities.

our model. Concretely, removing HTML layout
means we do not leverage the DOM tree in MUST,
but just concatenate the text and image tokens from
all leaf nodes. Removing OCR texts or visual sig-
nals means delete the corresponding DOM nodes
in the DOM tree during encoding. The results of F1
scores on all datasets are illustrated in Figure 3. It is
clear that HTML layout plays a crucial role for the
information extraction task on all datasets, which
is consistent with our expectation. Moreover, both
the OCR text and visual information help improve
the extraction performances.

6.2 Field Level Importance of Different
Modalities

Each modality has different impacts on differ-
ent fields. While the visual signal is very useful
for ‘Color’ extraction, OCR text benefits the ex-
traction of both ‘Price’ and ‘Brand’. To further
analyze the impact of different modalities on differ-
ent fields, we conduct another field level ablation
study on the Products data. The experimental set-
tings are the same as in the above experiment, and
we remove each modality at a time. The results of
field level F1 scores are shown in Figure 4. We ob-
serve that HTML layout still plays an essential role
across all fields. It can be seen from the results that
the visual signal does not help too much on ‘Name’
and ‘Description’ extraction, but clearly improves
the performance on ‘Color’ extraction. The reason
is that many product images carry the information
about the product color, and therefore can be use-
ful when extracting the product ‘Color’. We also
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Figure 5: Importance of different attention patterns.

observe that the OCR text boosts the extraction of
‘Brand’, as it is often the case that product ‘Brand’
is mentioned in the product image. We provide
more case studies in Appendix ??.

6.3 Impact of Different Attention Patterns

Every attention pattern has a positive impact on
the model performance, while MUST with all
structural attention patterns achieves the best
performance. In this ablation study, we evalu-
ate the impact of different attention patterns on the
model performance by eliminating each attention at
a time. Concretely, we train three additional mod-
els without the three attentions respectively, i.e.,
DOM-to-DOM, Bottom-UP and Top-Down atten-
tion. Note that we always keep the Local attention
as it is the fundamental component of Transformer
models. The F1 scores of these three models to-
gether with the original MUST on all datasets are
shown in Figure 5. First, we observe clear model
performance drop without the Bottom-Up attention
on all datasets. This is because the Bottom-Up
attention is used to transfer knowledge from leaf
nodes (containing text and image information) to
DOM nodes, which is important for learning effec-
tive contextual embeddings for DOM nodes. We
also observe some performance drop, around 1 to 2
percent in terms of F1 score, when eliminating one
of the other two attention patterns. This observation
validates that the structural attention mechanism
is crucial for modeling the multimodal web docu-
ments and extracting the information from them.
Nevertheless, it is clear that MUST with all atten-
tion patterns achieves the best performance.

6.4 Performance-Scale Trade-off

MUST with a 12-layer encoder and a 4-layer
decoder achieves good performance-scale trade-
off. We conduct a performance-scale study on
different MUST configurations. In particular, the
MUST-base model uses a 12-layer encoder with

MUST # Parameters WebSRC Movies Events Products

Encoder-2L 46M 78.59 89.92 91.46 83.32
Encoder-6L 88M 79.88 90.73 92.25 84.10

Encoder-12L 152M 81.13 92.34 93.37 85.41
Encoder-24L 269M 82.38 93.46 94.87 87.09

Decoder-2L 131M 80.25 91.68 92.43 84.78
Decoder-4L 152M 81.13 92.34 93.37 85.41

Decoder-12L 235M 81.26 92.41 93.70 85.83

Table 4: Model performance (F1) over different encoder
and decoder configurations.

a 4-layer decoder. We evaluate the model perfor-
mance with a different number of encoder layers
in {2L, 6L, 12L, 24L}, and decoder layers in {2L,
4L, 12L}. The F1 scores of different models are
reported in Table 4. It is not surprising to see that
Encoder-24L and Decoder-12L obtain the best per-
formances, which is expected. On the other hand,
larger models usually require both longer training
and inference time. Our MUST model with a 12-
layer encoder and a 4-layer decoder performs rea-
sonably well on all datasets, which achieves good
performance-scale trade-off.

Movies

91.0

91.5

92.0

92.5

0 2 4 6 8 10

α β

Figure 6: Impact of multi-task learning.

6.5 Impact of Multi-task Learning
Both text span extraction and web document
classification help improve the model perfor-
mance. To understand the impact of the auxiliary
tasks, we evaluate the model performance by vary-
ing the hyper-parameters α and β from {0, 0.1,
0.5, 0.8, 2, 10}. Note that we modify one hyper-
parameter by fixing the other one to the optimal
value (see Appendix C). The model performances
with different hyper-parameter values are shown in
Figure 6. It is clear that both tasks lift the model
performance (0 value of α or β means removing
that task). However, the text span extraction task
plays a more important role compared to the web
classification task.

7 Conclusions

This paper presents a novel Multimodal Structural
Transformer (MUST) for web information extrac-
tion. A structural encoder is developed and used to
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jointly encode the multimodal information associ-
ated with the HTML layout, where high-level DOM
nodes, and low-level text and image tokens are in-
troduced to represent the entire web. Structural
attention patterns are designed to learn effective
cross-modal embeddings for all DOM nodes and
text/image tokens. Experimental results on Web-
SRC and Common Crawl benchmarks demonstrate
the effectiveness of the proposed approach.

Limitations

There are two limitations of the current MUST
model. First, although pre-trained language mod-
els can potentially boost the performance in web
information extraction, pre-train a MUST on web
documents has its unique challenges. There are
several possibilities for our future exploration. For
example, we plan to pretrain a MUST model by in-
corporating HTML-specific tasks, such as masking
DOM nodes and predicting the relations between
DOM nodes. Second, our model focuses on web
pages with single-object, where each target field
only has exactly one answer. For a multi-object
page, e.g. a movie listing page, there are different
movie names corresponding to different movies on
the page. However, methods like repeated patterns
(Adelfio and Samet, 2013) can be applied.
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A More Technical Details

We provide more technical details on our MUST in
this section.

MUST Encoder As mentioned in the main paper,
the MUST encoder is a stack of L identical layers:

X l = MUST(X l−1), 1 ≤ l ≤ L

where X0 is the input embedding for the first layer,
which is obtained from the embedding layer. Each
encoder layer contains a structural attention layer
followed by a standard feed forward network:

Zk = StrAtt(Xk−1), Xk = FFN(Zk)

The StrAtt layer uses the structural attention mech-
anism described in the main paper. We supplement
the full details of the Top-Down attention and the
Local attention.

Top-Down Attention The Top-Down attention
is defined as:

eTD
ij =

xTI
i W TD

Q (xDj W
TD
K )T

√
d

αTD
ij =

exp(eTD
ij )

∑
ℓ exp(e

TD
iℓ )

Local Attention The Local attention is defined
as:

eLAij =
xTI
i WLA

Q (xTI
j WLA

K )T
√
d

αLA
ij =

exp(eLAij )
∑

ℓ∈Ci
exp(eLAiℓ )

, for j ∈ Ci

B Dataset

B.1 Data Processing
The WebSRC dataset contains three types of web
pages, i.e. KV (key-value), Comparison and Table.
As stated in the main paper, we only use the KV
type pages in our experiments. The reason is that
both Comparison and Table web pages are more
suitable for multi-object extraction, where those
objects’ information are described in a table or list
and can be obtained directly with repeated pattern
or table extraction techniques (Wang et al., 2019).
For the KV pages, the key-value pairs only contain
value text without any span information in the text
sequence of the web page. Therefore, we need to
label the span of the value in the text sequence,

Figure 7: Example of schema.org annotations of an
event page, including name, description, date and loca-
tion.

since the sequential tagging task in MUST requires
token level spans during training.

The Common Crawl dataset contains a huge
amount of web pages with schema.org annotations,
which are used as the supervision in various infor-
mation extraction tasks. An example of schema.org
Event annotations is shown in Figure 7. It contains
the annotation type “https://schema.org/Event”, as
well as the annotations for all the event fields in-
cluding name, description, date and location. In
our experiments, we work on three big domains
- Movies, Events and Products. We further filter
these pages by restricting to English and single
object pages (have one single schema.org type an-
notation). We also label the span corresponding to
the field in the text sequence.

The process of labeling spans is straightforward
as follows:

• Use white-space to tokenize the text on the
web into unigrams. For example, ‘This is
a very long paragraph about HelloKitty’ is
tokenized to [‘This’, ‘is’, ‘a’, ‘very’, ‘long’,
‘paragraph’, ‘about’, ‘HelloKitty’]. In this
step, all punctuations are removed.

• Use white-space to tokenize the answer into
unigrams. For example, ‘very long’ is tok-
enized to [‘very’, ‘long’].

• Search and match the answer unigrams in the
text unigrams.

• Map the unigram span of the answer to char-
acter bytes span.
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Data Splits WebSRC
Common Crawl

Movies Events Products

Train 2,572 45,586 61,512 84,937
Dev/Test 321 5,698 7,689 10,617

Total 3,214 56,982 76,890 106,171

Training Time (15 epoch) 11m 2h 45m 3h 38m 4h 42m

Table 5: Statistics of the datasets with the training time.

There are 3.87% examples in the Common Crawl
dataset, whose answer text can not be matched by
this procedure. We simply exclude these examples
in our experiments. Moreover, we also found there
are roughly 21.54% examples where the answer
has multiple occurrences in the text.

B.2 Statistics
The statistics of the datasets with training time are
shown in Table 5.

B.3 Baseline Discussion
We want to provide some clarification on the results
of the two baselines, WebFormer and MarkupLM,
in Table 1. First, for both methods, we directly run
their codes to obtain the results. The code/model of
MarkupLM is publicly available. For WebFormer,
we obtain the original code and model from its
authors. Second, our results are consistent with
MarkupLM on WebSRC (last row in their Table
1). Here we use stronger baseline MarkupLM-large
for comparison. Third, for CommonCrawl, we re-
process the data by removing non-matched ground-
truth (as discussed above), resulting in slightly less
data (in our Table 5) compared to the data used
in WebFormer (in their Table 1). This is the main
reason why the reported numbers of WebFormer in
this work are even higher than the original results.

C Implementation Details

For data pre-processing, we use open-source
LXML library4 to process each page for obtaining
the DOM tree structures. For all these baselines, we
use the same English uncased WordPiece vocabu-
lary as in BERT. The word embedding is initialized
with the pretrained BERT-base. The encoder pa-
rameters used in MUST are 12 layers, 768 hidden
size, 3072 hidden units (for FFN). The maximum
text sequence length is set to 2048. The decoder
parameters used in MUST are 4 layers, 768 hid-
den size, 3072 hidden units, max output sequence
length is 128. During training, we use the gradient

4https://lxml.de/

Parameter Value

encoder layers 12
encoder heads 12

encoder hiden size 768
encoder hidden units 3,072

max input sequence length 2,048

decoder layer 4
decoder heads 6

decoder hiden size 768
decoder hidden units 3,072

max output sequence length 128
beam width 6

batch size 64
training epochs 15

optimizer Adam
learning rate schedule linear decay

learning rate 2e−5

learning rate warmup steps 5,000
vocab BERT-base

vocab size 30,522
α 0.8
β 0.5

Table 6: Model Hyper-parameters details.

descent algorithm with Adam optimizer. The ini-
tial learning rate is set to 2e−5. The batch size for
each update is set as 64 and the model is trained for
up to 15 epochs. The dropout probability for the
attention layer is set to 0.1. The model parameters
are provided in Table 6.
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