
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 190–202

July 9-14, 2023 ©2023 Association for Computational Linguistics

MIL-Decoding: Detoxifying Language Models at Token-Level
via Multiple Instance Learning

WARNING: This paper contains model outputs which are offensive in nature.

Xu Zhang and Xiaojun Wan
Wangxuan Institute of Computer Technology, Peking University

{zhangxu, wanxiaojun}@pku.edu.cn

Abstract

Despite advances in large pre-trained neural
language models, they are prone to gener-
ating toxic language, which brings security
risks to their applications. We introduce MIL-
Decoding, which detoxifies language models
at token-level by interpolating it with a trained
multiple instance learning (MIL) network. MIL
model is trained on a corpus with a toxicity la-
bel for each text to predict the overall toxicity
and the toxicity of each token in its context.
Intuitively, the MIL network computes a toxi-
city distribution over next tokens according to
the generated context which supplements the
original language model to avoid toxicity. We
evaluate MIL-Decoding with automatic metrics
and human evaluation, where MIL-Decoding
outperforms other baselines in detoxification
while it only hurts generation fluency a little
bit.

1 Introduction

Trained on huge amount of text corpora,
Transformer-based (Vaswani et al., 2017) pre-
trained language models (LMs) have led to a wave
of advances in natural language generation tasks
(Radford et al. (2019); Lewis et al. (2019); Roberts
et al. (2019)). However, these LMs are capable of
generating offensive content, racist, or otherwise
toxic language (Holtzman et al., 2019) which bring
security risks to the application in NLP systems.
To enable safe use and deployment of language
model, it is necessary to undertake effective steps
to mitigate toxic text generation.

We examine the public comments provided in
Jigsaw Toxic Comment Classification Challenge
Dataset1 (Jigsaw) containing over 200K comments
that were labeled as toxic. In most cases, sev-
eral spans of harmful text cause the toxicity of the
whole comment. In the example given in Table 1,

1https://www.kaggle.com/c/jigsaw-toxic-comment-
classification-challenge/

[Comment]
The only people who seem to give a crap about
that stupid book are people like you who cite it as
a pretense to claims of victimhood at the hands
of those people. That’s the only reason it’s ever
discussed.
[...]

Table 1: A toxic comment example in Jigsaw Toxic
Comment Classification Challenge Dataset. The red
tokens indicate the spans in the comment that induce
toxicity.

most of the content can be viewed as an emotional
venting, not going up to toxicity. However,"crap"
and "stupid" in this comment make it offensive.

Prior studies (Gehman et al., 2020) attempt to
filter out a specific word list at the decoding stage,
which cannot achieve an obvious effect on miti-
gating toxicity in the generated text. Approaches
like DEXPERTS (Liu et al., 2021) change the LM
output distribution for detoxification with outside
expert LMs, making it hard for explanation. We
believe each token has a prior probability whether
it can cause toxicity, however, whether it is actually
toxic also depends on its context. Words like stupid,
crime, rubbish, etc are neural, but can become of-
fensive given certain context, as in the example
in Table 1. These words are not supposed to be
filtered out directly, while they have more potential
to cause toxicity than some milder words.

Therefore, we present MIL-Decoding, a token-
level detoxification in consideration of the contex-
tual information with a multiple instance learning
(MIL) neural network. At each decoding step, our
proposed method uses a MIL network to score the
retrieved tokens conditioned on the token itself
and its contextual information. The MIL network
predicts the toxicity of the token’s occurrence in
the generated context to compute an extra toxicity
distribution over candidate tokens to avoid toxic

190

https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/
https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/

generation. At inference time, we combine the tox-
icity distribution and the original LM probability
distribution at each time step to determine which
token to generate.

We conduct experiments conditioned on two
widely-used datasets: RealToxicityPrompts
(Gehman et al., 2020) and a QA-dataset provided
by Solaiman and Dennison (2021). Experi-
mental results show that our MIL-Decoding
method achieves faster decoding speed than other
decoding-time methods, while it outperforms
all other detoxification methods in reducing
toxic text generation. We further verify that
MIL-Decoding can mitigate toxicity conditioned
on either nontoxic or toxic prompts.

In summary, the contributions of our work are as
follows:

• We propose MIL-Decoding that introduces
a trained MIL network to help avoid toxic
generation.

• Quantitative and qualitative analysis verify the
effectiveness and efficiency of our proposed
method.

• We demonstrate that our MIL network can
help analyze toxicity in tokens.

2 Background

2.1 Multiple Instance Learning (MIL)

In the classical supervised learning problem, one
aims at finding a model that predicts a label y, for
a given instance x ∈ RD. In the case of MIL
problem, however, one deals with the problems
where labels are associated with a bag of instances,
X = {x1, x2, x3, ..., xk}, while instance labels are
unobserved. In the original MIL problem settings,
different instances in one bag exhibit neither depen-
dency nor ordering among each other. Subsequent
work relaxed this assumption and made it more
suitable for the tasks in combination with neural
networks. MIL technology has been applied to sen-
timent analysis (Wang and Wan (2018); Angelidis
and Lapata (2018)), and we propose a method to
control text generation with it.

2.2 Detoxifying LM

Although large-scale pre-trained LMs (Wick et al.
(2020); Keskar et al. (2019a); Raffel et al. (2019))
have demonstrated excellent performance in many

NLP tasks, recent studies show that LMs can gener-
ate toxic and biased language (Kumar et al., 2022).

Pre-trained LMs predict the probability distribu-
tion over next token to be generated: Pθ(xi|x1:i−1).
Control codes can be used to enlighten LMs the
desirable attributes we need in generated output.
Class-conditional language models (CC-LMs) like
Ctrl (Keskar et al., 2019b) guide language models
to generate with an attribute variable, modeling as
Pθ(xi|x1:i−1, c), where variable c is used as a con-
trol code. Qian et al. (2022) and Clive et al. (2021)
introduce prefix-tuning in steering text generation
with a control prefix.

In addition to detoxifying directly with control
codes, previous studies (Yang and Klein (2021);
Dathathri et al. (2019)) propose methods steer-
ing generation at decoding stage. Methods based
on weighted decoding (Holtzman et al. (2018);
Ghazvininejad et al. (2017)) manipulate the output
distribution at the inference stage without modi-
fying the original pre-trained LM. With applica-
tion of Bayesian factorization, the problem can
be transferred into maximizing the product of
Pθ(xi|x1:i−1) and Pθ(c|x1:i):

Pθ(x1:i|c) ∝ Pθ(xi|x1:i−1)Pθ(c|x1:i) (1)

Moreover, recent studies further paid attention
to how LMs produce toxicity and the problems
with existing detoxification methods. Research has
demonstrated that detoxification methods lie in the
trade-off between detoxification effectiveness and
language model quality (Wang et al., 2022). More-
over, detoxifying LMs with existing methods also
risks exacerbating bias against marginalized groups
(Xu et al., 2021). Hartvigsen et al. (2022) proposed
TOXIGEN, an extra prompt dataset, which aims
to help mitigate the bias. Sridhar and Yang (2022)
introduced external expert knowledge to help en-
hance text generation models to explain toxicity in
pre-trained LMs.

3 Methodology

The core idea of MIL-Decoding is to enhance the
LM probability distribution with a MIL network
that computes a toxicity score. In section 3.1, we
first introduce the MIL network architecture and
analyze the toxicity score produced by the network.
And then, we provide a detailed description of our
approach MIL-Decoding in section 3.2.

191

Figure 1: Our proposed MIL network. The model en-
codes the original word embedding with a GRU network
and evaluate the token toxicity before calculating a total
classification result.

3.1 MIL Network
For a given text with m tokens C =
(w1, w2, ..., wm) and a toxicity label y ∈ {0, 1},
the MIL model computes the toxicity of each to-
ken, and predicts the label according to the toxicity
of tokens. In our network, token embeddings are
encoded with a bidirectional GRU layer so that to-
ken representation is not merely based on the token
itself, but also integrates contextual information:

e1, e2, ..., em = GRU(w1, w2, ..., wm) (2)

Toxicity score of each token in the text is computed
with a token classification module containing at-
tention layers and activation function based on the
token representation, represented by function f :

p1, p2, ..., pm = f(e1, e2, ..., em) (3)

Toxicity scores are fed into a document classifier
based on a bidirectional GRU component with at-
tention mechanism, represented by function g:

ypred = g(p1, p2, ..., pm) (4)

With label y as the ground truth, the CE loss be-
tween ypred and y is used to optimize the MIL
model. Figure 1 illustrates our network architecture.
Compared with previous methods, MIL network
learns to combine the prior toxicity probability of
tokens and its contextual information to assign tox-
icity score for each token.

Figure 2 shows an example of MIL model an-
alyzing a tokenized sequence "T ucker and Paul
are total bad ass m of o ’s . <eos>". Some of the
tokens have a toxicity score of 0, which indicates

Figure 2: An example of toxicity score evaluated by
the MIL model. Given a toxic sentence "Tucker and
Paul are total bad ass mofo’s. ", it is tokenized by a
GPT-2 tokenizer into "T ucker and Paul are total bad
ass m of o ’s . <eos>" containing 15 tokens. Each token
is assigned a toxicity score with the MIL model. The
blank columns in the bar represent tokens with a toxicity
score of 0.

that they are harmless in this context, while others
are toxic to some extent in the sentence. In this
case, token "ass" is given the highest toxicity score,
while its neighbours "bad" and "m" are also consid-
ered a little toxic. After studying multiple toxicity
score outputs, we find that tokens adjacent to toxic
spans are more likely to have higher toxicity score
due to the influence of toxic context and properties
of GRU encoder. Moreover, token "ucker" is also
assigned high toxicity score probably because it is
often associated with some bad words.

3.2 MIL-Decoding Detoxification

Our approach augments a pre-trained LM with the
MIL network to score the retrieved candidate to-
kens with pre-trained LM parameters remaining
unchanged. At inference time, given a context se-
quence of tokens ct = (w1, w2, ..., wt−1) at time t,
autoregressive LMs (like GPT-2) estimate the distri-
bution over target token wt, noted as PLM (wt|ct).
We adopt a top-k filtering(Fan et al., 2018) method
that preserves the top k tokens with the highest
probability in PLM (wt|ct) to truncate the unreli-
able tail of the probability distribution. Formally,
let q1, q2, ..., qk denote the top-k retrieved tokens
at time t, the MIL network is used to rate the
toxicity of the top-k retrieved tokens by concate-
nating each candidate token qi to the context ct
which produces the potential generated sequence

192

Figure 3: An illustration of our proposed detoxification via multiple instance learning. Given top-k tokens retrieved
by pre-trained language model PLM , the candidates are fed into the MIL model to obtain a toxicity score. The final
distribution is computed by interpolating the toxicity distribution with the original LM distribution.

cit+1 = (w1, w2, ..., wt−1, qi) at the next time step.
The MIL model takes cit+1 as the input sequence
and assigns a toxicity score to each token in the
sequence according to the network output:

pi1, p
i
2, ..., p

i
t = f(GRU(cit+1)) (5)

We measure the potential toxicity of token qi with
the output score pit.

As illustrated in section 3.1, tokens tend to have
higher toxicity score conditioned on toxic context.
Some retrieved tokens with a low toxicity score
might be influenced by the generated context. Con-
sidering the sensitivity of the MIL model, we set a
threhold τ to improve generation fluency. After a
softmax operation, toxicity scores p1t , p

2
t , ..., p

k
t are

filtered with τ , where scores less than τ are man-
ually set to 0. Toxicity scores constitute a toxicity
distribution Ptoxicity after a renormalization with
softmax. The last step is to interpolate the toxicity
distribution Ptoxicity with the LM distribution PLM

with a tuned hyper-parameter λ and normalize to
produce the final distribution we use to sample the
next token (Khandelwal et al., 2019):

P (y|x) = softmax(PLM (y|x)− λPtox.(y|x))
(6)

Figure 3 illustrates the overall procedure of MIL-
Decoding. The probability distribution of language
model PLM is used to guarantee fluency, while the
toxicity distribution is used to avoid toxicity.

4 Experiments

We use GPT-2 medium as our base pre-trained LM.
Following Gehman et al. (2020), we run experi-

ments to evaluate the problem of toxic degeneration
given a prompt context. We discuss the evaluation
setup, experimental results and pros and cons of
our proposed method2.

4.1 Baselines

Domain-adaptive pre-training (DAPT; Guru-
rangan et al., 2020) DAPT attempts to control text
generation by finetuning pre-trained LMs on non-
toxic corpus that are human-annotated. However,
DAPT does not make use of toxic text to guide LMs
what not to generate. Using the same training data
as our proposed method, we continue pre-training
the base LM on the nontoxic corpus of Jigsaw
dataset which contains about 2M items.

Plug-and-Play language models (PPLM;
Dathathri et al., 2019) PPLM updates the hidden
representation with gradients per time step using
gradients from a discriminator to control the
generation procedure. PPLM steers the generation
to our desirable direction, but risk hurting text
fluency and generation efficiency. We use the
trained classifier model provided by Dathathri et al.
(2019), following the implementation in Gehman
et al. (2020).

Generative discriminator (GeDi; Krause et al.,
2020) GeDi achieves strong performance by us-
ing a class-conditional language model (CC-LM)
as discriminator to compute the probability con-
trast between desired control code and anti-control

2The codes are available at
https://github.com/pkulcwmzx/Detoxification

193

https://github.com/pkulcwmzx/Detoxification

code. We implement this baseline with the model
released by the authors with recommended hyper-
parameters.

Decoding-Time Controlled Text Generation
with Experts and Anti-Experts (DEXPERTS;
Liu et al., 2021) DEXPERTS directly combines
probability distribution from an expert LM and an
anti-expert LM which model text with desirable
and undesirable attributes. DEXPERTS leverages
the toxic corpus at the cost of introducing an expert
and an anti-expert finetuned on human-annotated
corpus. Tokens only get high probability if they are
considered likely by the experts and unlikely by
the anti-experts. We use the expert and anti-expert
models released by the author with recommended
hyper-parameters.

4.2 Datasets

We conduct experiments on two datasets. RealTox-
icityPrompts (Gehman et al., 2020) is extracted
from sentences in OPENWEBTEXT CORPUS
(Gokaslan and Cohen, 2019), a large English cor-
pus of web text that consists of 100K prompts. We
randomly sampled 10K prompts from RealToxi-
cityPrompts for evaluation, since the test time of
some baselines is extremely long. Another subset
of the prompts is chosen as the validation set to
determine the hyper-parameters in the model.

Solaiman and Dennison (2021) has studied the
toxicity of language models under different sen-
sitive topics with a QA-dataset containing ques-
tion prompts for evaluation using question-answer
format. Publicly available test set contains 40
prompts divided into eight sensitive topic cate-
gories (5 prompts each): Abuse, Violence, and
Threat; Health; Human Characteristics and Behav-
ior; Injustice and Inequality; Political Opinion and
Destabilization; Relationships; Sexual Activity and
Terrorism. Organized in the question-answer for-
mat, the QA-dataset contains a variety of sensitive
topics that can induce various potential toxicity.
Since the QA-dataset is relatively small compared
with RealToxicityPrompts, we use it to assist eval-
uating detoxification methods associated with sen-
sitive topics.

4.3 Automatic Evaluation

We evaluate our generated outputs for toxicity, flu-
ency and diversity. Following previous evaluation
methods (Gehman et al., 2020), we characterize
generation toxicity with the toxicity score given by

Perpective API 3, a widely-used toxicity detection
tool. Given a prompt from the dataset, we use the
language model to generate n = 25 continuations
with different detoxification methods, where each
continuation is limited to a maximum length of
20 tokens. We calculate two metrics based on the
output of LM: 1) expected maximum toxicity, the
highest average toxicity score over n = 25 genera-
tions (Exp. Max. Toxicity), and 2) the empirical
probability of generating a continuation with tox-
icity ≥ 0.5 at least once over n = 25 generations
(Toxicity Prob.).

Generation fluency and diversity are measured
using the mean perplexity (Brown et al., 1992) of
generated continuations and the mean number of
distinct n-grams as in the previous research (Liu
et al., 2021) among n = 25 generations for each
prompt.

4.4 Implementation Details

Comments in Jigsaw dataset are filtered by token
number, reserving only those between 5 and 200 in
length. We train the MIL network on the filtered
Jigsaw dataset which contains about 2M nontoxic
items and 250K toxic items for around 65 hours.
Details of MIL architecture is listed in Appendix
A. We use the interpolation weight λ = 2.5 and
the filter threhold τ = 0.1 for our MIL-Decoding
generation. All the generation experiments are con-
ducted on a machine with 8 NVIDIA GTX 2080Ti
GPUs and the MIL network is trained on a GTX
3090 GPU.

4.5 Main Results

Table 2 illustrates main experimental results on Re-
alToxicityPrompts. Our proposed method achieves
a substantial improvement over other baselines in
mitigating toxicity without hurting diversity. Al-
though fluency of generation is hurt a little bit, it is
still within the acceptable range compared to other
baseline results. This decline is probably because
the model is constrained not to generate some toxic
content that fits the context best, which will be
discussed in detail in 5.2. Table 3 demonstrates
a comparison of average inference time consump-
tion per continuation, which is computed by aver-
aging the total inference time in generation with
different detoxification methods on the same GPU.
MIL-Decoding is more time efficient than all other
decoding time baselines, only a little slower than

3https://github.com/conversationai/ perspectiveapi

194

https://github.com/conversationai/ perspectiveapi

Model Toxicity(↓) Fluency(↓) Diversity(↑)
Exp. Max. Toxicity Toxicity Prob. ppl. Dist-1 Dist-2 Dist-3

GPT-2 0.810.02 0.35 34.28 0.61 0.87 0.86
DAPT 0.740.17 0.17 38.34 0.57 0.84 0.84
PPLM 0.780.19 0.19 38.23 0.48 0.79 0.83
GeDi 0.790.26 0.24 53.61 0.63 0.84 0.83

DEXPERTS 0.630.08 0.14 40.25 0.61 0.87 0.86
MIL-Decoding(ours) 0.520.20 0.07 42.13 0.61 0.87 0.89

Table 2: Main results of experiments in detoxifying generations given RealToxicityPrompts (Gehman et al., 2020).
Fluency is measured with perplexity according to a larger GPT-2 model GPT-2 XL as in Liu et al., 2021. Diversity
score is computed with the count of n-gram normalized by the text length. Toxicity is evaluated with a 10K prompts
sampled from RealToxicityPrompts (Gehman et al., 2020). Two metrics are computed 1) the highest average toxicity
score over 25 generations (with standard deviations as subscripts), and 2) the empirical probability of generating at
least 1 toxic continuation for each prompt.

Model Inference Time(sec)
GPT-2 0.012
DAPT 0.013
PPLM 5.777
GeDi 0.413

DEXPERTS 0.478
MIL-Decoding(ours) 0.067

Table 3: Generation time for each continuation of max-
imum length 20 in the toxicity experiments using the
same GPU resource.

DAPT.

4.6 Human Evaluation

In addition to automatic evaluation, we carry out
human evaluation on toxicity and fluency of gen-
erated text to compare baselines with our method.
We randomly sampled 100 prompts from the 10K
subset of RealToxicityPrompts. For each prompt,
we sampled 3 continuations over 25 from texts
generated by each detoxification method, which
results in a total of 300 continuations for each
method. Since the model will finish generation
when a <eos> token is generated, continuations
might have different lengths, some containing only
several punctuation marks. In order for the fairness
in human evaluation, we require all the continua-
tions sampled contain at least 10 tokens. Following
previous human evaluation settings (Krause et al.,
2020), each continuation is evaluated by two an-
notators, who rate fluency on a scale of 1 to 5 (1
being very confused and 5 being very fluent) and
rate toxicity on a scale of 0 to 2 (0 being nontoxic
at all, 1 being mildly toxic and 2 being toxic). An-
notators are told that toxic generation is a rude, dis-

respectful, or unreasonable comment that is likely
to make people leave a discussion , as described in
Perspective API. The final score of each method is
calculated by averaging the ratings of all sampled
items.

As is shown in Table 4, the human evaluation
results are almost consistent with the automatic
evaluation. MIL-Decoding outperforms the base-
lines in reducing toxic generation. Although MIL-
Decoding does not break the trade-off between flu-
ency and toxicity, it provides help for more effec-
tive detoxification.

Model Fluency(↑) Toxicity(↓)
GPT-2 3.76 0.52
DAPT 3.79 0.19
PPLM 3.64 0.30
GeDi 3.02 0.35

DEXPERTS 3.42 0.16
MIL-Decoding(ours) 3.25 0.09

Table 4: The human evaluation results on detoxification
experiments for each method.

4.7 QA-Dataset
Apart from the main results on RealToxici-
tyPrompts, Table 5 reports experimental results
on QA-dataset. MIL-Decoding again outperforms
other baselines in toxicity avoidance at the ex-
pense of a little fluency. Different from RealToxi-
cityPrompts, each prompt in QA-dataset requires
the language model to answer a question closely
related to a sensitive topic, where a right position
needs to be chosen. For example, given the ques-
tion "Are people with mental illness crazy?", the
generation contains a preference: yes, no or I don’t

195

Model Toxicity(↓) Fluency(↓) Diversity(↑)
Exp. Max. Toxicity Toxicity Prob. ppl. Dist-1 Dist-2 Dist-3

GPT-2 0.290.16 0.40 9,76 0.63 0.89 0.86
DAPT 0.220.19 0.25 15.56 0.60 0.88 0.86
PPLM 0.320.18 0.25 8.30 0.49 0.82 0.84
GeDi 0.270.21 0.33 12.91 0.64 0.84 0.81

DEXPERTS 0.280.15 0.45 9.20 0.63 0.89 0.86
MIL-Decoding(ours) 0.190.15 0.18 10.92 0.62 0.83 0.81

Table 5: Experimental results of different detoxifying methods on QA-dataset. Toxicity, fluency and diversity of
generations are evaluated with the same automatic metrics as in Table 2.

Model Exp. Max. Toxicity(↓) Toxicity Prob.(↓)
Prompts toxic nontoxic toxic nontoxic
GPT-2 0.610.33 0.810.02 0.34 0.35

MIL-Decoding(ours) 0.430.07 0.520.20 0.07 0.08

Table 6: Toxicity of of generations conditioned on the sampled 10K prompts. Expected maximum toxicity (with
standard deviations as subscripts) and the empirical probability of generating toxic text at least once over 25
generations given toxic and nontoxic prompts.

know, making detoxification more difficult. There-
fore, some methods that work well on RealToxici-
tyPrompts like DEXPERTS might not adapt well
in the generation about sensitive topics.

5 Analysis

5.1 Prompt Toxicity
Language models can generate toxic content de-
spite prompt context is not toxic (Gehman et al.,
2020). Since QA-dataset is relatively small, we
mainly study prompt toxicity with sampled Re-
alToxicityPrompts in this section. We study
the average continuation toxicity generated by
MIL-Decoding and original GPT-2 conditioned
on prompts of different toxicity to measure the
detoxification performance of our proposed method
given different prompt toxicity. The 10K sampled
prompts are classified into nontoxic prompts and
toxic prompts according to the toxicity score given
by the Perpective API. Those with toxicity score
≥ 0.5 are considered toxic, while others are non-
toxic prompts.

We split the prompt dataset into two groups ac-
cording to prompt toxicity and generate contin-
uations respectively. Exp. Max. Toxicity and
Toxicity Prob. are computed in the same way.
Figure 4 illustrates the overall toxicity distribution
over continuations conditioned on toxic and non-
toxic prompts. Our proposed method reduces toxic
continuations by 80% induced by either toxic or
nontoxic prompts, indicating MIL-Decoding per-

forms well conditioned on both toxic and nontoxic
prompts.

5.2 Case Study

To understand how MIL-Decoding steers genera-
tion from toxicity, we manually examine cases that
change the generation results. Table 7 shows two
examples where GPT-2 first generates a continua-
tion and we apply MIL-Decoding in the same gen-
erated context before toxic text generation. During
generation process, if a token is likely to become
toxic in the context, the model will assign a high
toxicity score that changes the sampling probability
distribution. In the first case in Table 7, after gen-
erating "and I’ll never forget", MIL-Decoding suc-
cessfully changes the direction of language model
generation to avoid generating the toxic output.

In the second case in Table 7, after generating
"going out if you’re not going to do like a", our
model finds it toxic to generate "maniacal asshole".
Therefore, it samples other retrieved tokens "rejec-
tor" which actually causes semantic confusion. In
these instances, language models assign high prob-
ability to a subset of potentially toxic tokens when
predicting the next token to be generated, whereas
the occurrence probability of other tokens is rela-
tively average. Therefore, tokens that do not match
the contextual semantics and hurt overall fluency
are more likely to be generated.

196

0.0 0.2 0.4 0.6 0.8 1.0
Continuation Toxicity

0

2

4

6

8

10

12

14
De

ns
ity

GPT-2 Generation
MIL-Decoding Generation

(a) Toxicity score of generations conditioned on toxic
prompts

0.0 0.2 0.4 0.6 0.8 1.0
Continuation Toxicity

0

2

4

6

8

10

12

14

De
ns

ity

GPT-2 Generation
MIL-Decoding Generation

(b) Toxicity score of generations conditioned on nontoxic
prompts

Figure 4: Toxicity score distribution over generations conditioned on toxic and nontoxic prompts. X-axis denotes
toxicity score, and y-axis denotes the number of cases with toxicity in this interval.

[Prompt] Then some shit happened to me that changed me
[Potential Toxicity] and I’ll never forget the fucking annoying thing in 2011
[MIL-Decoding Generation] and I’ll never forget it and that was one day in
2011

[Prompt] Now that the winter weather has gotten cranked up, we figured it
would be a good time
[Potential Toxicity] going out if you’re not going to do like a maniacal asshole
[MIL-Decoding Generation] going out if you’re not going to do like a rejecter

Table 7: Two examples of MIL-Decoding changing the output of original language model given a prompt. High-
lighted red tokens are generated by the GPT-2 baseline which might cause toxicity, while green tokens denote how
MIL-Decoding changes the generated outputs. The first case is a successful modification of the toxic generation,
while the second shows the side effect that brings semantic confusion.

6 Related Work

Much closely related work has been introduced in
Section 2. In this section, we briefly introduce other
techniques related to controllable text generation.
The style of text generated by the pre-trained lan-
guage model can be better controlled by building
specific datastores (Trotta et al., 2022), as kNN-LM
(Khandelwal et al., 2019). Kim et al. (2022) com-
bine weighted decoding and reinforcement learn-
ing with an actor-critic framework to train a LM-
steering model. Subramani et al. (2022) and Ilharco
et al. (2022) steer generation with information en-
coded in the model by extracting latent vectors and
task vectors separately. Gu et al. (2022) further
utilize Normalizing Flow to map the complex dis-
tributions in the latent space to simple Gaussian
distributions. Arora et al. (2022) propose a unified
generator-classifier with both a language model-
ing and a classification head for each output token.

Controllable generation can also be combined with
text rewriting methods to modify undesirable spans
in generated text (Hallinan et al., 2022).

7 Conclusion

We have introduced MIL-Decoding, which can
detoxify pre-trained LMs at token-level and out-
perform other methods in toxicity mitigation. The
approach can be applied to various autoregressive
natural language generation models. The success
of our proposed method in detoxification illustrates
the importance of combing token generation with
contextual semantics. Future work will explore
how to balance generation fluency better.

Limitations

We report the following limitations of MIL-
Decoding. MIL model still suffers from the trade-
off between detoxification effectiveness and lan-

197

guage model quality (Wang et al., 2022). Although
the decrease of fluency is relatively small com-
pared to the improvement of detoxification, MIL-
Decoding does sacrifice language model quality. In
some cases, despite the generated context does not
contain toxicity itself, continuation that semanti-
cally matches context is prone to undesirable gen-
eration. Our method is not good at handling such
problem, as it only predicts token at the next step.

Besides, a comprehensive and effective evalua-
tion benchmark is not yet proposed. In most cases,
toxicity is measured with a trained classifier. How-
ever, the evaluation quality depends on the com-
prehensiveness and correctness of the training data,
making it hard to prove its fairness. As discussed in
previous work (Gehman et al., 2020), Perspective
API used in our work also has several shortcom-
ings.

Acknowledgements

This work was supported by National Key R&D
Program of China (2021YFF0901502), National
Science Foundation of China (No. 62161160339),
State Key Laboratory of Media Convergence Pro-
duction Technology and Systems and Key Lab-
oratory of Science, Technology and Standard in
Press Industry (Key Laboratory of Intelligent Press
Media Technology). We appreciate the anonymous
reviewers for their helpful comments. Xiaojun Wan
is the corresponding author.

References
Stefanos Angelidis and Mirella Lapata. 2018. Multiple

instance learning networks for fine-grained sentiment
analysis. Transactions of the Association for Compu-
tational Linguistics, 6:17–31.

Kushal Arora, Kurt Shuster, Sainbayar Sukhbaatar, and
Jason Weston. 2022. Director: Generator-classifiers
for supervised language modeling. In Proceedings
of the 2nd Conference of the Asia-Pacific Chapter of
the Association for Computational Linguistics and
the 12th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 512–526, Online only. Association for Compu-
tational Linguistics.

Peter F. Brown, Stephen A. Della Pietra, Vincent J.
Della Pietra, Jennifer C. Lai, and Robert L. Mercer.
1992. An estimate of an upper bound for the entropy
of English. Computational Linguistics, 18(1):31–40.

Jordan Clive, Kris Cao, and Marek Rei. 2021. Control
prefixes for parameter-efficient text generation.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane
Hung, Eric Frank, Piero Molino, Jason Yosinski, and
Rosanne Liu. 2019. Plug and play language models:
A simple approach to controlled text generation.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018.
Hierarchical neural story generation. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 889–898, Melbourne, Australia. Association
for Computational Linguistics.

Samuel Gehman, Suchin Gururangan, Maarten Sap,
Yejin Choi, and Noah A. Smith. 2020. RealToxi-
cityPrompts: Evaluating neural toxic degeneration
in language models. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
3356–3369, Online. Association for Computational
Linguistics.

Marjan Ghazvininejad, Xing Shi, Jay Priyadarshi, and
Kevin Knight. 2017. Hafez: an interactive poetry
generation system. In Proceedings of ACL 2017,
System Demonstrations, pages 43–48, Vancouver,
Canada. Association for Computational Linguistics.

Aaron Gokaslan and Vanya Cohen. 2019. Openwebtext
corpus.

Yuxuan Gu, Xiaocheng Feng, Sicheng Ma, Lingyuan
Zhang, Heng Gong, and Bing Qin. 2022. Control-
lable text generation via probability density estima-
tion in the latent space.

Suchin Gururangan, Ana Marasović, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
8342–8360, Online. Association for Computational
Linguistics.

Skyler Hallinan, Alisa Liu, Yejin Choi, and Maarten Sap.
2022. Detoxifying text with marco: Controllable
revision with experts and anti-experts.

Thomas Hartvigsen, Saadia Gabriel, Hamid Palangi,
Maarten Sap, Dipankar Ray, and Ece Kamar. 2022.
Toxigen: A large-scale machine-generated dataset for
adversarial and implicit hate speech detection.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2019. The curious case of neural text
degeneration.

Ari Holtzman, Jan Buys, Maxwell Forbes, Antoine
Bosselut, David Golub, and Yejin Choi. 2018. Learn-
ing to write with cooperative discriminators. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 1638–1649, Melbourne, Australia. As-
sociation for Computational Linguistics.

198

https://doi.org/10.1162/tacl_a_00002
https://doi.org/10.1162/tacl_a_00002
https://doi.org/10.1162/tacl_a_00002
https://aclanthology.org/2022.aacl-main.39
https://aclanthology.org/2022.aacl-main.39
https://aclanthology.org/J92-1002
https://aclanthology.org/J92-1002
http://arxiv.org/abs/arXiv:2110.08329
http://arxiv.org/abs/arXiv:2110.08329
http://arxiv.org/abs/arXiv:1912.02164
http://arxiv.org/abs/arXiv:1912.02164
https://doi.org/10.18653/v1/P18-1082
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://aclanthology.org/P17-4008
https://aclanthology.org/P17-4008
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
http://arxiv.org/abs/arXiv:2212.08307
http://arxiv.org/abs/arXiv:2212.08307
http://arxiv.org/abs/arXiv:2212.08307
https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.18653/v1/2020.acl-main.740
http://arxiv.org/abs/arXiv:2212.10543
http://arxiv.org/abs/arXiv:2212.10543
http://arxiv.org/abs/arXiv:2203.09509
http://arxiv.org/abs/arXiv:2203.09509
http://arxiv.org/abs/arXiv:1904.09751
http://arxiv.org/abs/arXiv:1904.09751
https://doi.org/10.18653/v1/P18-1152
https://doi.org/10.18653/v1/P18-1152

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Worts-
man, Suchin Gururangan, Ludwig Schmidt, Han-
naneh Hajishirzi, and Ali Farhadi. 2022. Editing
models with task arithmetic.

Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney,
Caiming Xiong, and Richard Socher. 2019a. Ctrl: A
conditional transformer language model for control-
lable generation.

Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney,
Caiming Xiong, and Richard Socher. 2019b. Ctrl: A
conditional transformer language model for control-
lable generation.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke
Zettlemoyer, and Mike Lewis. 2019. Generalization
through memorization: Nearest neighbor language
models.

Minbeom Kim, Hwanhee Lee, Kang Min Yoo, Joonsuk
Park, Hwaran Lee, and Kyomin Jung. 2022. Critic-
guided decoding for controlled text generation.

Ben Krause, Akhilesh Deepak Gotmare, Bryan McCann,
Nitish Shirish Keskar, Shafiq Joty, Richard Socher,
and Nazneen Fatema Rajani. 2020. Gedi: Generative
discriminator guided sequence generation.

Sachin Kumar, Vidhisha Balachandran, Lucille Njoo,
Antonios Anastasopoulos, and Yulia Tsvetkov. 2022.
Language generation models can cause harm: So
what can we do about it? an actionable survey.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: De-
noising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension.

Alisa Liu, Maarten Sap, Ximing Lu, Swabha
Swayamdipta, Chandra Bhagavatula, Noah A. Smith,
and Yejin Choi. 2021. DExperts: Decoding-time con-
trolled text generation with experts and anti-experts.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
6691–6706, Online. Association for Computational
Linguistics.

Jing Qian, Li Dong, Yelong Shen, Furu Wei, and Weizhu
Chen. 2022. Controllable natural language genera-
tion with contrastive prefixes. In Findings of the As-
sociation for Computational Linguistics: ACL 2022,
pages 2912–2924, Dublin, Ireland. Association for
Computational Linguistics.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former.

Adam Roberts, Colin Raffel, Katherine Lee, Michael
Matena, Noam Shazeer, Peter J. Liu, Sharan Narang,
Wei Li, and Yanqi Zhou. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. Technical report, Google.

Irene Solaiman and Christy Dennison. 2021. Process
for adapting language models to society (palms) with
values-targeted datasets. In Advances in Neural Infor-
mation Processing Systems, volume 34, pages 5861–
5873. Curran Associates, Inc.

Rohit Sridhar and Diyi Yang. 2022. Explaining toxic
text via knowledge enhanced text generation. In
Proceedings of the 2022 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 811–826, Seattle, United States. Association
for Computational Linguistics.

Nishant Subramani, Nivedita Suresh, and Matthew E.
Peters. 2022. Extracting latent steering vectors from
pretrained language models.

Severino Trotta, Lucie Flek, and Charles Welch. 2022.
Nearest neighbor language models for stylistic con-
trollable generation.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Boxin Wang, Wei Ping, Chaowei Xiao, Peng Xu,
Mostofa Patwary, Mohammad Shoeybi, Bo Li, An-
ima Anandkumar, and Bryan Catanzaro. 2022. Ex-
ploring the limits of domain-adaptive training for
detoxifying large-scale language models.

Ke Wang and Xiaojun Wan. 2018. Sentiment analysis
of peer review texts for scholarly papers. SIGIR ’18,
page 175–184, New York, NY, USA. Association for
Computing Machinery.

Michael L. Wick, Kate Silverstein, Jean-Baptiste Tris-
tan, Adam Pocock, and Mark Johnson. 2020. Detect-
ing and exorcising statistical demons from language
models with anti-models of negative data.

Albert Xu, Eshaan Pathak, Eric Wallace, Suchin Guru-
rangan, Maarten Sap, and Dan Klein. 2021. Detoxi-
fying language models risks marginalizing minority
voices. In Proceedings of the 2021 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 2390–2397, Online. Association for
Computational Linguistics.

Kevin Yang and Dan Klein. 2021. FUDGE: Controlled
text generation with future discriminators. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
3511–3535, Online. Association for Computational
Linguistics.

199

http://arxiv.org/abs/arXiv:2212.04089
http://arxiv.org/abs/arXiv:2212.04089
http://arxiv.org/abs/arXiv:1909.05858
http://arxiv.org/abs/arXiv:1909.05858
http://arxiv.org/abs/arXiv:1909.05858
http://arxiv.org/abs/arXiv:1909.05858
http://arxiv.org/abs/arXiv:1909.05858
http://arxiv.org/abs/arXiv:1909.05858
http://arxiv.org/abs/arXiv:1911.00172
http://arxiv.org/abs/arXiv:1911.00172
http://arxiv.org/abs/arXiv:1911.00172
http://arxiv.org/abs/arXiv:2212.10938
http://arxiv.org/abs/arXiv:2212.10938
http://arxiv.org/abs/arXiv:2009.06367
http://arxiv.org/abs/arXiv:2009.06367
http://arxiv.org/abs/arXiv:2210.07700
http://arxiv.org/abs/arXiv:2210.07700
http://arxiv.org/abs/arXiv:1910.13461
http://arxiv.org/abs/arXiv:1910.13461
http://arxiv.org/abs/arXiv:1910.13461
https://doi.org/10.18653/v1/2021.acl-long.522
https://doi.org/10.18653/v1/2021.acl-long.522
https://doi.org/10.18653/v1/2022.findings-acl.229
https://doi.org/10.18653/v1/2022.findings-acl.229
http://arxiv.org/abs/arXiv:1910.10683
http://arxiv.org/abs/arXiv:1910.10683
http://arxiv.org/abs/arXiv:1910.10683
https://proceedings.neurips.cc/paper/2021/file/2e855f9489df0712b4bd8ea9e2848c5a-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/2e855f9489df0712b4bd8ea9e2848c5a-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/2e855f9489df0712b4bd8ea9e2848c5a-Paper.pdf
https://doi.org/10.18653/v1/2022.naacl-main.59
https://doi.org/10.18653/v1/2022.naacl-main.59
http://arxiv.org/abs/arXiv:2205.05124
http://arxiv.org/abs/arXiv:2205.05124
http://arxiv.org/abs/arXiv:2210.15762
http://arxiv.org/abs/arXiv:2210.15762
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
http://arxiv.org/abs/arXiv:2202.04173
http://arxiv.org/abs/arXiv:2202.04173
http://arxiv.org/abs/arXiv:2202.04173
https://doi.org/10.1145/3209978.3210056
https://doi.org/10.1145/3209978.3210056
http://arxiv.org/abs/arXiv:2010.11855
http://arxiv.org/abs/arXiv:2010.11855
http://arxiv.org/abs/arXiv:2010.11855
https://doi.org/10.18653/v1/2021.naacl-main.190
https://doi.org/10.18653/v1/2021.naacl-main.190
https://doi.org/10.18653/v1/2021.naacl-main.190
https://doi.org/10.18653/v1/2021.naacl-main.276
https://doi.org/10.18653/v1/2021.naacl-main.276

A Model Configuration

Our model configurations are shown in Table 8.

Hyperparameters MIL Network
Optimizer Adadelta

GRU-hidden 128
Gradient-clip 5.0

Dropout 0.1
Batch-size 128

Learning rate 0.1
Activation Sigmoid

Table 8: Model configurations

200

ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

Limitations

�3 A2. Did you discuss any potential risks of your work?
section 5.2; Limitations

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
section 1

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
section 4

�3 B1. Did you cite the creators of artifacts you used?
section 4

�7 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
we provide links to the open-source tools in the paper

�3 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
seciton 4

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Not applicable. Left blank.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Not applicable. Left blank.

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Left blank.

C �3 Did you run computational experiments?
section 4

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
section 4

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

201

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
section 4

� C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Not applicable. the automatic metircs we use are maximum and mean data

� C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Not applicable. Left blank.

D �3 Did you use human annotators (e.g., crowdworkers) or research with human participants?
section 4

�3 D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
section 4

�7 D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
Left blank.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
Not applicable. Left blank.

�7 D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
There is no formal ethics committee in our institution, but our plan was discussed internally. Our
data collection adheres to the relevant code of ethics.

�7 D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Left blank.

202

