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Abstract

When people think of everyday things like an
egg, they typically have a mental image asso-
ciated with it. This allows them to correctly
judge, for example, that “the yolk surrounds the
shell” is a false statement. Do language models
similarly have a coherent picture of such ev-
eryday things? To investigate this, we propose
a benchmark dataset consisting of 100 every-
day things, their parts, and the relationships
between these parts, expressed as 11,720 “X
relation Y?” true/false questions. Using these
questions as probes, we observe that state-of-
the-art pre-trained language models (LMs) like
GPT-3 and Macaw have fragments of knowl-
edge about these everyday things, but do not
have fully coherent “parts mental models” (54-
59% accurate, 19-43% conditional constraint
violation). We propose an extension where we
add a constraint satisfaction layer on top of
the LM’s raw predictions to apply common-
sense constraints. As well as removing incon-
sistencies, we find that this also significantly
improves accuracy (by 16-20%), suggesting
how the incoherence of the LM’s pictures of
everyday things can be significantly reduced.1

1 Introduction

Psychologists and cognitive scientists hypothesize
that humans develop mental models of the world,
namely internal, conceptual representations of the
environment which we base our decisions and ac-
tions on (Ha and Schmidhuber, 2018; Jonassen
and Henning, 1996). Hespos and Spelke (2004)
observed that 5-month-old human infants exhibit
understanding of mechanical properties of objects
in terms of arrangements and motions of surfaces,
well before they can understand language. Draw-
ing loosely on this idea, but without making any
claims about how LMs reason internally (Shanahan,

1We make our data and code publicly available at https:
//github.com/allenai/everyday-things.

Figure 1: While humans appear to have coherent men-
tal pictures of everyday things (e.g., an egg, A), our
question-asking probes suggest that LMs do not (e.g.,
one LM answered that the egg white both surrounds and
is surrounded by the shell, B). This model incoherence
can be reduced by applying commonsense constraints
(e.g., surrounds is asymmetric), resulting in a more co-
herent parts model (C).

2022; Andreas, 2022), we investigate if pre-trained
language models show evidence of coherent inter-
nal representations of everyday things, analogous
to human mental models, via probing. We focus
on mental models in the context of ordinary ob-
jects that we encounter in our everyday lives. Such
commonsense knowledge helps us understand how
these everyday things work and how to interact
with them. For example, when someone tries to
make a fried egg, they know that it has a shell and
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that it can be cracked open to reveal the egg white
and yolk inside. However, if a system does not
have a coherent picture of such everyday things,
thinking that the egg yolk surrounds the shell, then
it might have to resort to ridiculous approaches
such as trying to scrape the egg yolk off the shell
into the pan.

We explore a first version of this, in which we
consider only knowledge about an object’s parts
and their relationships. We refer to this knowl-
edge as a parts mental model. We first create a
benchmark dataset of 100 everyday things, by ask-
ing human annotators to draw a graph representing
their parts mental model (e.g., Figure 2) depicting
the parts of an everyday thing, spatial relationships,
connections between its parts and functional depen-
dencies (if any). Then we probe two representative
state-of-the-art LMs with questions about these
everyday things. We find that the LMs’ parts men-
tal models are generally of poor quality. Further,
model predictions can violate basic consistency
constraints e.g. transitivity. To alleviate this, we
apply constraint reasoning to derive more accurate
and consistent mental models of everyday things,
correcting some of the LMs’ original inconsisten-
cies. This is illustrated in Figure 1.

Our contributions are:
1. We present a benchmark dataset of parts men-

tal models consisting of 100 everyday things,
2.2K parts and 11.7K relationships.

2. We show that SOTA LMs like GPT-3 and
Macaw are poor at answering relationship
queries between parts of everyday things. The
parts mental models derived using their pre-
dictions are only 54-59% accurate, and sig-
nificantly inconsistent (19-43% conditional
violation τ ).

3. We propose a neuro-symbolic method that ap-
plies constraint reasoning on top of raw LM
predictions as a way of obtaining more consis-
tent (0% conditional violation τ ) and more ac-
curate mental models (16-20% improvement).
This suggests a broader cognitive architecture
(LM + reasoner) for future systems, to better
construct mental models than the LM alone.

2 Related work

Mental models: The idea of mental models
(Johnson-Laird, 1983) is not new. Many years
ago, Craik (1943) proposed that thinking itself is
the manipulation of internal representations of the

world. Craik (1943) described mental models as
a ‘small-scale model’ of external reality and of its
own possible actions within someone’s head. Such
a mental model is useful in many ways, including
allowing one to try out various alternatives, make
conclusions, react to future situations, learn from
past events, and in general, improve competency.
Years later, when Johnson-Laird (2006) outlined
the mental processes that underlie human reason-
ing, he based his discussion on the fundamental
assumption that human beings can construct inter-
nal representations of spatial layouts, and specified
mental models to be iconic. In his words, a mental
model’s “parts and the relations among them cor-
respond to the parts of the layout and the relations
among them.” While coherent internal representa-
tions of spatial layouts are crucial for human rea-
soning, their role, coherence, and even existence
in LMs have not been systematically explored. In
this work, we try to bridge this gap by proposing
a benchmark dataset and methodology to compare
human internal representations of spatial layouts of
everyday things with those of LMs.

Prior datasets: Prior works on reasoning about
object/body parts include Li et al. (2019b) which
focused on human body parts and human inter-
action with other objects. The PTR benchmark
(Hong et al., 2021) is a QA dataset about objects
and their parts, combining 5 everyday things: chair,
table, bed, refrigerator, and cart, to create ques-
tions across 70K different scenes. Ji et al. (2022)
used tangram puzzles to analyze shape naming, part
naming and segmentation divergence across partic-
ipants when they see a certain shape. Contributing
to this existing body of datasets, the dataset we
introduce serves as a resource for researchers to
study canonical parts mental models for a wide va-
riety of everyday things, focusing on relationships
between parts of objects, which is fundamental to
how humans think and interact with these things.

Large language models: Despite recent advances
in LMs, studies suggest that they still struggle at
reasoning with real-world entities and concepts.
Bisk et al. (2020) found that when LMs answer
questions involving physical commonsense rea-
soning, their performance at that time was near
chance level for questions involving spatial rela-
tions like “top” and “bottom.” Sahu et al. (2022)
demonstrated the lack of conceptual consistency in
LMs by correlating models’ answers on common-
sense reasoning questions (CSQA dataset) and their
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Tree Flashlight

Figure 2: Our everyday things dataset, ParRoT, covers different entities, both natural (e.g. tree) and man-made (e.g.
flashlight). Above are two examples of such everyday things. In each case, we show a (a) diagram of the entity, and
(b) parts graph of the everyday thing drawn by crowdworkers. The parts graphs illustrate how our dataset contains a
variety of relations between parts.

answers on associated conceptual questions from
ConceptNet knowledge base. To improve existing
systems, progress has been made such as by im-
posing constraints with neuro-symbolic approaches
(Nye et al., 2021; Mitchell et al., 2022) and incor-
porating both textual and visual information (Dan
et al., 2020). Inspired by recent progress, we pro-
pose a constraint reasoning method that applies
hard commonsense constraints (e.g., if ‘A above B’
is True then ‘A below B’ cannot be True) on top of
raw LM predictions to produce more accurate and
consistent mental models of everyday things.

3 Parts mental models and Task

We define “parts mental model” for everyday things
in this section. Then in the rest of the paper, we
describe how we collect a dataset for them, measure
LMs’ coherence on them, and finally apply external
reasoning to improve the accuracy and consistency
of LMs’ parts mental model.

Here, we use parts mental model to mean a parts-
focused subset of a complete mental model of an
entity. We represent a parts mental model as a
directed graph where parts of the everyday thing
form the nodes of this graph and these nodes are
connected with edges indicating how these parts
are related to each other. Based on prior works
such as Renz (2002) and Gunning et al. (2010), we
selected 11 spatial orientation relations to focus
on. In addition, we augmented these with relations
describing connectivity and functional dependency.
In total, we consider 14 relationships (across these
3 categories) between parts, listed in Table 2.

Note that the notion of a single “parts mental
model” for an everyday thing is somewhat uncon-

strained (e.g., which parts to pick? what version
of the entity are we talking about?). To make this
task more well-defined, we also provide a prede-
fined list of parts as a guide (details in Section 4.1),
and the task for annotators or a model is to specify
relationships between them as they see appropriate,
using our ontology of relationships. This is im-
portant so that we can do meaningful comparisons
between language models and humans’ notion of
parts mental models of everyday things.

Figure 2 shows two examples of parts mental
models in our dataset, where edges encode rela-
tionships between parts. E.g., in a tree, “trunk is
above the roots”; in a flashlight, “bulb requires
the batteries,” etc. Inspired by previous literature,
we envision that such parts mental models would
play a key role when one carries out daily activities
involving these everyday things.

Task
Here we define our task: “Construct a parts men-
tal model for everyday things” with the following
input/output specifications:

• Input: Everyday thing, Parts list, Relation vo-
cabulary (14 relations).

• Output: List of tuples (x, r, y) where relation
r holds between parts x and y.

In Section 4 we describe how we acquire a bench-
mark dataset by asking human annotators to carry
out this task. Once we have collected gold-standard
parts mental models for everyday things based on
the human annotations, we prompt LMs for their

2A requires B denotes A cannot perform its primary func-
tion without B.
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Given as seed
(unique)

Annotated
mental models

Avg. annotated
per mental model

Annotated + enriched (*)
(Total)

Total avg. per
mental model

(Total /
# mental models)

# everyday things 100 100 - 100 -
# mental models - 300 - 300 -
# parts 716 2191 7.30 2191 7.30
# relations (p1, rln, p2) 8 2752 9.17 11720 39.07
# spatial relations 6 1858 6.19 9956 33.19
# connectivity relation(s) 1 818 2.73 1612 5.37
# functional relation(s) 1 76 0.25 152 0.51

Table 1: Statistics of ParRoT, our Everyday Things Dataset. *Enriched refers to implied relations, see Section 4.3

Type Relations

Spatial
orientation

part of, has part, inside, contains,
in front of, behind, above, below,
surrounds, surrounded by, next to∗

Connectivity directly connected to∗

Functional
dependency

requires2, required by

Table 2: Relationships encoded in “parts mental models”
of everyday things. Among these relations, ‘next to’
and ‘directly connected to’ relations are bi-directional,
whereas the other 12 relations are uni-directional.

parts mental models and evaluate how well they do
on this task. Our proposed method to measure this
is described in Section 5. In particular, we are inter-
ested in (1) how accurate are LM-generated parts
mental models when compared to gold-standard
models in our dataset and (2) ignoring accuracy,
how consistent are these generated parts mental
models with respect to basic commonsense con-
straints? I.e., Do they at least conform to the 4
types of commonsense constraints laid out in Sec-
tion 5.2 e.g., ‘above’ and ‘below’ are inverse rela-
tions, so if the LM predicts that in a tree, (trunk is
above the roots) then it should also predict (roots
are below the trunk).

4 Everyday Things Dataset: ParRoT
(Parts and Relations of Things)

We created a dataset of common entities that one
would encounter in their daily life. For each every-
day thing, our dataset (ParRoT) contains a “parts
mental model” in the form of a graph, which de-
picts parts of the entity and relational information
about the parts. Such a graph encodes a parts-
focused mental model of that everyday thing, po-
tentially useful for reasoning about how the entity
works and how to interact with it.

4.1 Everyday entities

We first compiled a list of entities from children’s
books, vocabulary lists (Grades 1-8), and online
web search.3 For the unique entities in this list, the
authors manually filtered out those entities that are
not common in everyday setting or have too few
(i.e. only 1 or 2 parts) or too many parts (composite
scenes). Specifically, we kept 100 entities that are
common everyday things that a child would be
familiar with, with a mix of natural and man-made
things. This annotation task involves answering the
following question for each item in the list: “Do
you imagine this is something that most people
would have seen in their everyday lives?”

We recognize there could be many variants of a
single everyday entity e.g. different types of coffee
makers. To narrow down the possibilities, the au-
thors picked a diagram for each everyday thing via
web search and carefully annotated a parts list for
each of them to guide the level of granularity we
are looking for. In some cases, the entity name was
qualified to disambiguate further e.g. “digital clini-
cal thermometer” instead of just “thermometer.”

4.2 Mental model annotations

We ask crowdworkers to draw sketches of every-
day things covering spatial relations, connectivity,
and functional dependencies between parts (Table
2). To encourage the format of the mental model
graphs to be more standardized across annotators,
we ask that the nodes (in circles) mainly contain
labels from the “Parts list” provided. However, to
collect mental models that are most natural to the
workers, they were also told that they can ignore
parts in the “Parts list” if they seem unimportant,
or add extra parts that seem important. We also
specified for edges to be labeled with the relations

3Appendix A provides more details on the source of the
list of everyday things.
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shown in Table 2.4

Given the name of an everyday thing, list of parts,
and example diagram, 3 crowdworkers were re-
cruited to sketch mental models for each everyday
thing.5 Figure 2 shows examples of such sketches.
According to Norman (2013), mapping that takes
advantage of spatial analogies leads to immediate
understanding and is more natural. Sketching out
such a graph allows workers more flexibility in
taking advantage of spatial analogies between the
actual entity and the sketch (see flashlight exam-
ple in Figure 2). Therefore, we hypothesize that
drawing a graph would be easier or more natural
for crowdworkers than typing a list of relations.6

4.3 Statistics

ParRoT consists of 100 everyday things ranging
from devices like coffee maker, space heater to
natural entities like tree and butterfly with number
of parts (provided as a seed list to crowdworkers)
ranging from 3-14. We collected 3 mental mod-
els per everyday thing. We take the parts mental
models annotated by crowdworkers to be correct
but not complete. I.e., they may include only those
relations that they think are salient for the every-
day thing, and also omit the ones that can be easily
inferred from what they have annotated e.g., when
(trunk is above the roots) is annotated, (roots are
below the trunk) can be omitted (Figure 2, tree ex-
ample). For each everyday thing’s mental model
annotation, with the relation tuples annotated, we
automatically add relations that are implied via
enrichment based on 4 types of constraints (sym-
metric, asymmetric, inverse, and transitive). The
inferred relations include both relations that are la-
beled True (e.g. A above B being True implies that
B below A is True) and relations that are labeled
False (e.g. A above B being True implies B above
A is False). This gives a total of 11.7K gold rela-
tion tuples (6894 with “True” as gold labels and
4826 with “False” as gold labels). Table 1 provides
additional dataset statistics. Appendix C discusses
the unanimity and diversity of mental models for
these everyday things.

4For ease of annotation, they do not need to repeat anno-
tations that mean the same thing. e.g. if they annotated (x,
above, y), they do not need to annotate (y, below, x) again.
We automatically generate these in our data post-processing.

5More details can be found in Appendix B.
6Later these sketches are transcribed into (x, r, y) tuples.

5 Measuring and Improving Parts Mental
Models

Our proposed approach, ParRoT-Con,7 comprises
two main components.8 The first component “Prob-
ing a Pre-trained Language Model” sends an ex-
haustive list of relation queries to a LM querying
for every relation between each pair of parts (e.g.
all relationships between egg white, yolk, shell,
shell membrane and air cell). This gives us a
large set of candidate relation tuples along with
the model’s confidence in each of them. Incorrect
relation predictions can result in inconsistencies in
the mental model. E.g, “egg white both surrounds
and is surrounded by the egg shell.” The second
component “constraint reasoning” then applies a
constraint satisfaction layer on top of these raw
predictions to choose a subset of these relation tu-
ples that are maximally probable and minimally
conflicting with each other. Note that ParRoT-Con
is a zero-shot approach, where both probing LMs
and constraint reasoning steps do not require any
task-specific fine-tuning or re-training.

5.1 Probing a Pre-trained Language Model

We use the following pre-trained language models
for our study: GPT-3 (Brown et al., 2020) and
Macaw9 (Tafjord and Clark, 2021). We probe them
using True/False questions of type: “Judge whether
this statement is true or false: In an <everyday
thing>, <part1 relation part2>.” For each query q,
we record an answer a ∈ {True, False}, and the
model’s beliefs about the likelihood of the relation
being “True” as

p(True|q)
p(True|q) + p(False|q) .

5.2 Constraint Reasoning

We observed a significant amount of inconsistency
in raw predictions from these LMs by considering
the following constraints:

• Symmetric relations: This constraint ensures
symmetric relations like “directly connected
to” and “next to” hold both ways.
i.e. x rln y ↔ y rln x

7First obtain the output of “stochastic parrots,” (Bender
et al., 2021) then apply constraints to reason on top of the
output.

8See Appendix D Figure 8 for an illustration.
9A SOTA T5-11B based question-answering system that

outperforms GPT-3 on some QA tasks.

1896



• Asymmetric relations: For asymmetric re-
lations like part of, has part, inside, contains,
in front of, behind, above, below, surrounds,
surrounded by, requires, required by, this con-
straint makes sure that both “x rln y” and “y
rln x” cannot be true at the same time.
i.e. ¬(x rln y) ∨ ¬(y rln x)

• Inverse relations: For a set of inverse re-
lations e.g. above vs below, this constraint
makes sure that (x above y) and (y below x)
have the same truth value.
i.e. x rln y ↔ y inverse(rln) x

• Transitive relations: For relations like inside,
contains, in front of, behind, above, below,
surrounds, surrounded by, this constraint will
impose transitivity.
i.e. x rln y ∧ y rln z → x rln z

In this step, we try to resolve inconsistencies
in LMs’ raw predictions by solving a MaxSAT
constraint satisfaction problem where each (x, re-
lation, y) tuple is represented as a variable with
confidence value from the LM used as its weight
(soft clause). We introduce 4 types of hard con-
straints (listed above) between these variables as
hard clauses and any constraint violation results in
an extremely high penalty. Given a WCNF formula
with these, a weighted MaxSAT solver tries to find
an optimal assignment of truth values to relation
tuples that maximizes the sum of weights of satis-
fied soft clauses and satisfies all the formula’s hard
clauses. We use the RC2 MaxSAT solver (Ignatiev
et al., 2018b) in PySAT (Ignatiev et al., 2018a).

6 Results and Analysis

6.1 Evaluation Metrics

We evaluate the parts mental models produced by
the two LMs in terms of accuracy and consistency:
Accuracy: We compute the True/False accuracy
of parts mental models based on the 11.7K gold
relation tuples present in ParRoT.
Consistency: Following Kassner et al. (2021);
Mitchell et al. (2022), we adapt the Conditional
Violation (τ ) (Li et al., 2019a) metric to measure
inconsistency across the 4 types of constraints de-
fined in Section 5.2. For constraints L(x) → R(x)
imposed on samples x ∈ D, where D is the dataset,

we calculate conditional violation as:

τ =

∑
x∈D

[
∨

(L,R)

¬(L(x) → R(x))

]

∑
x∈D

[
∨

(L,R)

L(x)

] .

6.2 Results
Q1: How consistent are LMs when they answer
questions about everyday things?
We measure the consistency of parts mental mod-
els constructed by LMs based on 4 types of con-
straints described in Section 5.2. This measurement
is purely based on LMs’ predictions and is inde-
pendent of relations in the gold mental models ac-
quired for the everyday things. Table 3 shows that
LMs contradict themselves (19-43% conditional
violation) when we ask them multiple questions
about parts of the same everyday thing to probe
for their parts mental model. E.g., in Appendix D,
the LM believes that in an egg, “yolk surrounds
the shell” and “shell surrounds the yolk” are both
True. Table 3 also breaks down the LMs’ inconsis-
tency across 4 types of constraints. We observe that
GPT-3 struggles with maintaining consistency for
symmetric and inverse relations, whereas Macaw-
11B finds it most challenging to satisfy constraints
for asymmetric relations.

Q2: Do language models have accurate mental
models of everyday things?
Next, we investigate how accurate are these parts
mental models when compared to gold mental mod-
els in our ParRoT dataset. Table 4 shows that such
queries pertaining to parts of everyday things are
challenging for even SOTA models, with an av-
erage accuracy of 54-59%. This is barely better
than the majority class baseline at 59% and random
chance at 50%.

The LMs’ low performance shows that ParRoT
is a challenging dataset, which is expected given
the fact that this dataset queries for commonsense
knowledge about everyday things (e.g. spatial rela-
tionship between parts of a device) that are often
omitted in text, and hence less likely seen during
pre-training. Further, by construction, our queries
minimally differ e.g. for relations between parts of
a tree, the edit distance between a statement with
true relation “the leaves are above the roots” and
false relation “the leaves are below the roots” is just
1 word. This makes our task even more challenging
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%Conditional Violation (lower is better)
%True
tuples

Symmetric
relations

Asymmetric
relations

Inverse
relations

Transitive
relations

Avg.
(macro)

Avg.
(micro)

GPT-3
(text-davinci

-003)
12.64 66.37

(1,987/2,994)
23.01

(4,699/20,422)
71.14

(13,869/19,495)
32.18

(6,550/20,354) 48.17 42.84
(27,105/63,265)

Macaw-11B 57.77 29.98
(3,089/10,305)

64.97
(42,170/64,910)

33.63
(21,642/64,361)

10.08
(44,121/437,746) 34.66 19.23

(111,022/577,322)

Table 3: Parts mental models constructed by LMs are significantly inconsistent with respect to their own predictions,
violating basic commonsense constraints. In brackets, we indicate (# violations) / (# constraints fired).

# params Base
LM (%)

ParRoT-Con
(%)

Improve
(%)

GPT-3 (text-
davinci-003) 175B 53.83 70.26 16.42

Macaw-11B 11B 59.45 79.28 19.84

Table 4: Comparing the accuracy of parts mental models
before and after constraint reasoning on ParRoT dataset.

as the models need to understand the semantics of
relational phrases to give the correct answer.

Q3: Does ParRoT-Con, our proposed constraint
reasoning approach, help create more accurate
mental models?
Our proposed approach, ParRoT-Con, utilizes the
inherent inconsistency in LMs’ raw predictions to
self-correct their own parts mental models. It finds
an optimal assignment of truth values to relation
tuples that accounts for both the model’s origi-
nal beliefs (about the likelihood of each relation
statement being True or False), and the 4 types of
commonsense constraints imposed. By imposing
the commonsense constraints as hard constraints,
our proposed method produces perfectly consis-
tent mental models for all LMs with respect to the
imposed constraints i.e. % conditional violation
becomes 0 for all columns in Table 3. Using these
basic commonsense constraints, ParRoT-Con im-
proves parts mental model accuracy significantly
by 16-20% on ParRoT (Table 4).

6.3 Further analysis

Most effective range We analyze what is the
quality range of mental models that ParRoT-Con
is most effective on. We quantify the quality of
parts mental models by defining accuracy@s, a
metric that says a mental model is correct if the
proportion of correct relations is at least s%. We
then plot the percentage of mental models (out of
300) that are correct vs accuracy@s for different

values of s, where s ∈ {50, 60, 70, 80, 90, 100}.
Figure 3 shows that ParRoT-Con not only effec-
tively increases the percentage of mental models
that are approximately correct (s = 50, 60) but also
the percentage of mental models that are (almost)
totally correct (s = 90, 100). The improvements
with constraint reasoning are even more prominent
when it comes to increasing the percentage of men-
tal models that are at least 60-80% accurate. This
is likely attributed to the improvement in mental
models that have enough signals from LMs’ raw
predictions and also enough margin to improve.

Accuracy of parts mental models per relation
Figure 4 shows that the base LMs are more accurate
in predictions for queries containing relationships
like ‘part of’ which is more likely to be stated in
text than spatial relations like ‘above’, ‘below’, and
‘behind’ which are lower-level physical details of-
ten not mentioned in text. Different models also
differ in which relationships they perform better
on: e.g. GPT-3 performs poorly on bi-directional
relations like ‘connects’ and ‘next to’, with accu-
racy way below chance level, while Macaw-11B
achieves around 70% accuracy for queries involv-
ing these relations.

Success and failure across models per everyday
thing LMs show both similarities and differ-
ences in what everyday things they have better men-
tal models of. For each model, Figure 5 shows the
top 20 everyday things that the models performed
best on in terms of base LM accuracy. Both GPT-3
and Macaw-11B perform well on the following ev-
eryday things: sandwich, kayak, dog, kite, bird, rat,
cat, pencil sharpener, tree, cable car, and butterfly.
It is interesting to see that both models perform
well on several natural living things like animals
(e.g. dog, bird, rat, cat), insect (e.g. butterfly),
and plant (e.g. tree). Figure 6 shows the top 20
everyday things that the models performed worst
on in terms of base LM accuracy. We observe that
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(a) GPT-3

(b) Macaw-11B

Figure 3: Percentage of correct mental models vs
accuracy@s shows that for both GPT-3 and Macaw-
11B, there is a higher percentage of correct mental mod-
els after constraint reasoning (orange) as compared to
raw LM predictions (blue), no matter the threshold for
considering a mental model to be correct is lower or
higher. For improvements from constraint reasoning
(black), we observe the highest increase in percentage
of mental models that are at least 60-80% accurate.

entities like typewriter, bed, air conditional, and
computer are challenging for both models to form
accurate mental models of. Although the models
share some similarities in what everyday things
they have better/worse mental models of, they also
show differences, especially for man-made devices:
e.g. GPT-3 does well but Macaw-11B performs
poorly on forming an accurate parts mental model
of piano; Macaw-11B does well, but GPT-3 per-
forms poorly on devices like doorbell, digital clini-
cal thermometer, and binoculars.

7 Conclusion

Do language models have coherent mental models
of everyday things? To systematically study this
question, we present a benchmark dataset, ParRoT,
consisting of 300 human-constructed mental mod-
els for 100 everyday objects, including over 2K

(a) GPT-3

(b) Macaw-11B

Figure 4: Accuracy of base LM and improvement
achieved through constraint reasoning on different rela-
tions in ParRoT dataset.

parts and 11.7K relationships between these parts.
Our experiments reveal that even SOTA LMs gen-
erally have poor mental models (inaccurate and vio-
lating basic commonsense constraints) of everyday
things, thus providing insight into their apparent
knowledge and behavior not previously explored.
We apply constraint reasoning on top of base LM
predictions to construct more coherent mental mod-
els. Our method, ParRoT-Con, improves both accu-
racy (up to 20% improvement) and consistency (up
to 43% improvement) of such parts mental models.
This suggests a broader cognitive architecture (LM
+ reasoner) for future systems, to construct more
coherent mental models than using the LM alone.
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(a) GPT-3

(b) Macaw-11B

Figure 5: 20 everyday things that each model achieved
best performance on, based on models’ raw predictions
(i.e. Base LM). In almost all cases, constraint reasoning
boosts the accuracy of the parts mental models produced
by the base LM, pushing it even closer to 100%.

(a) GPT-3

(b) Macaw-11B

Figure 6: 20 everyday things that each model achieved
worst performance on, based on models’ raw predic-
tions (i.e. Base LM). In many of these cases, the accu-
racy of the parts mental models produced by the base
LM is at around or below chance level and constraint
reasoning boosts accuracy to beyond 50%.
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Limitations

Common everyday things change over the years.
While we try to choose ones that are in chil-
dren’s vocabulary, over decades, devices evolve
and humans change in which things they interact
with more frequently, affecting which relationships
would be more prominent in an average person’s
mental model. So the parts mental models in such a
dataset may not stay constant over time (e.g. some
entities may be less familiar and certain relations
may be less salient to annotators of the future). It
would be interesting to use our ParRoT dataset as a
point of comparison when studying mental models
of everyday things in the future to reveal interesting
insights on how humans’ mental models of every-
day things evolve over time.

Other important future directions include to ex-
plore how more coherent mental models can help
in complex reasoning tasks about everyday things,
combine these parts mental models with mental
models along other dimensions e.g. Gu et al.
(2022a,b), as well as using our dataset of common-
sense queries about everyday things as a source
of follow-up questions for existing QA tasks e.g.,
PIQA (Bisk et al., 2020) and CSQA (Talmor et al.,
2019).

This paper only focuses on relationships (spa-
tial orientation, connectivity, and functional depen-
dency) between parts of everyday things. However,
our approach ParRoT-Con is easily extensible to
other applications such as:

• spatial relations in other domains e.g. for geo-
graphical distances, we can similarly impose
constraints on inverse relations like closer and
further

• temporal relations e.g. on a timeline, if event
A occurred before event B, then event B can-
not have occurred before event A (before is
asymmetric)

We leave the demonstration of the generalizability
of our approach to future works.
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tion process have been anonymized. The only per-
sonal information we collect is the worker IDs from
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took great care to pay fair wages, and were respon-
sive to feedback and questions throughout the data
collection process. This study involves the use of
large-scale language models. We only use them
to generate True/False answers to questions about
parts of everyday things, therefore we do not fore-
see any substantial ethical issues with their use for
research presented in this submission.
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A Source of everyday things

We compiled a list of 100 everyday things from:

1. Children’s books

(a) My First Library series (Books, 2018b)

(b) Now you know how it works (Fisher, 2019)

(c) My first 100 things that move (Books, 2018a)

2. Vocabulary lists

(a) Grade 1-5 vocabulary list (Graham et al.)

(b) Select from all the nouns from an 8th-grade vocabulary list that were also under either “artifact”
or “device” in WordNet (Miller, 1994)

3. Online web search

B Details on mental model annotation task

Mechanical Turk task instructions:
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Our participants were recruited on the Amazon Mechanical Turk platform. The workers met minimum
qualification in AMT: 95% approval rate. They were from US locations and rated at Amazon’s Masters
Level. Workers were paid at a rate of ≈$15/hr.

C Unanimity and diversity in parts mental models

People vary greatly in how they construct mental models, but the underlying reasoning is often structurally
similar i.e. in accordance with commonsense constraints (Halford, 1993; Jonassen and Henning, 1996).
In our ParRoT dataset, similarly, contradictions amongst crowdworkers (e.g., for guitar, one worker
annotated that the neck is part of the fingerboard, while another annotated that the fingerboard is part
of the neck) are extremely rare. There are only 80 instances out of 11720 in total in our entire dataset
(0.68%) – less than 1%.

We also looked at relations overlapped across workers in our dataset to analyze if workers pay attention
to similar or different aspects of everyday things. To do so, we gathered a set of (p1, rln, p2) relations
that are common across all 3 annotators for each everyday thing. These relationships are ones that
achieved full agreement across all the 3 assigned annotators for that everyday thing in terms of the
spatial/connectivity/functional relationship annotated and the parts involved. Together, we refer to this
set as the ParRoT++ dataset. Table 5 summarizes the number of such high-agreement relationships for
each everyday thing. Everyday things with few or no high-agreement relationships (refer Figure 7 for
an example) imply higher diversity among annotators in terms of which spatial/connectivity/functional
relationship and what parts they decided to include in their annotations. There are a total of 508 overlapped
relations in ParRoT++, out of the 11720 in ParRoT, suggesting that attention is often paid to different
aspects of everyday things.

In Table 6, we present accuracy on ParRoT++, revealing similar results for relationships that achieved
full agreement across all assigned annotators. Using basic commonsense constraints, ParRoT-Con
improves parts mental model accuracy significantly by 16-22% on ParRoT++. These trends are similar
to that obtained for ParRoT, illustrating that the results hold across all gold-standard parts relations,
regardless of whether they are more unanimous or diverse across annotators.
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# full-agreem.
relations Everyday thing(s)

36 coffee maker, fish
28 rabbit
18 deer
16 egg, electric stove, tree
14 ink pen
12 laptop, sandwich, rice cooker, airplane, table
10 fire extinguisher, bird

8 elevator, flashlight, stroller, dishwasher, kayak, ship, teapot, telescope,
corn, hot air balloon, microwave

6 wheelchair, barbeque grill, kite, microphone, computer, duck, helicopter

4
pillow, truck, washing machine, door, hair dryer, rocket, screw, toaster,
butterfly, chair, knife, photo frame, shoe, baby bottle, bed, bird cage,
car, chainsaw, electric tea kettle, humidifier, piano

2 binoculars, digital camera, zipper, apple, digital clinical thermometer, earphone, flower,
windmill, backpack, dog, doorbell, lightbulb, bat, cat, umbrella, stethoscope, tent

0

air conditioner, bicycle, blender, boat, glider, guitar, house, pencil sharpener,
table fan, dryer, pencil, suitcase, telephone, microscope, refrigerator, space
heater, typewriter, violin, wall clock, window, bookcase, bus, cable car, calculator,
saucepan, train, cow, rat, table lamp

Table 5: Number of relationships that achieved full agreement across all the 3 assigned annotators for each everyday
thing. Higher number of such relations indicates more unanimous parts mental model annotations, whereas lower
number reflects more diversity.

# params Base
LM (%)

ParRoT-Con
(%)

Improve
(%)

GPT-3 (text-
davinci-003) 175B 55.51 71.13 15.62

Macaw-11B 11B 60.04 82.41 22.38

Table 6: Comparing the accuracy of parts mental models before and after constraint reasoning on ParRoT++ dataset.

Figure 7: Example parts mental model annotations from ParRoT: (a) we provide the crowdworkers a diagram of
cow retrieved from the Web. (b), (c), (d) are parts mental model sketches by 3 different crowdworkers. Note that all
3 models are accurate but there is some divergence in terms of (1) part names: e.g., ‘head’ vs ‘forehead’ and (2)
which relation tuples they consider salient. Similar forms of diversity have been reported in Ji et al. (2022), for
instance, as part naming divergence and segmentation divergence.
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D Pictorial illustration of ParRoT-Con

Our proposed approach, ParRoT-Con, is illustrated in Figure 8 with an example everyday entity “egg”.

Figure 8: When asked about relationships between parts of an everyday thing, LMs can produce inconsistent
relations. E.g., GPT-3 believes that in an egg, “yolk surrounds the shell” and “shell surrounds the yolk” are both
True. Our proposed neuro-symbolic method, ParRoT-Con, applies constraint reasoning over raw LM predictions to
produce more accurate and consistent mental models of everyday things.

E Accuracy on different everyday things

Table 7 gives example prompts and GPT-3’s responses (includes both correct and incorrect) for entity
“tree”. Top 20 and bottom 20 everyday things that each model achieved best and worst performance on are
shown in Figures 5 and 6 respectively. Further, Figure 11 demonstrates everyday things with 21st to 80th
ranking in terms of the base LM accuracy.

Model Prompt Model’s Answer

GPT-3 Judge whether this statement is true or false:
In a tree, twig is directly connected to the branches. True (correct)

GPT-3 Judge whether this statement is true or false:
In a tree, trunk is above the roots. False (incorrect)

GPT-3 Judge whether this statement is true or false:
In a tree, roots are surrounded by the trunk. True (incorrect)

GPT-3 Judge whether this statement is true or false:
In a tree, trunk is below the roots. False (correct)

Table 7: Example prompts and GPT-3’s responses for an everyday entity “tree”.

F Use of models for inference

For all experiments in this paper we used existing models/toolkits without any re-training or fine-tuning.
We used GPT-3 text-davinci-003 and Macaw (T5-11B based) as representative LMs for our experiments.
To probe GPT-3 text-davinci-003, we used their web API which took around 30 to 60 msec per relation
tuple (one T/F question). To probe Macaw, we used two 48GB GPUs and it takes around 10.4 msec
per relation tuple. We also run a MaxSAT solver for each everyday entity’s parts mental model. To
solve a constraint satisfaction problem per parts mental model takes a few msec up to around 3 minutes
depending on the WCNF formula involved.

G On the use of our dataset and code

We have made all data and code used in this paper publicly available. Our dataset and code are released
for research purposes only.
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H FAQs

Q: Does ChatGPT do better?

From informal tests, we find that ChatGPT is not devoid of mistakes either. We provide some
examples to illustrate how the lack of coherent mental models of everyday things may also appear
for other models of the GPT-3.5 family, like ChatGPT in Figure 9. Others have also found ChatGPT
responses that convey ridiculous interactions with everyday things e.g. it generates that “When you
fry an egg, the white and the yolk are both held together by the eggshell.” (See Figure 10)

Q: GPT-3 and ChatGPT models are often updated, when were the models accessed for your
experiments?

In our experiments with GPT-3, we used the text-davinci-003 model and queried the API on Decem-
ber 16, 2022 (during the period of time between 12 PM to 3.30 PM PST). ChatGPT as in Figure 9 was
accessed on December 17, 2022 (at around 9.30 PM PST). It would be interesting for researchers to in-
vestigate if future versions of the systems can construct better parts mental models of everyday things.

Q: How do you ensure high-quality mental models are acquired via crowdsourcing?

We enforced a set of manual and automated checks during data acquisition which includes collecting
mental model sketches and transcribing them into relation tuples.
Manual checks: We randomly sampled 15 mental model sketches and made sure that the tran-
scription of relation tuples was accurate i.e. all the relations tuples in mental model sketches drawn
by crowdworkers were precisely added to our dataset. We also checked the quality and format of
sketches (‘.png’ files) which will be released with our dataset.
Automated checks: After enriching with implied relations, we also programatically checked that all
individual mental models (total of 11.7K relations) in ParRoT are fully consistent (based on the 4
commonsense constraints described in Section 5.2).

Q: Do similar trends apply to smaller models?

Experiments on Macaw-3B, Macaw-large, UnifiedQA-large pointed towards the same trends. We
also make our code and data fully accessible at https://github.com/allenai/everyday-things
for interested researchers to experiment with other models of interest to them.

Q: Can ParRoT-Con be applied to other languages?

While our dataset is in English, relationships between parts of everyday things could indeed be
authored for/ translated into other languages. We made our code and data publicly available, so
others could use the infrastructure to apply the technique to other languages.
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ChatGPT

Figure 9: Like GPT-3 (text-davinci-003), ChatGPT also seems to have incoherent mental pictures of everyday things.
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ChatGPT

Figure 10: ChatGPT provides ridiculous responses regarding daily life activities such as frying an egg, illustrating
poor mental models of everyday things and interactions with them. (Example by @bio_bootloader, posted on
Twitter https://twitter.com/bio_bootloader/status/1599131249553330176/photo/1 at 11:59 AM Dec 3,
2022.)

1910

https://twitter.com/bio_bootloader/status/1599131249553330176/photo/1


(a) GPT-3 (b) Macaw-11B

Figure 11: Performance on other everyday things. Accuracy of base LM and improvement achieved through
constraint reasoning on different everyday things in our dataset.
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