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Abstract
Transfer learning has been shown to be an
effective technique for enhancing the perfor-
mance of low-resource neural machine transla-
tion (NMT). This is typically achieved through
either fine-tuning a child model with a pre-
trained parent model, or by utilizing the out-
put of the parent model during the training
of the child model. However, these methods
do not make use of the parent knowledge dur-
ing the child inference, which may limit the
translation performance. In this paper, we pro-
pose a k-Nearest-Neighbor Transfer Learning
(kNN-TL) approach for low-resource NMT,
which leverages the parent knowledge through-
out the entire developing process of the child
model. Our approach includes a parent-child
representation alignment method, which en-
sures consistency in the output representations
between the two models, and a child-aware
datastore construction method that improves
inference efficiency by selectively distilling
the parent datastore based on relevance to the
child model. Experimental results on four low-
resource translation tasks show that kNN-TL
outperforms strong baselines. Extensive analy-
ses further demonstrate the effectiveness of our
approach. Code and scripts are freely available
at https://github.com/NLP2CT/kNN-TL.

1 Introduction

Although deep learning has significantly advanced
the field of neural machine translation (NMT, Bah-
danau et al., 2015; Vaswani et al., 2017; Liu et al.,
2019, 2020), the standard training procedure of
NMT is not well-suited for languages with only
a small amount of bilingual data, leading to chal-
lenges in developing NMT models for low-resource
languages (Zhan et al., 2021; Wang et al., 2022d).
To overcome this limitation, transfer learning has
been proposed as an effective method to enhance
low-resource NMT through the parent-child frame-
work. This framework transfers knowledge from a
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Method Init. Training Inference

Vanilla TL ✓ ✗ ✗

ConsistTL ✓ ✓ ✗

kNN-TL ✓ ✓ ✓

Table 1: Comparison of three transfer learning frame-
works for exploiting of parent knowledge throughout
the developing process of a child model. “Init.” de-
notes the initialization stage of the child model. Our
proposed kNN-TL framework incorporates the use of
parent knowledge throughout the entire process.

high-resource parent model to a low-resource child
model (Zoph et al., 2016).

Previous works in transfer learning, such as Kim
et al. (2019a) and Aji et al. (2020), have aimed to
address the problem of vocabulary mismatch for
more effective knowledge transfer. These works, re-
ferred to as Vanilla TL, primarily focus on transfer-
ring knowledge during the initialization stage of the
child model and do not consider other stages of the
development of the child model. Recently, Li et al.
(2022) propose a novel transfer learning method,
namely ConsistTL, which models consistency be-
tween the parent model and the child model to facil-
itate the continual transfer of knowledge from the
parent model during the child training. While Con-
sistTL considers both the initialization and training
stages of the child model, it does not address the
inference stage, which may limit the overall trans-
ferability of knowledge from the parent model. The
effective utilization of parent knowledge during the
inference stage is an intuitive strategy to improve
the performance of low-resource child models.

This paper presents a novel k-nearest-neighbor
transfer learning (kNN-TL) method for low-
resource NMT. The proposed method aims to fully
utilize the knowledge from the parent model to
provide more comprehensive guidance throughout
the entire development process of the child model,
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as shown in Table 1. To achieve this, kNN-TL
aligns the parent and child representations during
the child training to ensure the retrieval of relevant
and useful knowledge from the parent datastore
during the child inference. Additionally, to acceler-
ate inference, kNN-TL selectively distills relevant
knowledge from the parent datastore to construct
a child-aware datastore. At each step of the model
prediction, kNN-TL considers both the probabil-
ity distributions retrieved from the parent datastore
and predicted by the child NMT model. Exper-
imental results on four low-resource translation
tasks, guided by two high-resource parent models,
confirm the effectiveness and efficiency of the pro-
posed kNN-TL method. Further analysis reveals
that kNN-TL can effectively align the represen-
tations of the parent and child models, providing
a reasonable explanation for the performance im-
provement. Our main contributions are as follows:

• We propose kNN-TL to transfer knowledge
from the parent model throughout the entire
developing process of the child model, includ-
ing the initialization, training, and inference.

• We propose a child-aware datastore construc-
tion method by selectively distilling the par-
ent datastore, which improves inference speed
while maintaining comparable performance.

• Experimental results demonstrate that kNN-
TL can achieve non-trivial improvements over
strong transfer learning methods on four low-
resource translation tasks, as measured by
widely-used automatic evaluation metrics.

2 Background

2.1 Transfer Learning for NMT
The parent-child framework has been widely used
in previous studies (Zoph et al., 2016; Kim et al.,
2019b; Aji et al., 2020) to conduct transfer learning,
which transfers the knowledge of a high-resource
NMT model (i.e., parent) to a low-resource NMT
model (i.e., child). Generally, the framework in-
volves the following two steps.

Parameter Initialization The first step is to ini-
tialize the child model by the parent model:

θc = R(θp), (1)

where θp is the pre-trained parameters of the parent
model, θc is the parameters of the child model, and

R denotes the initialization strategy. Part or all of
the parent parameters can be used for initialization.

Fine-tuning The second step is to train the child
model on the low-resource child data (xc,yc) ∈
(X c,Yc), starting from the pre-initialized parame-
ters. The child model is optimized by minimizing
the cross-entropy (CE) loss function:

LCE = −
T∑

t=1

log(p(yct |xc,yc
<t, θ

c)), (2)

where T denotes the length of the target sentence.

2.2 kNN-MT

To incorporate the knowledge of the parent model
into the inference phase, we borrow ideas from the
k-nearest-neighbor machine translation (kNN-MT,
Khandelwal et al., 2021) which has been shown
to be effective in improving domain-specific trans-
lation tasks. kNN-MT is a retrieval-augmented
text generation paradigm that assists the pretrained
NMT model by retrieving the k nearest neighbors
from a large-scale datastore for relevant knowledge
in the decoding stage. Formally, kNN-MT mainly
includes the following two stages.

Datastore Building The datastore is the core
component of kNN-MT that stores the knowledge
of a pretrained NMT model explicitly through key-
value pairs, where the key is the output represen-
tation at each time step and the value is the cor-
responding gold target token. Given the training
data (X ,Y), the datastore is constructed over all
the sentence pairs (x,y) as follows:

(K,V) =
⋃

(x,y)∈(X ,Y)

{(f (x,y<t) , yt) ,∀yt ∈ y} ,

(3)
where f (x,y<t) is output representation of the
NMT model at t step, and yt is the gold target token.
It is worth noting that the size of the datastore is
proportional to the number of tokens in the target
sentences, which could be very large.

Inference with Retrieval In kNN-MT, the NMT
model generates two probability distributions for
prediction during inference, namely, the one by
the output representation (i.e., pNMT) and the ex-
tra one by the retrieved representation from the
datastore (i.e., pkNN). Specifically, at each infer-
ence step t, the output representation f (x,y<t) is
used to query the datastore and obtain the k nearest
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neighbors as N k
t = {(kj , vj) , j ∈ {1, 2, . . . , k}}.

Then, the retrieval distribution can be computed as:

pkNN (yt|x,y<t) ∝
k∑

j=1

1yt=vj exp (−d (kj , f (x,y<t))/τ) ,
(4)

where τ is the softmax temperature and d(·, ·) is
the l2 distance function.

The final probability distribution for predicting
the next token yt is the interpolation of the two
distributions with a tuned parameter λ:

p (yt|x,y<t) = λpkNN (yt|x,y<t)

+ (1− λ)pNMT (yt|x,y<t) .
(5)

The retrieval distribution refines the original NMT
distribution with external knowledge, which im-
proves the prediction accuracy.

3 kNN-TL

This section introduces the kNN-TL method in de-
tail. It begins by clarifying the motivation for the
work by comparing kNN-TL to previous methods.
The training process of kNN-TL is then presented
with a specific focus on the parent-child represen-
tation alignment component for subsequent kNN
retrieval. After that, the steps for building a child-
aware datastore to improve inference speed are
described. Finally, the method of incorporating
knowledge from the parent datastore to guide the
child model during inference is presented.

3.1 Motivation

We aim at exploiting the knowledge of the parent
model throughout the whole development process
of the child model based on the parent-child frame-
work, which has not been accomplished in previ-
ous methods. As shown in Table 1, vanilla transfer
learning (Kim et al., 2019a; Aji et al., 2020) initial-
izes the child model by the optimized parameters
of the parent model, and then continues the training
of the child model on the low-resource translation
dataset. Recent studies, such as ConsistTL (Li
et al., 2022), have found that incorporating knowl-
edge of the high-resource parent models to provide
continuous guidance for the child models during
training can significantly improve the performance
of low-resource translation tasks. However, these
studies ignore the high-resource parent models in
inference, which does not make full use of the
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Figure 1: The training framework of kNN-TL.

parent model and potentially limits the translation
performance. Therefore, we propose kNN-TL to
fully exploit the high-resource parent models at
initialization, training and inference process.

3.2 Parent-Child Representation Alignment

Due to the discrepancy in feature representations
between the child model and the parent model,
building the datastore solely from the parent data
may not provide sufficient and relevant knowledge,
leading to poor performance of the child model. To
address this issue, we propose to align the repre-
sentations of the child and parent models.

Pseudo Parent Data Construction In order to
align the feature representations of the parent and
child models, we generate a set of paired samples.
We adopt the approach proposed by Li et al. (2022)
to generate pseudo parent source sentences for the
entire child data. Specifically, for each instance
(xc,yc) ∈ (X c,Yc), we use a well-trained re-
versed parent model to back-translate the target sen-
tence yc to a pseudo parent source sentence x̃p and
obtain the pseudo parent data (x̃p,yc) ∈ (X̃ p,Yc).

Representation-based Consistency Learning
In ConsistTL and other consistency learning meth-
ods (Wang et al., 2022d; Li et al., 2023), the con-
sistency between the parent and child models is
encouraged over the probability distributions, but
this approach does not impose strong constraints
on the feature representations. To address this is-
sue, we propose to utilize the child data and the
pseudo parent data to learn consistent output rep-
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Figure 2: The inference framework of kNN-TL.

resentations for the same target sentences. Specifi-
cally, for each instance of the pseudo parent data
(x̃p,yc) ∈ (X̃ p,Yc), the parent model generates
the output representation as fθp (x̃p,yc

<t) for every
target token yc

t , while the child model generates the
output representation as fθc (xc,yc

<t) for the same
target token. Then we minimize the squared Eu-
clidean distance of these two output representations
with the MSE loss:

LMSE =

T∑

t=1

∥fθp (x̃p,yc
<t)− fθc (x

c,yc
<t)∥2 ,

(6)
where θp and θc represent the parameters of the
parent and child models, respectively. The final
loss is a combination of the CE loss and the MSE
loss, with a balancing hyper-parameter α:

L = LCE + αLMSE. (7)

3.3 Child-Aware Datastore Construction
The aim of kNN-TL is to improve the performance
of the child model by utilizing relevant knowl-
edge from the parent data. However, using a large
amount of parent data leads to a large datastore that
can slow down the retrieval speed during inference.
To address this issue, we propose a method to se-
lectively prune the high-resource parent datastore
by pre-retrieving relevant entries using the pseudo
parent data. Specifically, we first utilize the well-
trained parent model to forward pass the parent
data (X p,Yp) and obtain the intermediate repre-
sentation fθp (x̃

p;yc
<t) to construct a large parent

datastore as Eq.(3). For each instance of the pseudo

parent data (x̃p,yc), we use the parent model to
forward pass it and conduct kNN retrieval from the
large parent datastore with a large value of k̄. The
obtained k̄ nearest neighbors is expressed as:

Nyc =
{
(kj , vj) , j ∈ {1, 2, . . . , k̄},∀yc

t ∈ yc
}
.

(8)
As the pseudo parent data is semantically equiv-

alent to the child data, the pre-retrieved subset will
include entries that are more relevant to the child
data. Besides, our method only needs to retrieve
through the parent datastore, rather than accessing
the parent data which may not be available in indus-
trial applications. Finally, we merge all retrieved
entries to build the child-aware parent datastore:

(K,V) =
{
Nyc , ∀(x̃p,yc) ∈ (X̃ p,Yc)

}
. (9)

3.4 Parent-Enhanced Model Prediction

During inference, the child model generates the
intermediate representation fθc (x

c;yc
<t) to query

from the child-aware parent datastore. The retrieval
distribution from the child-aware parent datastore
can be computed as:

pparent−kNN (yct |xc,yc
<t) ∝

k∑

j=1

1yc
t=vj exp (−d (kj , f (xc,yc

<t))/τ) .
(10)

The final probability distribution for predict-
ing the next token yt is the interpolation of the
child NMT distribution and the retrieval distribu-
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tion weighted by the hyper-parameter λ:

p (yct |xc,yc
<t) = λpparent−kNN (yct |xc,yc

<t)

+ (1− λ)pchild−NMT (yct |xc,yc
<t) .

(11)
Different from vanilla kNN-MT that generates the
two distributions from a same NMT model, kNN-
TL makes use of the parent model rather than the
child model to build high-quality datastore, which
will generate a more accurate retrieval distribution,
and thus better translation performance.

4 Experiments

4.1 Setup
Parent Language Pairs Our method is indepen-
dently evaluated using German-English (De-En)
and French-English (Fr-En) as the parent language
pairs in our experiments. For De-En task, we fol-
low the dataset settings of Li et al. (2022) to train
on WMT17 De-En and validate on newstest2013.
The training set consists of 5.8M sentences. For
Fr-En task, we train on WMT14 Fr-En dataset and
validate on newstest2013. we follow the data pro-
cess of fairseq1 and also randomly select 5.8M
samples as the training set. The vocabularies are
learned using the joint source-target BPE with 40K
merge operations (Sennrich et al., 2016b).

Child Language Pairs We conduct experiments
on four low-resource translation benchmarks. We
use three translation benchmarks from Global
Voices (Tiedemann, 2012; Khayrallah et al., 2020):
Hungarian (Hu-En), Indonesian (Id-En), and Cata-
lan (Ca-En). The subset splits follow Khayrallah
et al. (2020). The training set contains 15,176,
8,448, and 7,712 instances respectively. Both the
validation set and the test set are 2000 instances.
We adopt WMT17 Turkish-English (Tr-En) bench-
mark as the fourth language pair and use new-
stest2016 as the validation set. We carry out a
series of data processing procedures including nor-
malization, tokenization by Moses (Koehn et al.,
2007). To enhance the quality of the Tr-En training
data, sentences exceeding 60 words in length and
with a length ratio greater than 1.5 are removed.
The settings of the joint source-target BPE to the
child language pairs follow Li et al. (2022).

Baselines We mainly compare our method with
the following baselines:

1https://github.com/facebookresearch/fairseq/blob/main/
examples/translation/prepare-wmt14en2fr.sh

• Vanilla NMT (Vaswani et al., 2017) proposes
Transformer that significantly improves the per-
formance of NMT. However, its performance is
severely limited when applied to the scenario of
low-resource machine translation.

• TL (Zoph et al., 2016) is the earliest work
on transfer learning, which initializes the child
model with copied parameters from the parent
model except for the embedding layers of the en-
coder. For the embedding layers of the encoder,
this method initialized it using the embeddings
randomized from the parent model. After the
initialization stage, the child model is trained on
the child data as the usual NMT models.

• TM-TL (Aji et al., 2020) proposes “Token
Matching” to conduct transfer learning, which
is similar to TL except for the initialization of
the embedding layers in the encoder of the child
model. For the initialization of the embedding
layers, this method assigns the embeddings of
common tokens from the parent models to the
child model. The embeddings of the rest tokens
are initialized as the usual NMT models.

• ConsistTL (Li et al., 2022) enhances the con-
sistency between the predictions of the parent
model and the child model during the training
stage of the child model. The initialization stage
of this method follows TM-TL.

4.2 Implementation Details

Training We adopt the fairseq toolkit for model
implementation (Ott et al., 2019). We train the
parent model for 80K steps with 460K tokens per
batch, a dropout rate of 0.1, a peak learning rate of
0.001, and linear warmup steps of 10K. We tie all
embedding layers of the parent models. For child
models, we tie the input embedding layers of the de-
coder and the output projection. We also follow the
embedding initialization as TM-TL. We train all the
child models for 200 epochs with 16K max tokens
per batch for Tr-En and 1K for other language pairs.
For child training, we set the warm-up steps to 1K,
the label smoothing to 0.1 and the dropout rate to
0.3. Both the attention and activation dropout rates
are set to 0.1. To prevent overfitting, a lower peak
learning rate of 0.0003 is employed. The α is set to
0.01. The Adam (Kingma and Ba, 2015) optimizer
is set to β1 = 0.9, β2 = 0.98. We choose the model
with the best validation BLEU for testing.
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Parent Model Id-En Ca-En Hu-En Tr-En

BLEU BR BS BLEU BR BS BLEU BR BS BLEU BR BS

None Vanilla 1.1 26.6 13.2 1.1 23.1 15.5 0.9 25.7 0.9 17.8 54.0 51.8

Fr-En

TL 13.4 47.4 38.4 22.2 55.8 52.3 6.0 40.4 27.4 16.9 57.4 51.4
TM-TL 17.2 54.5 47.2 25.9 61.2 59.0 10.1 48.1 38.5 18.3 59.0 53.5
ConsistTL 18.8 56.3 50.1 26.8 62.8 60.9 10.9 50.5 41.8 19.2 60.0 54.6
kNN-TL 19.9 57.3 51.6 28.6 63.5 62.1 11.8 52.0 44.0 19.6 61.0 55.8

De-En

TL 13.5 42.3 37.7 21.6 47.4 51.8 5.9 35.8 27.4 17.6 49.1 51.9
TM-TL 18.6 55.9 49.9 25.3 60.9 58.9 10.6 50.4 41.2 18.6 59.5 53.9
ConsistTL 19.7 57.4 52.2 26.6 62.7 60.0 11.9 52.0 43.9 19.3 60.6 55.9
kNN-TL 20.6 58.5 53.2 27.8 63.6 61.6 13.4 53.7 46.0 20.1 61.6 56.9

Table 2: Main results on the 4 translation tasks. “BR” represents BLEURT. “BS” represents BERTScore.

Inference We use the kNN-box2 (Zhu et al.,
2023) to implement kNN retrieval and the
FAISS (Johnson et al., 2021) for efficient
search. For the child-aware datastore, we tune
the hyper-parameters by performing grid search
on k̄ ∈ {16, 32, 64, 128} for the Tr-En and k̄
∈ {256, 512, 1024, 1536} for the other language
pairs. During inference, we empirically perform
grid search on k ∈ {8, 12, 16, 20, 24, 28} and λ ∈
{0.2, 0.25, 0.3, 0.35, 0.4} and T ∈ {1, 10, 30, 50,
70, 100} to choose the optimal value. All the se-
lected hyper-parameter values for each model and
dataset are based on validation sets. As a reference,
the hyper-parameters (k, λ and T ) of four language
pairs with De-En parent are Id: 28/0.35/10, Ca:
28/0.4/100, Hu: 20/0.4/70, and Tr: 16/0.35/100.

Evaluation We use beam search with a beam
width of 5 and a length penalty of 1 for
model inference. To fully validate the effec-
tiveness of our proposed method, we use Sacre-
BLEU (Post, 2018), BLEURT (Sellam et al., 2020)
and BERTScore (Zhang et al., 2020) to evaluate
the generation quality.

4.3 Main Results

Table 2 reports the results on the four low-resource
tasks. The results of transfer learning could be di-
vided into two parts according to the usage of the
parent language pair. When using De-En as the
parent, our method kNN-TL achieves the best per-
formance consistently on all child language pairs
in all metrics. Compared with the strong baseline
TM-TL that uses the same initialization strategy,
kNN-TL achieves large improvements. Moreover,
we observe that kNN-TL could still outperform

2https://github.com/NJUNLP/knn-box

LCE LJS LMSE Ca-En Tr-En

✓ ✗ ✗ 25.4 18.4
✓ ✓ ✗ 26.8 19.1
✓ ✗ ✓ 27.8 20.1

Table 3: Effect of loss type for kNN-TL.

the strongest baseline ConsistTL with significant
gains. Similar observations can be drawn when
we switch the parent to Fr-En, which indicates that
kNN-TL brings consistent improvements across
different parent language pairs. In summary, the
experimental results demonstrate the superiority of
our proposed kNN-TL method, as it conducts more
comprehensive transfer learning.

5 Analysis

In this section, we conduct extensive analyses to
demonstrate the effectiveness of each component in
kNN-TL. By default, we choose Ca-En and Tr-En
for the child model with the De-En parent model.

Loss for Imposing Consistency Constraints We
investigate the effectiveness of MSE that imposes
constraints on the output representation, compared
with JS loss that encourages consistency over prob-
ability distributions. Table 3 demonstrates the im-
pact of learning a consistent representation of trans-
lation context on kNN retrieval. Without consis-
tency constraints, the model performs worst on
kNN retrieval. When using JS loss, the utilization
of kNN retrieval lead to moderate improvements.
In contrast, the performance of the kNN retrieval
is significantly enhanced using MSE loss. These
observations reveal the necessity of learning con-
sistent representations for kNN-TL.
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Train Type Infer Type Ca-En Tr-En

Intermediate Output 26.8 19.5
Intermediate Intermediate 27.3 19.5
Output Output 27.3 19.9
Output Intermediate 27.8 20.1

Table 4: Effect of representation type.

Datastore Type Ca-En Tr-En

N/A 26.5 19.5
Child-Only 26.8 19.6
Child-Aware Parent 27.8 20.1

Table 5: Effect of the datastore type. N/A refers to kNN-
TL with only the parent-child representation alignment.

Representation Type for Training and Inference
We conduct an empirical study to investigate the
impact of representation type for training (consis-
tency learning) and inference (retrieval) respec-
tively. Output and Intermediate respectively repre-
sent the output representation and the representa-
tion of feed-forward input of the last decoder layer
follow Khandelwal et al. (2021). Table 4 lists all
the setups and corresponding results. We can ob-
serve that utilizing output representation for the
training stage while intermediate representation for
the inference stages yields the optimal performance.
We leave further investigation of the representation
type for training and inference as our future work.

Importance of Parent Datastore To verify the
importance of the parent datastore in kNN-TL, we
compare the parent datastore with the child datas-
tore and the pure NMT model. Table 5 compares
the results caused by the pure NMT model and dif-
ferent datastores. Compared with the pure NMT
model, the child datastore achieves weak improve-
ments with an average increase of only 0.2 BLEU.
This shows that for the low-resource child data, the
child model can already learn most of the knowl-
edge in the data well. In contrast to the child data-
store, the model is significantly improved with an
increase of 1.3 and 0.6 BLEU when using the child-
aware parent datastore. These findings demonstrate
that for low-resource NMT models, fully leverag-
ing the knowledge from high-resource parents is a
more effective means of improvement.

Inference Speed-up by Child-Aware Datastore
To investigate the impact of the child-aware datas-
tore construction, we analyze the performance of
the original parent datastore and child-aware data-

Datastore Type Ca-En Tr-En

BLEU SpdUp BLEU SpdUp

Original Parent 27.9 ×1.0 20.1 ×1.0
Child-Aware Parent 27.8 ×1.7 20.1 ×1.5

Table 6: Effect of child-aware datastore construction.

Figure 3: Translation quality v.s. inference speed-up of
the child-aware datastore construction by different k̄.

store in terms of BLEU and inference speed, as
shown in Table 6. The experimental results show
that the implementation of the child-aware datas-
tore leads to an improvement in inference speed,
with a 1.5 and 1.7-fold increase observed in two lan-
guage pairs. This enhancement in speed is achieved
while maintaining a comparable performance of us-
ing the whole parent datastore. Nonetheless, the
decoding speed of kNN-TL remains three times
lower than conventional NMT models, which can
be mitigated by utilizing other accelerated methods
of kNN-based retrieval.

We also analyze the quality-speed trade-off on
the Tr-En language pair using the child-aware data-
store in Figure 3. The horizontal axis in the figure
represents the different values of k̄ used and “ALL”
(original parent datastore). It can be observed that
as the pre-retrieval k̄ value decreases, there is a
corresponding increase in inference speed. When
the k̄ is set to 16 (resulting in a reduction of the
datastore to less than 30%), the model exhibits a
2.6 times increase in inference speed with a degra-
dation of 0.2 BLEU. The results illustrate that our
proposed method can effectively balance the trade-
off between inference speed and performance.

Visualization of Representation Alignment In
order to verify the consistency of the intermediate
representation of child and parent models, we vi-
sualize the representation of the child model and
parent model on the target side of the child data.
Figure 4 shows intermediate representations gen-
erated by the De-En parent model and different
Ca-En child models respectively. We can see that
there exists a significant discrepancy in the rep-
resentation of the parent and child model of the
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Figure 4: Intermediate representations of different trans-
fer learning methods after T-SNE dimensionality reduc-
tion. The blue and red points are representations of child
and pseudo parent data respectively.

Model w/o BT w/ BT

TM-TL 18.6 21.6
ConsistTL 19.3 22.3
kNN-TL 20.1 22.8

Table 7: Effect of combining with back-translation.

TM-TL. ConsistTL slightly brings the two repre-
sentations closer but still remains a notable dis-
crepancy. Compared to the previous two models,
the representations of the parent model and child
model of kNN-TL are highly similar, indicating
the effectiveness of our parent-child representation
alignment method during training. The utilization
of consistency learning via the output distribution
serves as an effective constraint on the intermedi-
ate distribution. Simultaneously, this provides a
sound justification for the ability of the kNN-TL
method to effectively retrieve knowledge across
parent and child models. In conjunction with the
results presented in Table 3, we can conclude that
proper alignment of the intermediate representation
can optimize the performance of the child model
through effective knowledge retrieval.

Effect of Back-translation Back-translation
(BT, Sennrich et al., 2016a) is a frequently em-
ployed technique in contemporary NMT systems,
particularly for low-resource language pairs that
suffer from a scarcity of parallel data. To verify the
complementarity of our method with BT, we con-
duct a performance analysis on augmented training
data, obtained through BT from News Crawl 2015
English monolingual data. We adopted the experi-
ment settings of Li et al. (2022) to sample 200k En-
glish monolingual data at a ratio of approximately
1:1. Table 7 displays the Tr-En results of kNN-TL
and baseline methods. By incorporating supple-
mentary back-translated data, kNN-TL can achieve
an improvement of 2.7 BLEU and also outperforms

Figure 5: Prediction confidence and accuracy of differ-
ent transfer learning methods. The higher striped bars
represent confidence, while the lower pure color bars
represent accuracy. Smaller gaps denote better model
calibration.

the baseline transfer learning methods. These find-
ings demonstrate the generality of kNN-TL and
its complementarity with BT, which facilitates the
integration into practical NMT systems with other
mainstream approaches.

Model Calibration While ConsistTL (Li et al.,
2022) uses the prediction distribution of the par-
ent model, we further incorporate the probability
distribution retrieved from the parent datastore dur-
ing inference. In order to investigate the impact
of kNN distribution on inference calibration, we
analyze the gap between the confidence and ac-
curacy of the model.3 The smaller gap between
the prediction probability (i.e., confidence) and the
correctness of generated tokens (i.e., accuracy) in-
dicated better calibration performance (Wang et al.,
2020). Figure 5 shows the averaged confidence
and accuracy of different methods. Compared with
baseline methods, kNN-TL effectively reduces the
over-confidence of the model while improving the
accuracy. Specifically, kNN-TL exhibits a signif-
icant improvement in the model’s calibration per-
formance as it produces a decrease in the gap of
3.1 and 1.8 for the two language pairs, respectively.
According to the prior work (Yang et al., 2022),
the knowledge of kNN retrieval can prevent the
over-confidence of the model on the one-hot label-
ing, ultimately resulting in elevated generalizability
for inference. kNN-TL incorporates the distribu-
tion and knowledge from diverse perspectives, thus
leading to a more comprehensive transfer learning
framework for low-resource NMT.

3https://github.com/shuo-git/InfECE
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6 Related Works

6.1 Transfer Learning for NMT
Transfer learning is an efficient method to boost
low-resource NMT models based on the parent-
child framework (Wang et al., 2021a; Zoph et al.,
2016; Liu et al., 2021a,b), which transfers knowl-
edge from the high-resource parent model to the
low-resource child model. Recent works propose to
cope with the vocabulary between the parent model
and the child model for the initialization of the child
model, including using extra transformation (Kim
et al., 2019a) and transfer partial embeddings from
the parent model (Aji et al., 2020). These works
mainly focus on the initialization stage of the child
model. ConsistTL revisits the relationship between
the parent and child models and proposes to receive
continual guidance from the parent model during
the child training (Li et al., 2022).

However, the above works still ignore the contin-
ual transfer from the parent model during the child
inference. To this end, inspired by the kNN mech-
anism (Khandelwal et al., 2020; He et al., 2021),
this paper proposes to conduct cross-model transfer
from the parent model throughout the developing
process of a child model, which includes the stages
of initialization, training and inference.

6.2 k-Nearest-Neighbor Retrieval
Recently, non-parametric retrieval-augmented
methods have promoted the progress of many fields
of NLP, including language modeling (Khandel-
wal et al., 2020; He et al., 2021), NMT (Khan-
delwal et al., 2021; Zheng et al., 2021a), named
entity recognition (Wang et al., 2022c), question an-
swering (Kassner and Schütze, 2020; Xiong et al.,
2021), text classification (Su et al., 2022) and so
on. For NMT, A series of approaches incorpo-
rate the external knowledge into NMT systems
through kNN retrieval from the datastore built with
the training data. Some works improve the per-
formance by dynamically adjusting the ratio λ be-
tween NMT and kNN (Zheng et al., 2021a; Jiang
et al., 2021). Some researchers improve the effi-
ciency of kNN-MT retrieval by pruning the datas-
tore (Wang et al., 2022a), dynamically construct-
ing the datastore (Meng et al., 2022; Wang et al.,
2021b; Dai et al., 2023), and reducing the number
of steps to be retrieved (Martins et al., 2022a,b).
kNN-MT is also applied to various sub-areas of
MT, including domain adaptation in MT (Khandel-
wal et al., 2021; Zheng et al., 2021b), interactive

MT (Wang et al., 2022b), domain adaptation in
speech translation (Du et al., 2022), and so on.

It is important to note that when constructing
a datastore utilizing a low-resource NMT model,
the interpolation of kNN retrieval methodologies
may not result in a significant enhancement in per-
formance. In this paper, we propose an extension
of the kNN retrieval method to transfer learning,
which allows child models to acquire knowledge
from a well-trained parent model, instead of rely-
ing solely on their limited internal datastores. This
enhances the capability of the child models to per-
form accurate retrieval in low-resource settings.

7 Conclusion and Future Works

In this paper, we propose kNN-TL to transfer
knowledge from the parent throughout the entire de-
veloping process of child models. kNN-TL aligns
the output representations of parent and child dur-
ing training, allowing for efficient retrieval of use-
ful knowledge from the parent datastore. In addi-
tion, kNN-MT builds a child-aware datastore by
selectively distilling relevant entries of the large-
scale parent datastore, thereby improving the in-
ference efficiency. Experimental results on four
low-resource NMT benchmarks show a continuous
improvement over the other powerful transfer learn-
ing methods for NMT. Further analysis reveals the
effectiveness and importance to align the output
representations for better model improvement. Fu-
ture works include:1) integrating parent datastores
from different high-resource language pairs to im-
prove the performance of the child model, and 2)
analyzing the transferability of the parent model
through the child-aware datastore construction.

Limitation

In comparison to other transfer learning methods
of NMT, kNN-TL incurs extra time costs and more
processes to transfer knowledge from the parent
model. This is a result of the requirement to con-
struct a high-resource datastore utilizing large-scale
parent data and retrieve it. On the other hand, kNN-
TL requires a substantial amount of storage ca-
pacity due to the storage of a datastore containing
millions of entries. We employ the output represen-
tation layer for the alignment and the intermediate
representation layer for the retrieval. This method
justification is mainly supported by the results of
model validation (Table 4), which might deserve
further investigation.
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