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Abstract
We introduce the problem of curriculum discov-
ery and describe a curriculum learning frame-
work capable of discovering effective curricula
in a curriculum space based on prior knowl-
edge about sample difficulty. Using annota-
tion entropy and loss as measures of difficulty,
we show that (i): the top-performing discov-
ered curricula for a given model and dataset
are often non-monotonic as apposed to mono-
tonic curricula in existing literature, (ii): the
prevailing easy-to-hard or hard-to-easy transi-
tion curricula are often at the risk of underper-
forming, and (iii): the curricula discovered for
smaller datasets and models perform well on
larger datasets and models respectively. The
proposed framework encompasses some of the
existing curriculum learning approaches and
can discover curricula that outperform them
across several NLP tasks.

1 Introduction

Annotation information has been extensively used
by previous research in NLP to devise strategies
for further data collection (Yang et al., 2019; Dli-
gach et al., 2010), model improvement and annota-
tion analysis (Zaidan and Eisner, 2008; Paun et al.,
2018), pruning and weighting samples for better
learning (Yang et al., 2019), or efficient use of mon-
etary funds (Dligach et al., 2010). Recent studies
show consistent positive correlation between dif-
ficulty of samples to the model and their level of
human agreement (Nie et al., 2020a; Zaidan and
Eisner, 2008; Yang et al., 2019). Building on these
findings, we aim to utilize such prior knowledge
about sample difficulty to develop a curriculum
learning (CL) framework that is capable of discov-
ering effective curricula for NLP tasks.

A curriculum is a planned sequence of learning
materials and an effective one can improve train-
ing of NLP systems (Settles and Meeder, 2016;
Amiri et al., 2017; Zhang et al., 2019; Lalor and
Yu, 2020; Xu et al., 2020; Kreutzer et al., 2021;

Agrawal and Carpuat, 2022; Maharana and Bansal,
2022). CL seeks to improve model generalizability
by ordering samples for training based on their la-
tent difficulty (Bengio et al., 2009). Recent work
reported efficiency and effectiveness gains through
CL (Jiang et al., 2018; Castells et al., 2020; Zhou
et al., 2020), especially in cases of harder tasks and
limited or noisy data (Wu et al., 2021).

Existing CL approaches are designed to learn a
single curriculum that works best for a given model
and dataset. However, effective training could be
achieved in multiple ways. In addition, existing ap-
proaches quantify sample difficulty through model
behavior during training. Although efficient and
effective, model behavior can be affected by initial-
ization and training dynamics (Erhan et al., 2010;
Wu et al., 2021), which limits the curriculum space
that can be examined for finding effective curricula.

This paper advocates a re-imagining of CL
paradigms by introducing and formalizing the task
of curriculum discovery, which aims to find effec-
tive curricula for a given model and dataset over
a curriculum space. The present work specifically
focuses on determining when and in which diffi-
culty order text data samples should be learned for
effective training of NLP systems. We propose
a framework that employs prior knowledge about
sample difficulty, such as entropy in human anno-
tations, to inform an effective and flexible sample
weighting scheme for curriculum discovery. The
framework is capable of discovering optimal cur-
ricula (within the space of its weight functions)
for any given model and dataset by optimizing
the weight functions and adjusting the difficulty
group of data samples as training progresses. The
discovered curricula provide useful insights about
datasets and models, such as the relative impor-
tance of different groups of samples for models or
knowledge dependency among samples. We illus-
trate that the proposed framework has the potential
to encompass some of the existing CL approaches.
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Experimental results show that (a): the top-
performing discovered curricula for the same
model and dataset can be fundamentally dissimilar
in their training strategies, indicating that effective
training can be achieved in multiple ways; (b): the
discovered curricula are often non-monotonic and
greatly differ from the known strategies reported in
existing literature, indicating that existing curricula,
including easy-to-hard transition curricula, are at
the risk of underperforming; and (c): the curricula
discovered on small datasets and models perform
exceptionally well on larger datasets and models
respectively, illustrating the transferability of the
discovered curricula. The paper presents a new
curriculum learning approach that unlike existing
approaches can discover multiple high-performing
(and often diverse) curricula for each given NLP
model and dataset, provide interpretable curricula
in terms of sample difficulty, and encompass some
of the existing curriculum learning approaches.1

2 Related Work

Existing CL approaches are designed to learn
a single curriculum that works best for a given
model and dataset. They estimate sample dif-
ficulty through model behavior during training,
quantified by the instantaneous loss (Xu et al.,
2020; Wu et al., 2021), consistency in instanta-
neous loss (Xu et al., 2020), moving average of
loss (Jiang et al., 2018; Zhou et al., 2020), transfor-
mations of loss (Amiri et al., 2017; Castells et al.,
2020; Chen et al., 2021; Vakil and Amiri, 2022),
loss regularization (Kumar et al., 2010; Jiang et al.,
2015; Castells et al., 2020), or learnable per-sample
confidence (Shu et al., 2021; Saxena et al., 2019;
Jiang et al., 2018). In terms of data ordering, sub-
sampling approaches sample the easiest or hardest
instances at every training iteration (Bengio et al.,
2009; Kumar et al., 2010; Guo et al., 2018; Platan-
ios et al., 2019; Xu et al., 2020), sample weighting
techniques weight instances according to their es-
timated difficulty (Kumar et al., 2010; Jiang et al.,
2015, 2018; Yang et al., 2019; Castells et al., 2020;
Zhou et al., 2020), and sample pruning techniques
filter hard or noisy instances from data prior to
training (Northcutt et al., 2021). Sub-sampling
methods can be cumulative, exclusive or a combi-
nation of both. Cumulative approaches add new
samples to the ones that have been previously used

1Code and data are available at https://clu.cs.
uml.edu/tools/curriculum_discovery.html.
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Figure 1: The model defines a difficulty score based
on prior knowledge about sample difficulty and assigns
samples to k difficulty groups before training, e.g., easy,
medium, and hard for k = 3. A curriculum is defined
for each difficulty group, which dynamically weights
sample losses according to their difficulty groups. Each
curriculum is defined by a pair of parameters (r, s) that
will be optimized to discover an optimized curriculum
based on sample difficulty and model behavior.

for training (Guo et al., 2018; Xu et al., 2020),
while exclusive approaches create a new subset of
the data at every training stage (Bengio et al., 2009;
Zhou and Bilmes, 2018). In addition, previous re-
search has developed model-driven (Karras et al.,
2018; Morerio et al., 2017; Sinha et al., 2020) and
task-driven (Caubrière et al., 2019; Florensa et al.,
2017; Sarafianos et al., 2017) techniques.

3 Curriculum Discovery Framework

We consider the training dataset D =
{(x1, y1), . . . , (xn, yn)} of size n, where xi

denotes the ith training sample with the ground-
truth label yi and ψ ∈ [0, 1]n indicates the initial
difficulty estimates of training samples, see §3.4.
The data is initially clustered into k groups of
increasing difficulty, e.g. {easy, medium, hard}
groups for k = 3, which can be achieved using dif-
ficulty score percentiles or 1-dimensional K-means
applied to ψ. As Figure 1 shows, the framework
develops a separate parameterized weight function
for each difficulty group (§3.1), and dynamically
weights training samples and adjust their difficulty
groups according to the training progress of the
downstream model (§3.2). Specifically, at training
iteration t, the weighted loss l̂i for sample i of the
difficulty group c ∈ {1, . . . , k} will be computed
as follows:

l̂i = w(t; rc, sc)× li, (1)

where li is the instantaneous loss of sample i, and
w(t; rc, sc) is the weight of sample i in its difficulty
group c at training iteration t, with class-specific
weight function parameters rc and sc (see below).
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3.1 Monotonic Curricula
We define a curriculum using the generalized logis-
tic function (Richards, 1959) of the form:

w(t; r, s) =
1

1 + exp(−r × (t− s))
, (2)

where r ∈ R is the rate-of-change parameter,
which specifies how fast the weight can increase
(r > 0) or decrease (r < 0); t ∈ [0, 1] is the train-
ing progress (typically iteration number divided
by max iterations); and s ∈ R shifts the pivot
weight of the logistic function (w(.) = .5) to the
left or right such that at t = s the weight is 0.5.
Figure 2a illustrates the effect of these parame-
ters. Greater absolute values for the rate parameter
enforce faster rates of change in weights, while
greater values of the shift parameter enforce longer
delays in reaching the pivot weight of 0.5. These
parameters provide flexibility in controlling sample
weights during training, which is key for deriving
effective curricula. The above function can approx-
imate existing predefined curricula. For example,
Figure 2b shows a specific configuration for the
logistic functions for standard CL (Bengio et al.,
2009), where training starts with easier samples
and gradually proceeds with harder ones.

3.2 Non-monotonic Curricula
Although the generalized logistic function in (2)
can lead to effective curricula, monotonic functions
are limited in their coverage capacity. For example,
they do not allow easy samples with low weights
to become important again (receive high weights)
at later stages of training to mitigate forgetting,
which is a major challenge for effective curriculum
learning (Toneva et al., 2019; Zhou et al., 2020).

We address this challenge by extending the
framework to non-monotonic curricula, where sam-
ples can move between difficulty classes based on
their learning progress during training. We quan-
tify learning progress for training samples based on
the deviation of their losses from the average losses
of their corresponding difficulty groups. At every
iteration, samples with loss values greater than the
average are promoted to their immediate higher
difficulty groups and the rest are demoted to their
immediate lower difficulty groups. These move-
ments allow monotonic weight functions result in
non-monotonic and multimodal weight trajectories
for training samples, which improves the search
capability of our framework and addresses the for-
getting challenge.

0.0 0.2 0.4 0.6 0.8 1.0
Training Progress

0.0

0.2

0.4

0.6

0.8

1.0

Co
nf

id
en

ce

(15, .5)
(10, .5)
(5, .5)
(-10, .25)
(-10, .5)
(-10, .75)

(a) Effect of rate/shift parameters.
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(b) Easy to Hard Curriculum.

Figure 2: Generalized logistic functions for curriculum
discovery. (a) shows the effect of the rate and shift pa-
rameters, (r, s) in (2), shown in the legend respectively.
(b) is a specific parameter configuration for a curriculum
that first introduces easier samples to a model, and then
medium and hard samples as training progresses.

3.3 Parameter Optimization

We find the optimal curriculum parameters (r, s)
for each difficulty group using the Tree-structured
Parzen Estimator (TPE) algorithm (Bergstra et al.,
2011; Akiba et al., 2019), which, unlike the grid
or random search, traverses the parameter space by
estimating the parameters that are most probable
to perform better on a trial. Using this method, we
can learn data-driven curricula beyond what could
be manually designed through empirical settings or
choices among the limited ordering strategies.

The discovered curricula are optimal within our
search space, as defined by the weight functions
and searchable parameters. However, in practice,
we observed that the change in performance across
the missing regions in the search space is minor.
Given that our weight functions can approximate
other curricula learned by existing CL models, see
§4.7, we expect the optimum curriculum within
our search space closely approximates the optimal
curriculum for each dataset and model pair.

3.4 Prior Knowledge of Difficulty

Annotation entropy is a natural measure of diffi-
culty (for humans) and may serve as a reliable dif-
ficulty metric for models. Entropy of each sample
xi is calculated as −∑

l pc log pc (Shannon, 1948),
where c is a class category and pc is the fraction of
annotators who chose label c for the sample. The
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Figure 3: Distributions of entropy and loss in our datasets. Samples of the easy class are to the left of the first
vertical line and shaded in green, those of the medium class are between the two vertical lines and shaded in orange,
and samples of the hard class are to the right of the second line and shaded in red.

use of entropy is supported in (Nie et al., 2020a),
reporting a consistent positive correlation between
model accuracy and level of human agreement.

Furthermore, moving average of a sample’s in-
stantaneous loss is a good metric for difficulty
(Zhou et al., 2020). Using a baseline model
trained with no curriculum and with default hyper-
parameters, we collect the loss values of all training
instances at intervals of 0.5 epochs and use the aver-
age loss as prior knowledge about sample difficulty.
We obtain twenty observations of the loss and com-
pute the average for each sample.

Figure 3 shows the distributions of entropy and
loss, and examples of data partitions across four
datasets. Most datasets are highly imbalanced
across difficulty groups, often containing more eas-
ier samples than harder ones. Such data disparities
would perhaps explain why computational models
can achieve human-level performance on complex
NLP tasks or recent results reporting neural mod-
els being largely invariant to random word order
permutation of data (Sinha et al., 2021).

We acknowledge that while multiple annotations
per sample may not be readily available for many
NLP datasets, such annotations were collected for
most NLP datasets at their dataset development
time. Our work shows that such information can
be used to find effective curricula for NLP mod-
els and encourages dataset creators to publish their
full annotation information. In addition, our cur-
riculum discovery framework is independent of

annotation information. In fact, we evaluated our
approach with both annotation entropy and loss as
two choices for sample-level difficulty estimation.

4 Experiments

4.1 Datasets

For the purpose of our experiments, we chose
datasets for which several annotations per sample
are available. Such annotator-level information is
often available at the creation time of most NLP
datasets and provide rich information for effective
learning. Before training, we partition each dataset
into k difficulty groups using { i

k}i=k
i=0 quantiles.

SNLI (Bowman et al., 2015). The Stanford Nat-
ural Language Inference (SNLI) benchmark (Bow-
man et al., 2015) contains 36.7k and 2.6k samples
annotated by 5 and 4 workers respectively, which
we refer to as SNLI full in our experiments.

ChaosNLI (Nie et al., 2020b) contains 100 an-
notations per sample for about 1.5K development
samples of SNLI and MNLI (Williams et al., 2018).
We use these samples as training data, the remain-
ing 8.5K development samples of SNLI as devel-
opment set, and the test set of SNLI as test set.

Twitter (Amiri et al., 2018). This dataset has
been developed to obtain population-level statistics
of alcohol use reports through social media. It
contains more than 9k tweet, annotated by at least
three workers for report of first-person alcohol use,
intensity of the drinking (light vs. heavy), context
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of drinking (social vs. individual), and time of
drinking (past, present, or future). We define a
multi-class classification task for this dataset based
on the above categories, see the data distribution in
Appendix A. We randomly split the data into 5.4k,
1.8k and 1.8k training, development and test sets.

Reddit. We developed this dataset to obtain
population-level statistics of cancer patients. It con-
tains 3.8k Reddit posts annotated by at least three
annotators for relevance to specific cancer types.
We define a multi-class classification task based on
post relevance and cancer type, see Appendix A.
We randomly split the data into 2.2k, 765, and 765
training, development and test sets respectively.

ChaosNLI is balanced in its difficulty groups.
We create difficulty-balanced versions of SNLI,
Twitter and Reddit by collecting an equal num-
ber of samples from each difficulty group. The
resulting datasets contain 1.7K to 2.3K samples.

4.2 Baselines

No-CL The conventional training approach,
which involves utilizing all samples for training
in each iteration.

Self-paced Learning (SPL) (Kumar et al., 2010)
weights instances based on their difficulty to the
model by optimizing the following objective:

L(D; θ) = argmin
v

n∑

i

vili + f(v;λ), (3)

where li is the loss of instance i parameterized by θ,
vi is a trainable weight parameter assigned to each
instance, and f is a regularization function for the
weights. The model finds v that minimizes its loss
under the constraint of f . The binary scheme SPL
is defined by the regularization function f(v;λ) =
−λ∥v∥1; if li < λ, vi = 1, otherwise vi = 0, i.e.,
only easy samples are selected at each step.

Mentornet (Jiang et al., 2018) uses an auxiliary
network to weight samples at every iteration. The
network takes as input recent loss history, running
mean of the loss, current epoch number (to account
for training progress), and target labels. The net-
work consists of an LSTM layer to encode the k
steps of loss, embedding matrices for the target la-
bel and epoch number; a fully connected layer; and
a final sigmoid layer. The sigmoid layer outputs
weights of samples for training.

Difficulty Prediction (DP) (Yang et al., 2019)
defines sample difficulty as follows:

di =

∑li
j=1 f(y

(j)
i , ŷi)

li
, (4)

where ŷi is the ground truth label and f measures
the Spearman’s rank correlation coefficient be-
tween labels produced by experts and non-experts.
The model re-weights samples for performance im-
provement using a pre-defined threshold τ ,:

1− α
di − τ

1− τ
. (5)

SuperLoss (SL) (Castells et al., 2020) uses the
following function to estimate sample weights:

Lλ = (li − τ) σi + λ (log σi)
2, (6)

where τ is the moving average of loss (as the mea-
sure of difficulty) and σ is sample confidence. The
model emphasizes easy samples (those with small
losses) throughout the training.

Our approach employs two difficulty scoring
functions and two curriculum types for each dataset.
The difficulty scoring functions are Loss and Ent
(entropy) described in §3.4. The first curriculum
type (inc) is the off-the-shelf gradually increasing
approach in Figure 2b, which is rapidly computed
and applied to all models, resulting in Ent(inc)
and Loss(inc) approaches. The non-monotonic
version of the inc curriculum (§3.2) are labeled
Ent+(inc) and Loss+(inc). The second curriculum
type (sp, for specialized) is obtained through the
proposed optimization approach (§3.3) that finds
optimal curricula for each model and dataset, re-
sulting in Ent(sp) and Loss(sp).

4.3 Settings

We use bayesian optimization to tune the param-
eters λ of SL and α and τ of DP on development
data. The optimal values found are λ = 1.2,
α = 0.9 and τ is set dynamically upon loading
the dataset to the 50 percentile difficulty value of
the training data. We use twitter-roberta-base for
Twitter and roberta-base for other datasets, both
from (Wolf et al., 2020). We set learning rate
to 1 × 10−5, batch size to 16, epochs to 10 (we
confirm that this number of iterations is sufficient
for all models to converge), and use Adam opti-
mizer (Kingma and Ba, 2017). The checkpoint
with the best performance is used for testing. For
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Full Difficulty Balanced
SNLI Twitter Reddit ChaosNLI SNLI Twitter Reddit Avg

Ent (sp) 88.3 ± 0.04 79.1 ± 0.15 73.5 ± 0.22 78.3 ± 0.49 80.6 ± 0.16 76.7 ± 0.14 72.4 ± 0.46 78.4
Ent (inc) 88.0 ± 0.05 79.4 ± 0.11 73.5 ± 0.21 77.5 ± 0.64 80.6 ± 0.25 76.7 ± 0.17 71.1 ± 0.22 78.0

Ent+ (inc) 88.0 ± 0.17 79.7 ± 0.17 73.9 ± 0.21 77.8 ± 0.39 77.9 ± 2.10 77.2 ± 0.18 72.9 ± 0.28 78.2

Loss (sp) 88.0 ± 0.05 79.3 ± 0.17 72.6 ± 0.23 76.8 ± 0.90 81.4 ± 0.16 77.0 ± 0.16 73.0 ± 0.61 78.3

Loss (inc) 87.9 ± 0.06 78.9 ± 0.11 72.7 ± 0.16 74.7 ± 0.86 80.8 ± 0.37 75.7 ± 0.19 71.7 ± 0.69 77.5

Loss+ (inc) 87.8 ± 0.09 78.6 ± 0.31 72.3 ± 0.48 74.0 ± 1.26 79.0 ± 0.91 76.6 ± 0.36 73.0 ± 0.34 77.3

DP 88.1 ± 0.06 78.5 ± 0.12 73.0 ± 0.24 76.4 ± 0.22 79.6 ± 0.36 76.1 ± 0.15 71.5 ± 0.35 77.6

SL 88.0 ± 0.07 78.6 ± 0.13 73.1 ± 0.24 77.3 ± 0.53 78.2 ± 0.48 76.0 ± 0.15 70.7 ± 0.41 77.4

MentorNet 87.7 ± 0.18 78.2 ± 0.12 73.1 ± 0.23 76.0 ± 0.00 79.0 ± 0.69 76.3 ± 0.16 71.1 ± 0.48 77.3

No-CL 87.9 ± 0.07 78.6 ± 0.12 73.3 ± 0.20 76.2 ± 0.27 79.4 ± 0.32 76.4 ± 0.16 70.8 ± 0.26 77.5

Table 1: Loss and Ent indicate curricula that partition the data based on k = 3 difficulty groups determined by loss
and entropy respectively, see §3.4. inc is the easy to hard curriculum shown in Figure 2b. sp is the specialized
curriculum obtained by curriculum discovery, see §3.3, which is different for each dataset.

each experiment, we train the model using five ran-
dom seeds and report standard error.

In addition, we set the search space for the rate
(r) and shift (s) parameters to [−10, 10] with a step
of 2 and [−0.5, 1.5] with a step of 0.25 respectively.
The search is run for at least 100 trials using the
method described in (§3.3). Each trial is run with
three seeds and the result is averaged. The search
objective is to maximize accuracy over develop-
ment data. The trial number in which the best
parameters are found is reported in Appendix C.
We only search for curricula with three difficulty
groups to ease interpretability and improve read-
ability, and to minimize the number of search pa-
rameters. However, in case of inc curriculum, the
optimal number of difficulty groups for ChaosNLI,
SNLI, Twitter, Reddit are 12, 3, 28, and 12 respec-
tively; in all cases, we tune the number of groups
on the development set and evaluate on the best
performing one. Appendix B includes the results
of tuning the number of groups.

4.4 Curriculum Discovery Improves Models

Table 1 shows that the gradually increasing cur-
riculum using entropy, Ent (inc), achieves better
accuracy than No-CL and other baselines, and the
difference is significant. The gain is often greater
with more than 3 difficulty groups, see detail results
in Figure 8, Appendix B. Both (inc) and the spe-
cialized (sp) curricula often perform better than the
baselines. On average, entropy as scoring function
performs better than loss, indicating prior knowl-
edge based on difficulty to humans is useful to the

model. The results also show that non-monotonic
curricula (Ent+, Loss+) can further improve the
performance; we attribute this result to the ability
of the non-monotonic curricula to dynamically ad-
just the difficulty of samples according to model
behavior as training progresses, allowing easier or
harder samples to the model accumulate in the eas-
ier and harder difficulty groups. The performance
improvement is more pronounced on the difficulty
balanced datasets compared to full datasets, which
can be attributed to the balanced nature or smaller
size of these datasets.

4.5 Discovered Curricula Are Non-monotonic

Figure 4 shows the mean and 95% CI of the top 25
performing curricula. The resulting curricula are
non-monotonic and greatly differ from the known
strategies reported in literature, such as gradually
increasing difficulty or anti-curriculum. In addi-
tion, the weights of hard samples tend to decrease,
supporting the hypothesis that these instances may
be too difficult or noisy for models to learn. In addi-
tion, in SNLI and Twitter easy samples often carry
the most significant weight, unlike Reddit, where
easy samples are often down-weighted early dur-
ing the training. These weighting patterns reveal
the relative importance of samples in each dataset.
Finally, the full SNLI dataset with entropy parti-
tions provides useful information. In Figure 4c,
hard samples are assigned weights around 0.5, un-
like the three other cases of SNLI. We attribute
this result to the reduced presence of hard samples
(skewed entropy in Figure 3b).
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Figure 4: Each caption is composed of the first char-
acter of the name of a dataset: {ChaosNLI, SNLI,
Twitter, Reddit}, followed by the type of the dataset
{Difficulty-balanced or Full}, and the difficulty score
used {Entropy, Loss} in experiments. The x-axis is the
training progress and y-axis is the confidence assigned
to samples of a difficulty-class. The green line (circle
marker) is easy, orange line (x marker) is medium, and
red line (diamond marker) is hard. The solid line is the
mean of the top 25 performing configurations for each
dataset and scoring function pair, and the shaded area
represents the 95% CI.

4.6 Discovered Curricula Are Generalizable

Figure 5 shows the accuracy obtained when the top-
performing discovered curriculum for one dataset
(from Figure 4) is applied to other datasets. Each
cell is the average result of 5 seeds. We observe
common characteristics among datasets that cause
the curriculum to be transferable between them.
First, the top generalizable configuration is ob-
tained from ChaosNLI, the dataset with the rich-
est inter-annotator entropy signal. Therefore, the
quality of the difficulty score is important to the
discovery of an effective curriculum. Second, the
inc configuration is among the most generaliz-
able configurations, with no added cost in its cre-
ation. Third, the curricula obtained using the small,
down-sampled difficulty-balanced datasets general-
ize well and achieve high performance on the large
datasets. This is useful as curriculum discovery is
much faster on smaller datasets, and the framework
can be applied to large datasets by searching for a
curriculum on a small subset of the data, mitigating

Curriculum 82M 125M 406M
No-CL 63.9 ± 0.13 76.2 ± 0.27 80.0 ± 0.41

Best baseline 64.7 ± 0.3 77.3 ± 0.53 81.9 ± 0.86

Ent (sp) 82M 67.4 ± 0.25 78.4 ± 0.46 81.5 ± 0.50

Ent (sp) 125M – 78.3 ± 0.49 82.6 ± 0.39

Ent (sp) 406M – – 82.3 ± 0.54

Table 2: Transferability of the specialized curricula dis-
covered for small models to large models on ChaosNLI.
“Best baseline” shows the best performance obtained by
baselines (DP, SL, Mentornet). “Ent (sp) n” indicates
the curriculum discovered on the model with n parame-
ters. Column headers indicate the model trained using
the discovered curricula of the corresponding rows.

the computational expenses of using full datasets.
Fourth, as noted previously, instances of the Reddit
dataset consist of long paragraphs, causing high
variance in models trained using the dataset. Con-
sequently, the curricula obtained using the Reddit
and loss as measure of difficulty are of lower qual-
ity and perform poorly. Appendix D reports the
results of all configurations.

Table 2 shows the transferability of discov-
ered curricula across model sizes. We consider
three models with increasing sizes applied to
ChaosNLI: distilroberta-base with 82M
parameters, roberta-base with 125M param-
eters, and bart-large with 406M parameters.
The results show that the curricula discovered for
small models are transferable to larger models, with
significant improvement over No-CL and other CL
baselines. In particular, we observe greater trans-
ferability for smaller model sizes, which indicates
curriculum discovery is more beneficial to smaller
models than larger (more robust) models. In some
cases, the curricula discovered for smaller mod-
els perform better than those discovered for larger
models, see Ent(sp) 82M and 125M. This is because
curriculum discovery is less expensive on smaller
models, allowing better exploration of curriculum
space to find better curricula.

Figure 6 shows the curricula obtained using mod-
els of different sizes. The three curricula are simi-
lar in their relative treatment of difficulty groups:
samples from the easy class are assigned higher
weights than those from the medium class, and
medium samples receive higher weights than hard
samples. In addition, hard samples are consider-
ably down-weighted, which indicates deemphasiz-
ing hard samples during training can lead to better
results on the test data of ChaosNLi.
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Figure 5: Notation is the same as Figure 4: {ChaosNLI, SNLI, Twitter, Reddit}, followed by the type of the dataset
{Difficulty-balanced or Full}, and the difficulty score used {Entropy, Loss}. The x-axis lists curricula discovered
using a particular dataset and scoring function, and the increasing curriculum inc (Figure 2b). The y-axis lists
models that are trained using each curriculum. For example, the cell at the intersection of row "S-F-L" and column
"T-F-E" represents a model trained on SNLI full partitioned by loss, using the curriculum discovered for the full
Twitter dataset partitioned by entropy (Figure 4g). Each row of the Table is normalized to match the scales of
different models (after normalization, the max of each row is 100).

4.7 Potential to Encompass Existing Models

The framework presented in this paper is capa-
ble of representing curriculum learning approaches
that prune noisy data, e.g. (Northcutt et al., 2021),
use different sub-samples of data during training,
e.g. (Xu et al., 2020), and re-weight loss according
to sample difficulty, choosing to emphasize either
easy or hard samples, e.g. (Castells et al., 2020).

First, data pruning can be achieved by assigning
negative values to the rate and shift parameters in
our framework, r and s in (1), which cause the
weights to approach zero before training begins.
Second, data sub-sampling can be represented by
“inc” in Figure 2b. Third, approaches that estimate
sample confidence based on loss (Castells et al.,
2020; Felzenszwalb et al., 2009; Kumar et al., 2010;
Jiang et al., 2015; Zhou et al., 2020) tend to gen-
erate monotonic curves over the course of training
because training loss tends to be non-increasing at
every step. Figure 7 shows the confidence scores
assigned to our data by three loss re-weighting
approaches. The results are generated by our im-
plementations of the three approaches, where each
model runs with five random seeds. The partition-
ing of easy, medium, and hard is according to the
entropy, as described in §3.4. We record the av-
erage weight assigned to each group. The result

is averaged over all the runs, and the shaded area
indicates the 95% confidence interval (CI). The re-
sults show that the confidence scores assigned by
these approaches follow a monotonic curve that
can be approximated by our curriculum discovery
framework. We note that although the weight scale
of SuperLoss (Castells et al., 2020) in Figure 7a is
larger than one, this model can still be represented
by our framework because the increased scale cor-
responds to scaling of the learning rate, as shown:

θt = θt−1 − η∇ 1

n

∑

i

σili

= θt−1 − (η · σmax)∇
1

n

∑

i

σi
σmax

li,

(7)

where li and σi are the instantaneous loss and confi-
dence of sample i respectively. Therefore, the pro-
posed framework can also represent CL approaches
with a confidence scale larger than one.

5 Conclusion and Future Work

We introduce an effective curriculum learning
framework that employs prior knowledge about
sample difficulty in its training paradigm for cur-
riculum discovery. The proposed framework ini-
tially partitions its input data into several groups
of increasing difficulty, defines parameterized func-
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Figure 6: Specialized curricula optimized on ChaosNLi
using distilroberta (82M), roberta-base
(125M), and facebook/bart-large (406M). The
performances of each curriculum are reported in Ta-
ble 2.

tions to weight sample losses in each difficulty
group, moves samples across difficulty groups
based on their learning progress, and enables tun-
ing the parameters of the weight function to dis-
cover novel curricula. We demonstrate that this
framework is capable of representing several cate-
gories of curriculum learning approaches. The task
of curriculum discovery alleviates the limitations
imposed by selecting a single curriculum strategy,
and instead, focuses on finding and analyzing dif-
ferent curricula that work equally-well for a given
model and dataset. In addition, the discovered cur-
ricula provide insight into how different portions of
the dataset contribute toward learning at different
stages of training a model, which, in turn, provide
knowledge about the learning dynamics of different
models. The task of curriculum discovery could
be costly on large datasets, in particular, when the
goal is to find optimal curricula for different mod-
els and datasets. To mitigate the computational

(a) SuperLoss (Castells et al.,
2020)

(b) Self-paced Learning (Ku-
mar et al., 2010)

(c) HNM (Felzenszwalb
et al., 2009)

Figure 7: Confidence assignment to samples in our
datasets by three CL approaches. The x-axis is the epoch
number, and y-axis is the average weight assigned to
samples of each difficulty group. Blue (solid) is easy,
orange (dashed) is medium, and green (dash-dot) is hard.
The shaded area is the 95% CI over the datasets with
five random seeds each. The curves are monotonic for
most parts, and can be approximated by our framework.

cost, we show that it is possible to rapidly discover
a curriculum on a small subset of the dataset (or
a smaller version of the model with significantly
less number of parameters) and apply the resulting
curriculum to the full dataset.

There are several promising areas for future
work. These include approaches for learning new
difficulty indicators from data (e.g., linguistic dif-
ficulty including lexical, syntactic and semantic
difficulty), prioritizing medium level instances and
those with greatest progress during training, and
developing challenge datasets that contain diverse
data samples with different levels of difficulty. Fi-
nally, investigating diverse curricula that are suit-
able for general use and across datasets through cur-
riculum discovery and generalization is a promising
area for research.
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Limitations

The present work investigates the use of two sample
difficulty scoring functions, human-induced anno-
tation entropy and model-induced loss, for NLP
models and datasets. The former requires the avail-
ability of multiple annotations per sample and the
latter requires training an auxiliary model to com-
pute sample instantaneous loss during the course
of training. Our work does not provide a general
solution to the choice or availability of good dif-
ficulty scoring functions. However, once such a
function is available, our work presents solutions
to the problem of finding high-performing curricula
in curriculum space. Our approach, although effec-
tive at finding such curricula, requires a Bayesian
search of its hyperparameters. We reduce these
costs by finding curricula on smaller datasets and
smaller models that can then be applied to corre-
sponding larger datasets and models. Finally, the
proposed method lacks theoretical analysis of the
dynamic interactions between data, downstream
models, and discovered curricula.
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A Data Categories Distribution

Class Count
(no) 5,325
(yes, light use, individual) 1,464
(yes, heavy use, individual) 964
(yes, not sure, individual) 457
(yes, heavy use, other) 423
(yes, heavy use, group) 284
(yes, light use, group) 161

Total 9,078

(a) Twitter

Class Count
(irrelevant, no patient experience) 1,996
(relevant, breast cancer) 617
(relevant, colon cancer) 444
(relevant, brain cancer) 284
(irrelevant, none of the above) 251
(irrelevant, other cancer types) 162
(irrelevant, news related to cancer) 70

Total 3,824

(b) Reddit

Table 3: Statistics of the Twitter and Reddit datasets.

Table 3 shows the target class distributions of the Reddit and Twitter datasets.

B Finer-grained Difficulty Classes

2 6 10 14 18 22 26 30
# Classes

0.70

0.75

Ac
cu

ra
cy

(a) ChaosNLI.

2 6 10 14 18 22 26 30
# Classes

0.80

0.82

Ac
cu

ra
cy

(b) SNLI.

2 6 10 14 18 22 26 30
# Classes

0.79

0.80

Ac
cu

ra
cy

(c) Twitter.

2 6 10 14 18 22 26 30
# Classes

0.72

0.74

Ac
cu

ra
cy

(d) Reddit.

Figure 8: Accuracy of models trained with the inc curriculum (see §4.2) and different number of difficulty classes.

Figure 8 shows the effect of different number of difficulty classes on he accuracy of models trained with
our inc curriculum (see §4.2). The results show that the number of difficulty classes used is an important
factor in our framework, and further tuning of this parameter can further improve the performance of our
model.

C Curriculum Search Computational Cost

Configuration Number of trials
(Avg. turnaround time per trial: 15 minutes)

S-F-E 87
S-F-L 111
S-B-E 135
S-B-L 75
T-F-E 139
T-F-L 73
T-B-E 106
T-B-L 44
R-F-E 61
R-F-L 73
R-B-E 69
R-B-L 112
C-D-E 36
C-D-L 70
C-D-E [82M parameter model] 71
C-D-E [406M parameter model] 69

Table 4: Number of trials for the best parameters found. The notation for configurations is the same as Figure 4.
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With our experimental settings, it takes around 15 minutes on average to train a base model on our
datasets of up to 3k samples using a single GPU. Therefore, a curriculum search take around 9 hours (36
trials) to around 35 hours (139 trials) using a single GPU.
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Figure 9: An extended version of Figure 5 including experiments on balanced versions of the datasets.

Figure 9 shows the result of every model trained using every specialized curricula (and inc). We see
that the generalizable curricula that are effective on small (down-sampled) datasets, also tend to perform
well on large (full) datasets.
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